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Some existence result for a Stokes flow
between two arbitrarily closed curves

M. KOHR (CLUJ - NAPOCA)

THE PROBLEM of determining the slow viscous flow of a fluid between two arbitrarily closed curves
is formulated as a system of Fredholm integral equations of the second kind, addying a pair of
singularitics located outside of the flow region. We show that the integral equations proposed here
have a unique continuous solution, when the two closed curves are Lyapunov curves and the fluid
velocity is continuous on these curves.

1. Mathematical formulation

WE coNsIDER the creeping flow of an incompressible viscous fluid between two
arbitrary closed Lyapunov curves (i.e. they have a continuously varying normal
vector) denoted by C'! and (2, and supposed to be on the upper half plane
R% = {(z1,22) € R* : 25 > 0}. Also, we suppose that the Reynolds number
of the flow is very small. Under this condition, the governing equations for the
velocity u(u;, u3) and pressure p can be reduced to the Stokes equations:

Au(r) = Vp(z), r € 2,

kLel) Veu(r) =0, z € 2,
where the symbols ¥V and A mean the gradient operator and the Laplace operator,
respectively. Here z(zy,2,) € 2 and 2 is the two-dimensional bounded domain
with the boundaries C'! and (2, respectively, such that C'! is located inside of the
domain bounded by C?.

The fluid velocity u must satisfy the following boundary conditions on the
curves C'! and %

u(x) = fi(x). for z € (2,

(1.2)
u(z) = fH(x), for z € 102,

where the boundary velocities f; and f; are supposed to be smooth vector func-
tions.
Using the continuity equation (1.1),, we deduce the following relation:

/ wi(a)n;(r)ds, =0,

cluc?
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hence, a necessary condition for our problem to have a solution in {2 is that

(1.3) /flj(.lr)n‘,'(ar)r[.s, = ffz_,-(.r)n‘,'(.::)(lsl..
ct c?

Here n(ny, n,) is the unit outward normal vector at points of C'! and (2.
By applying the Green identity for a smooth and solenoidal vector v(vy, 1)
and a scalar function ¢, we obtain:

dq du; | Ju; dv;  Ov; \ |
(1.4) / (‘_‘.1J = ()—’c]) wjde + = 2 / (017 ()-'I‘J‘) (()—Ii % 0—1‘,) dzr

2
= ]'l‘u(v)u,--nJ ds —/T,-J(v)u,nj ds,
1 c?

where

- dv;,  dv; o
(15) .[,'J(V) (I‘S”-[-(}__J'J‘*-()_J 'I._]G{],Z}q
are the components of the stress tensor, corresponding to the flow (v. ¢).
The formula (1.4) applied to u = v and p = ¢, gives the following equality:

i /(am au,)zi /,[, bulns d /1 i d
J ar = ij Ul'”-,' {8 — ‘.J “l'”') as.
2 dr; Oy P A

If we suppose that our problem has two solutions u; and uy, then the vector
u = u; — u, satisfies homogeneous boundary conditions on C'' and (2, and the
formula (1.6) gives:

(1.7) %( )+ d“’( ) =0 reR, i,j€{1,2].

This system has three linearly independent solutions:
(1.8) ul(z) = (1,0),  w@)=(0.1). (@)= (22.-2), z€LR

Hence, we conclude that the fluid motion compatible with homogeneous
boundary conditions on C'! and (' is given by the null solution u = 0.

In the following we consider the components of stress tensor /7 corresponding
to the Stokes equations (see [1] and [8]):

aq;; dqu.
(1.9) Tijk(x,y) = —qj(x. y)bi + Jl—j x,y)+ (_:)J'_J(.'r,y),
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where ¢;; and ¢; are components of Green tensor (i and pressure vector q,
respzctively. & and q satisfy the following equations and conditions:

-
Artiy(a.p) = 5-(y) = —drdybe—y),  for >0,

d
(1.9, 5 W‘lij(""vl'/) = 0, for 2z > 0,
gij(r,y) = 0, for z, =0,
¢j(z,9) = 0, q(z,y) =0, as |z| — o0,

where 4 is Dirac’s distribution.
From [8] it results that the Green tensor (i can be written as:

(1.9% G(r.y) = G (@=y)=G (@ =y + 236 (1 =y"™) = 202G (@ ~y™),

where '™ = (y;,—1,) is the image of the pole y with respect to the boundary
v, =0, the Green tensor (77 has the components (see [8]):

1.9y q;;lr(.r) = —In|z|é;; + 7|l;21
. . .

