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Scattering of oblique waves by a thin vertical wall 

with a submerged gap 

P. DAS, S. BANERJEA and B.N. MANDAL (CALCUTTA) 

THIS PAPER is concerned with scattering of an obliquely incident train of surface water waves by a 
thin vertical wall with a submerged gap. Utilizing Have lock's expansio n of wate r wave potential, two 
integral equations, one involving the horizontal component of velocity across the gap and the othe r 
involving the difference of velocity potential across the wall, are obtained. The quantities of physical 
interest, namely the reflection and transmission coefficients, are related to the solutions of these 
integral equations. For the case of normal incidence of the wave train these integral equa tions have 
exact solutions. These exact solutions provide one-term d alcrkin approximations to the solutio ns of 
the corresponding oblique incidence integral equations. Identify ing the reflection and transmission 
coefficients as some inner products involving the solutions of these integral equations and explo iting 
the properties of self-adjointness and positive semi-definiteness of the integral operators defining 
the integral equations, the one-term approximations result in some lower and upper bounds for 
the reflection and transmission coefficients. N umerical evaluation of these bounds for any angle 
of incidence and any wave number reveals that they arc very close to each other, and as such 
they produce good approximations to the exact values of the quantities of physical interest. For 
the special case of normal incidence this method produces numerical results which arc in good 
agreement with the results available in the literature obtained by othe r methods. 

1. Introduction 

WATER WAVE scattering problems invo lving fixed plane vertical barriers are be-
ing studied in the literature, assuming linear theory, over the last fifty years by 
employing various mathematical techniques. Since a thin barrier models a break-
water which shelters a port from the rough sea, study of its efTect on surface 
water waves is of some physical importance. P ORTER [1] considered the prob-
lem of water wave difTraction by a thin vertical wall with a submerged gap for 
the case of normal incidence of the wave train, and used a complex variable 
technique as well as an in tegral equation procedure based on Green's integral 
theorem to solve it in closed form. A number of researchers also studied the 
narrow gap problem assuming the gap width to be very small compared to the 
depth of submergence of its midpoint below the free surface. TucK [2] used the 
method of matched asymptotic expansion to obtain the transmission coefficient 
approximately. PACKHAM and WILLIAMS [3] used an integral equation formulation 
based on a suitable use of Green's integral theorem for uniform finit e depth of 
water, wherein the integral equation was solved approximately by exploit ing the 
concept of narrowness of the gap, and then the transmission coefficient was ob-
tained approximately. M ANDAL [4] also considered the narrow gap problem for 
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deep water by an integral equation formulation based on Havelock's expansion 
of water wave potential and used the idea of PACKHA M and WILLIAM S [3] to solve 
it approximately, and also obtained the transmission coeffi cient approximately. 

For oblique incidence of the wave train, the narrow gap problem was con-
sidered by Li u and Wu [5] who util ized TuCK'S [2] idea of matched asymptotic 
expansion to obtain the transmission coeffi cient apparently for low wave numbers, 
since approximation of Helmholtz's equation by Laplace equation for obtaining 
the near-fi eld solution is not valid for large values of the wave number. MA NDAL 
and KUNDU [6] used Havelock's expansion of water wave potential satisfying 
Helmholtz's equation to obtain an integral equation across the gap, which was 
then solved by assuming the gap to be narrow and the transmission coeffi cient 
was determined approximately. 

MANDAL and DOLAI (7) recently used the idea of EVANS and MORRIS (8) to 
obtain very accurate lower and upper bounds for the refl ection and transmission 
coeffi cients in oblique wave diffr action problems, invo lving four basic configura-
tions of a thin vertical barrier present in water of unifo rm finite depth. 