The matrices which correspond to the tensors GV and G*P are given by

B
ql)()u:t(' |2 2| |¢'1’)‘

a2x; — b
rl'z_)’)( ) '2(1’:!( ):tsz”

(1.95-9

where the plus sign applies for j = 1, in the Ox; direction, and the minus sign
for 7 = 2, and in the Ox; direction.

The pressure tensor P, with components /1, is associated with the tensor /1.
Precisely, we have

0
(1.10), T(x,y) = — Pz, y)b;; + ‘)U’ (z, )+ (1 v),
where
(1.10), (y,2) =0, for z#y, z€ Ri
and
dyg 2
(1.10)3 Fry y,x) =0, re RS, T # .
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The pressure vector q can be written as (see [8]):

(1.10)s az.y) = 4" @ - ) - ¢ (@ - y"™) - 220° (@ - y™),
where

2.171' J 2
(1.10)s T (z) = oE ¢°P(x) = _W(lezz, 23 - 2d).

With the above notations, we consider the following relations:

Kij(z.y) = Tjir(y, x)ne(y),

1.11
(L) Ki(z,y) = ITij(x, y)n;(y),

where y(y1,12) € C1UC2,
We determine the solution (u, p) of the Stokes problem (1.1), (1.2) in terms
of the following double-layer potentials:

uj(r) = f Kz, y)oi(y) dsy, ze N, je{l,2},
cluc?

p(r) = / N(z,y)b;(y) ds, r € £,

cluc?

(1.12)

From the boundary conditions (1.2) we obtain a Fredholm integral system of
the second kind for the unknown density ¢(o;, ¢3):

=2r¢i(z) + / Kz, p)o(y)ds, = fi;(x), reCl,
ctuc?

2rgi(z) + ] N, y)o(y)ds, = fo;(x), z € C*.

cluc?

(1.13)

We used here the following jump relations of the double layer potentials:

(113)  lim j dilg Kt cphde, = £3rdila)+ / $:(W)K; (2, y) dsy
C c

where (' is a closed Lyapunov curve, the sign + corresponds to the internal side
of C, and the sign — to the external side.

The above integrals, which appear in (1.13), are considered as the principal
values in the Cauchy means.

The system (1.13) has a solution if and only if the non-homogeneous term

f: ClucC? — R?, f(z) = fi(x), for + € C', i € {1,2}, is orthogonal to the
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solutions of the corresponding adjoint homogeneous system. We used here the
second Fredholm alternative for Fredholm’s type integral equations (see [3, 4]).
Let us consider the homogeneous system of (1.13):

—2r(x) + / Kz, y)é(y)ds, =0, zeC,
cluc?

27:'459(1‘) + / 1\'1'1(1',;11)(,6?(‘1)) ds, = 0, w € OF,

cluc?

(1.14)

Also, the homogeneous adjoint system of (1.13) has the form:

2@+ [ Ky@an@)ds, =0, aec,
cluc?

(1.15)
2r7i(x) + / Kii(y.2)n(y)ds, = 0, zeC2
cluc?
From the first Fredholm’s alternative (see [3, 4]) it results that the vector
solutions of the system (1.14) and (1.15), respectively, form two vector spaces of

same finite dimension d.
If we use the following properties of the stress tensor:

()Iuk
0.

——(z,y) = ( Jy) = —dndi6(e —y),

(1.16) ’
() m
P AT C)

—4reyrib(x — y),

where ¢ is the Dirac distribution, and using the divergence theorem in a bounded
domain D ¢ R?, having the boundary ', we obtain the next properties:

) 2l for x € C,
/Fi'jk(y’I)M('U)([HH - {0 J for ¢ DUC

C

(1.17)

jf,‘jk:{jjT,l\-[m(y,.T)Hm(y) ds, =

{ 2XEi5IEL 5 for »€C,
c

0, for ¢ DUC,

where the components 773, are given by (1.9);, the unit normal vector n is directed
inside of D, and the symbol ¢;;, means:

_ i, for an old permutation of numbers 1, 2, 3,
ik -1, for an eden permutation of numbers 1, 2, 3.
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By applying the properties (1.13), (1.17) we deduce that the functions u’,
1 € {1,2,3}, given by (1.8), are solutions of the following equations:

(1.18) —21r11.j(.1‘)+/1\'j1(.7',y)u}(y)(/.,sy =0, zeC!, 1€{1,2,3}, je{1,2}
cl
and
(1.19) ‘/1\'11(:1:,y)uf(y) ds, =0, ze€C% ie{1,23).
el

Let the vector functions ¢° : €1 U C2 — R?, i € {1,2,3}, be given by

0 u'(z), = € €7,
Mx) =
¢z( ) {O, T 6 C"Z.

From (1.18) and (1.19), we deduce that these functions are three linearly
independent solutions of homogeneous system (1.14). Hence, we conclude that
d > 3. In the next we shall prove that ¢ = 3. For this aim we consider the
single-layer potentials

(1.20) V@ = [ aeom@ds,  ie{1,2)
cluc?
with their corresponding pressure
(1.20) Po(z) = f q;(r,y)Ti(y) ds,
cluc?

where T is a possible solution of the adjoint system (1.15), ¢;; and ¢; are given
by (1.9)s—9 and (1.10)4 5, respectively.

From (1.9),3 it results that the potentials (1.20), (1.20") determine a Stokes
flow in £2.

Since the potentials (1.20) and (1.20") are continuous on C'! and (2, it follows
that (1.20) can be considered as a continuous velocity field at every point z € R2.
On the other hand, the vector tension, of (1.20) and (1.20"), has a jump in points
of C! and C2. Tt is easily seen that the limiting value of the vector tension, when
¢ € 22 = R3\(2' UT2) tends to a point 2 € C'2, is given by the left-hand side of
Eqgs. (1.15);. The limiting value of the vector tension, when 2’ € 2! (the domain
bounded by the curve C'!) tends to a point = € C'!, is given by the left-hand side
of Egs. (1.15);.

We can see that, for = € 2!, the potentials (1.20) and (1.20’) represent a
Stokes flow with zero vector tension in points of (', As in (1.6), we deduce that:

(1.21) V].O(;r) = uj(;z;), for ze ', je{1.2}, ie{1,2.3},

where the functions u', i € {1,2,3} are given in (1.8) (or a linear combination of
these functions).
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In the same way, the potentials (1.20) and (1.20), for all z € 22, represent
a Stokes flow in 22 with zero vector tension on €2, with zero velocity on the
boundary z; = 0, and the asymptotic form at infinity:

V(@) =0(1), as |z| — .

In the above statement we consider the boundary z; = 0 as a rigid wall,
bounding a Stokes flow in 22
By using the Green’s formula in 22, it results that

(1.22) V(z) =0, forall z¢e 0%

The previous arguments show that the potentials (1.20), (1.20") represent a
Stokes flow in 2 with the following boundary conditions on C'! and CZ%:

VOz) = ui(z), teCl, je{1,2}, ie{1,2,3},
(123) jo(l) uj(x) r i J- {1,2}, ie{ 1
V(z) = 0, z€eC? je{1,2).

The above conditions determine the following Fredholm integral system of
the first kind for the unknown function T:

uF@), zec!, ie{1,2}, ke {1,2,3},

[ wteonas,

(124)

I
<

i (z, y)ri(y) dsy = zeC? ie{1,2}).

cluc?

Using the Fredholm’s alternative (see [3, 4]), we prove that the system (1.24)
has a unique solution, for each k& € {1,2,3}. In fact we show that the correspond-
ing homogeneous system (1.24) has only a trivial solution.

For this aim, let us consider the following system:

gij@ )W) ds, =0,  weCl, ie{1,2},

(1.25) S8
6@, 9 () ds, =0,  weC? ie{1,2).

cruc?