In the present paper the problem of oblique water wave diffr action by a thin 
vertical wall with a submerged gap (not necessarily narrow) is studied by utili zing 
the idea of EvANS and MORRIS [8]. The refl ection and transmission coeffi cients 
are obtained in terms of two integrals involving the unknown horizontal compo-
nent of velocity across the gap, and difference of velocity potential across the wall , 
respectively. These unknown functions satisfy some integral equations which have 
exact solutions fo r the case of normal incidence. Foll owing EvANS and MORRIS [8], 
these known exact solutions fo r normall y incident waves are utili zed as one-term 
Galerkin approximations to the solutions of these two integral equations. The 
reflection and transmission coefficients are identi fied with some inner products 
involving the soluti ons of these integral equations. Exploiting the properties of 
self-adjointness and positi ve semi-defin iteness of the integral operators defin-
ing the integral equations, the one-term Galerkin approximations produce upper 
and lower bounds for the refl ection and transmission coeffic ients for any angle 
of incidence and any wave number. It is analytically verifi ed that for the nor-
mal incidence case, the upper and lower bounds coincide. The bounds involve a 
number of integrals which are evaluated numerically by standard techniques. The 
numerical results reveal that the two bounds for any angle of incidence and any 
wave number are very close, and as such they produce very good approximations 
to the exact values of the refl ection and transmission coeffi cients. In our numeri -
cal scheme, if the angle of incidence is taken to be zero (for the case of normal 
incidence of the wave train), the numerical values of the two bounds coincide 
by more than four decimal places. This veri fies the correctness of the numerical 
scheme. Also, fo r the normal incidence case, the numerical resul ts obtained by 
the present method are in good agreement wi th the graphical results obtained by 
PORTER (1] and T UCK (2). 
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2. Formulation of the problem 

We choose a rectangular Cartesian coordinate system in which the y-axis is 
taken vertically downwards into the fluid, y = 0 is the undisturbed free surface. 
A train of progressive surface waves represented by the velocity potential 

1/Jo(x,y,z, l) = Re{exp(-f,·y + iJLX + ivz - ial)}, 

where J1. = K cos a:, v = l\' sin a:, l\. = a 2 / g, and g is the gravity and a is the 
circular freequency, is assumed to be obliquely incident (from negative infinity) 
on a fixed thin plane vertical wall at an angle o to the normal to the wall. The 
wall occupies the position x = 0 and has a gap which is represented by x = 0, 
y E 5, S = (a, b). The geometry of the problem allows the z-dependence to be 
eliminated by assuming the velocity potenti al to be of the form 

1/J(x ,y,z,t) = Re{cf>(x ,y)exp(i.vz- ial)} 

throughout. Then 1>(x, y) satisfies the boundary value problem described by 

(2.1) (\12
-11

2)1> =0 for y;:: O, 

(2.2) E 1> + 1>Y = 0 on y = 0, 

(2.3) </J.,. = 0, y = 0, y E S = (0, oo) - S, 

(2.4) r 112"V<P is bounded as T- 0, 

where 1· is the distance from a submerged end of the wall , 

(2.5) \</)- 0 as y- oo, 

and 

(2.6) 
as x -+ oo, 

as x- -oo, 

where Rand 7' are the (complex) refl ection and transmission coefficients, respect-
ively, to be obtained. 

3. Method of solution 

By Havelock's expansion of water wave potential, a suitable representation for 
1>(:r, y) satisfying (2.1 ), (2.2), (2.5) and (2.6) is given by 

ex;. 

ｔ･Ｍ ｨ ＮｹＫｩ Ｑ ＬｾＭ + J ,\(k)[(k. y)e-(u2+k2)112x dl.: for x > 0, 

0 
(3.1) 1>(x' y) = (X) 

e-J,·y+iJH + R c_,,·y-iJ<X + J D(I.:)J:(k , y)e(u2+k2)1 f2x dk 

0 
fo r x < 0, 

with L(l.:,y) = l.:cosky- 1\·sin l.:y . 
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Let us define 

(3.2) J(y) = 1>AO, y), O< y < 

and 

(3.3) g(y) = 1>( +0, y) - 1>( - 0 y), 0 < y < oo, 

then 

(3.4) J(y) = 0 fo r yES, 

and 

(3.5) g(y) = 0 for y E S. 