If we consider the single-layer potentials (1.20) and (1.20") with density given
by any possible continuous solution T of (1.25), then we conclude that the Stokes
velocity VO = VO(7%) vanishes identically on ("' and (2. From the uniqueness
result of the solution corresponding to the boundary-value problem (1.1), (1.2),
we conclude that VO = VO(7%) must be equal to zero in 2.

On the other hand, from the continuity property of single-layer potentials
I"J-O = V:)”(‘ro), J € {1.2}, in each point of upper halfplane Ri, it results that
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VY = V(T)(z) = 0, for all z € 2% Therefore, T;;(V'(7%)(x)) = 0, for all
z € 22, and in particular we obtain

(126)  lim T;; (VP ()", (2") = =27n70(z) - j Kji(y, z)r(y) ds, = 0.
II’EDZ Clucz

Also, we have

(1.27) 1'—I'i:2C'2 T,‘j(‘IO(TO)(.I,'I))FIJ'(:I") = 27r‘r1-0(.‘1') = / Kﬁ(y.:c)rjo(y) ds, = 0.
r’en‘ cluc?

From (1.26) and (1.27) we obtain that T%(z) = 0, for 2 € C%. Analogously,
we can prove that T0(z) = 0, for # € C'. Hence, the only solution of the
homogeneous system (1.25) is the trivial solution, and also the system (1.24)
(with k fixed) has a unique continuous solution. Because the system (1.24) has
three linearly independent non-homogeneous terms ul, u?, v, it is easily shown
that the corresponding solutions, denoted by 7', 72, 73, are linearly independent.

For this aim, let us consider the real numbers v, 72, 73, such that
3 .
Y yiTi@)=0, =zecC'uc?
i=1

Using (1.24) and the above equality, we obtain:

3 3
== / {qu(.)’.y)Z"“f;('rj)} ds, = Z",,uj(.r). zeCl, le{1,2].
i=1

cluc? el

By applying the linearly independent property of the functions u', u?, u?, we
deduce that 9; = 7, = 73 = 0, hence the functions T!, T2, 73, are linearly
independent.

On the other hand, each solution T of the adjoint system (1.15) is also a
solution of system (1.24). Hence, the system (1.15) has at most three linearly
independent solutions, which shows that ¢ < 3. Now we conclude that d = 3 and
that the system (1.15) has the same solutions as the system (1.24).

By following the second Fredholm alternative (see [3, 4]), it results that a
necessary and sufficient condition for the solvability of system (1.13), can be
written as:

(1.28) / fii@)ri() ds, + / fy(@)ri(e)ds, =0, i€ {1,2,3),
cl 2

1 3

where T!, T2, 73, are linearly independent solutions of system (1.24).
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Finally, we can formulate the following result:

THEOREM. The Stokes problem (1.1), (1.2) with the boundary condition (1.3),
has a unique solution (u, p) on the bounded domain 2., if and only if the functions
f; and £y satisfy the conditions (1.28).

The above condition (1.28) is restrictive. Then we consider a modified form
for the flow (u, p).

2. Another form of solution

Using the singularity method, we determine the flow (u,p) as a sum of a
double-layer potential plus some singularities located in a point z. from the
domain 2

uj(z) = ] Kj(x,y)di(y) dsy + a;qji(x, x.)

cluC? B
+ "Eui_i‘;.*"rs ] ]123
(2‘1) Wisim (-)ym(7 1 ) .} E { }
@) = [ K)o ds, + aigewd)
cluce

0![
+z, ;—J(.I',:l“~)tl‘[. z.€ 1.
" Dy
We choose the constants a,, w3 € R in the following manner:

f G,(_{/)u‘lj(y)rl.«u. J€{1,2},

a; =
] 12
(2.2) o
w3 = a3z = / o1(y)ui (y) ds,,
Ccluc?

where the functions u', u?, u® are given in (1.8).