The constants T , Rand the functio ns A(k), /1(/,·) are related to f( y) and g(y) by 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

2i ,\. J J' 
T= 1 - R = -- f(y)c- ' Ydy, 

I L 
s 

Il = - A· j g(y)c_"·y rly , 

s 
1 1 J . ) A(k) = - k2 1

.2 g(y)L(k. y rly . 
7i . + \ 

Using (2.3) in (3.1) a long with (3.9) we obtain an integral equation for g(y) in 
the form 

(3.10) 

where 

(3.11) 

j g(u)i\I(y, v) rlu = 1r i/1(1 - H)r- 1' .Y 

s 
for yES, 

so that M (y, u) = M (u, y) and the exponential term is be ing introduced to ensure 
the convergence of the integral. 
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Again, use of (3.5) in (3.1) along wi th (3.7) produces an integral equation 
for f( y) 

(3.12) 

where 

(3.13) 

j f(u)N(y,v)dv = - in e-1
' .Y 

s 
for yE 5, 

00 ) J L(k, y)L(k, u) dk 
N (y, u = (v2 + k2)1/ 2(1,;2 + A·2) ' 

0 

so that N (y, u) = N(u, y). 
If we let 

(3.14) 

(3.15) 

2 
F(y) = - - J(y) 

1rR 
1 

G(y) = 7riJ1(1 - R/(y) 

for yE 5, 

for yES, 

then G(y) and F(y) satisfy the integral equations 

(3.16) 

and 

(3.17) 

j G(u)l\/(y,v)du = P-h·y 

5 

j F(u)N(y, u)rlu = f- 1\y 

s 

for y E S , 

for yE 5. 

It may be noted that the functions(;'( n) and F( n) in (3.16) and (3.17), respectively, 
are real. 

The relations (3.6) and (3.8) can be written as 

(3.18) 

and 

(3 .19) 

where 

(3.20) 

j F(y)r_ ,,·y dy = C , 

s 

C = _ 1:::--_R_ 
i1r R sec a 

It is very important to note that C is real. 
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4. Upper and lower bounds for C 

As in EvANS and MORRIS [8], we define an inner product 

(4.1) (!,g) = J J(y)g(y) rly. 

s 

Then obviously (J,g) = (g,f) and (J,g + h) = (!,g) + (!,h). Also, let us define 
the operator 

(4.2) (M J)(y) = (M (y, tt) . J(u)). 

Since 

M(y, u) = M (u, y) and (}v1(fi + h ))(y) = (Mj ,)(y) + (Mh)(y), 

we find 
(M f ,g) = (f, /v1g) 

and 
(M!, f) 2: 0 for all f (y). 

Foll owing EvANS and MORRIS [8], for the solution of (3.16) we choose a one-term 
approximation as 

(4.3) 

where a1 is a constant and g1 (y) is to be chosen suitably. Then 

(4.4) 

Hence from (3.19) 

by utilizing the properties of self-adjointness and positive semi-definiteness of the 
operator (cf. EVANS and MORRIS (8]) . 

Thus we get an upper bound for C as 

(4.5) 
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where 

(4.6) 

Again, let us define another inner product 

(4.7) 

and another operator 

(4.8) 

{f ,g} = J J(y)y(y)dy 
s 

(NJ)(y) = {N(y,u),J(u)}. 

965 

Then it is obvio us that the inner product {! , !1} is symmetri c, lin ear, and also the 
operator N is linear, self-adjoint and positi ve semi-definit e. 

Choosing a one-term approximatio n to F(y) as 

(4.9) P(y) :::::: blfl(y) , 

where b1 is a constant and f 1 (y) is to be chosen suitably, we fin d that 

(4.10) 
b - {!l(y) ,e_".Y} 

1
- {f l (y) , (NJI)(y)}. 