By applying the boundary conditions (1.2), we obtain the following Fredholm
integral system of second kind, with the unknown function ¢:

= Brglal) E / Bl ds, ¥ appile, 5

cluc?
T ‘%(-F) = fi;(z) z€eC!
£ nu(.)ym j . oy

2.3) _

2rgilz) + ] K, )ou(y) dsy + aiqji(e, z.)
clyc?
dqii '
+€1r12£5—J—(-T,.’L'r)url = fZ_j(-T)a = CZ_
.y”l
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According to Fredholm’s alternative (see [3, 4]), in order to prove the exist-
ence and uniqueness result of solution of system (2.3), it is sufficient to show that
the following homogeneous system (2.47) has only the trivial solution:

- 27r¢9(x) + / Kz, y)d)?(y) dsy + a?q]—,'(ar,;zc)

cluc?
e
+“’?Eimi% =0, z€Cl,
Ym
(2.4) _
27"(1’9‘(1') + ] Kz, v)o) (y) ds, + n?qj,v(.r, z.)
cluc?
By
+w?£1m,-(,){y%(r,:tc) =0, r € C?
where
(2.5) ol = [ oyl (y)dsy,  j€{1,2,3})
cluc?
and wg = ng.

From (1.13') and (2.4) it results that the vectors v! and v?, given by:

v)(z) = / Kja, y)dl(y) ds, ,

Cluc?

(2.6) 9
Dq;i :
1J2(1) = {n?qﬂ(.z'..l‘p) + U‘?s(,,”#(.r.n‘p)}. j€e{1,2}

m

can be considered as Stokes velocity flows in 2, which are equal on C'! and
(2. From the uniqueness result of solution corresponding to the Stokes problem
(1.1), (1.2) we deduce that v! = v? in 2. Tt is easy to show that v! gives zero total
force on C'!' or C? (when the tension vector is considered in points of ("' and
C? as limiting values), and v? gives a non-zero total force on C'! or (2, equal to
+4ra’, where a? = (o, oY). Hence, we obtain

2.7) n? = ng = [

On the other hand, v! yields zero total torque on C'! or (2, and v? yields a
non-zero torque on C'' or €2, Precisely, this torque is equal to £87aflk, where
k is the unit vector of the Ox3 axis, orthogonal to the Oxz, plane. We conclude
that

wo
1l
wo
1l
o

(2.8) a
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From (2.7) and (2.8) it results that the system (2.4) is reduced to the system
(1.14), which has three linearly independent solutions:

0 u'(2), € Ch, ‘
) = 1,23}
HO {O Cecr  fe(n23)
Then, any solution of system (2.4) can be written as follows:
3
(2.9) %) =Y BidYz), zeC'uc?

=1

where (3, 32, 33 are some real constants.
Using (2.7), (2.8) and (2.9) we obtain the following linear algebraic system
with unknows /3;, ¢ € {1,2,3}:

3 .
(2.10) pN:. / ui(y)u{(y)ds, =0,  je{1.2,3}.
=1

c1

Using the form of functions u', i € {1,2,3} we infer that the corresponding
determinant of system (2.10) is non-zero. Hence, 3, = [, = 3 = 0, which
shows that the only solution of system (2.4) is the null solution. It results that
the Fredholm integral system (2.3) has a unique continuous solution. With this
argument we have proved the existence and uniqueness of solution corresponding
to the Stokes problem (1.1)—(1.2).

REMARK. An analogous problem for the creeping flow of an incompress-
ible viscous fluid between two arbitrary closed surfaces, was studied recently by
H. Power and G. MIRANDA (see [7]). Using the theory of single layer potentials,
T.M. FiscHer, G.C. Hsiao, W.L. WENDLAND studied the slow viscous flows past
obstacles in a half-plane (see [2]). Using the theory of double layer potentials, H.
Power and G. MIRANDA solved the problem of a three-dimensional Stokes flow
past a rigid obstacle (see [5]).

The same method as that used in [5], was applied by H. Power to solve the
problem of a Stokes flow past » bodies (n > 1) of arbitrary shapes (see [6]). A
complete double-layer method was given by N.P. THIeN, D. TuLLock and S. Kim
in [9], to solve the problem of a Stokes flow past obstacles in a half-space.
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