Thus, by using (3.18) and the same argument as befo re, we find a lower bound 
fo r C as 

( 4.11) 

where 

( 4.12) 

[I /J(y)e-
1
· , dy ]' 

ｾ ］＠ 2 

1 (v' + k')' )' (k' + '' ' ) [I ft (y)l.(k, y) dy l dk 

Hence for the unknown real constant C, which involves !?., we find 

(4.13) 
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where Ao and Ro are given by ( 4.6) and ( 4.12), respectively. Thus the upper and 
lower bounds for IRI and ITI are obtained as 

(4.14) RI ｾ＠ IRI ｾ＠ R2' TI ｾ＠ ITI ｾ＠ T2' 

where 

(4.15) RI 
cos a R _ cosa = 2 -

(cos2 a + 11"2 A6)I /2 ' (cos2a + 7r2BJ)I /2' 

(4.16) T! 
1r Do T _ 1r Ao = 2 -

( cos2 a + 11"2 A6) I/2 ' (cos2a + 7r2DJ)I/2. 

5. Functions 9I (y) and !I (y) 

The functions g1 (y) and ! 1 (y) are chosen as the expli cit solutions of the ap-
propriate integral equations associated with the problem of submerged gap in 
deep water for the case of normal incidence of the wave train. These a re given 
by (cf. PORTER (1 ), M ANDAL and D O LAI (7]). 

(5.1) 9I(y)=A I \(Y) (AI-:fO) 

and 

(5.2) 

where 

. JY tcr,·t [ 2 ] 
-e-

1
' Y SI(!) 8 - ; 11 (a. b, I) d! for 0 < y < a , 

(5.3) \(Y) = ( L 

. JY tcf,·t [ 2 ] 
e-1

' Y 5'
3
(/) 8 - ; IT(n,b. t) dt 

b 

for y > b 

and 

(5.4) . JY tefd [ 2 ] .-\(y) = e _ J,y 5'
2
(1) 8 - ; TT(a, b,l) dl 

b 

for a< y < b 

with 

a 

J SI( ..s) 
H(a, b,t) = 2 2ds 

s - t 
0 
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and 

S1(l) = { (n2- 12)(b2-12)} 1/2' 

S2(l) = { (t 2 - a2)(1/- 1
2
)} 

112
, 

53(1) = { (12 - a2)(12 - b2)} 1/2. 

Substituting these in the expressions ( 4.6) and ( 4.12), Ao and Bo are obtained as 

(5.5) 

and 

(5.6) 

where 

with 

and 

J (v
2 + k2

)
112 sin ka j y cos ky { 2 } • 00 [ b ]2 

k 2 + A·2 - -k- + S
2
(y) 8- ; II (a, b, y) dy dk 

A 
_ 0 a 

0-
ｾＱＡＢＲＡＲ＠
4 

ｾｽ Ｒ＠
B - 4 

o- = [ & ]2 ' 1,;2 sin I> a y cos ky 2 !( 2 2)l / 2( 2 .2) ＭＭ ｾＮＭＫＯ＠ 5. () {8--JI(n,b,y)}dy dk 
11 + k k + l\ " . . 2 y 7l" 

0 a 

i = 1, 2,3 

··( l " ! !) = j yll( a , b, y)c_J,·y 1 o, J\ ' S;(y) r y, 
r, 

·i = 1' 2, 3, 

where the curve F1 is the interval (- a,a), 12 is (a,b) and r 3 is (b,oo). 
For the case of normal incidence, the numerato r o f the expression (5.5) and 

the denominator of the expression (5.6) are identical and equal to 

(5.7) loo k [ sin ka jb y cos J .. y { 2 } ]
2 

0 k2 + }\" 2 -----;:--- + a S2(Y) 8- ; lf(a , b, y) rl y dk. 
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Integrating 

{( z2- a2)(z2- &2) } l/2 
(k > 0) 

in the complex z-plane along the contour consisting of the arc of the quarter 
circle of large radius and centre at the origin, the positive imaginary axis, and 
a line along the positive real axis cut from 0 to a and & to oo, the lin e running 
slightly above the cuts, we get 

a b 

J x sin kx i . j x sin kx . _ j x cos kx i 
- S' ( ·) (; X + 5' ( ·) dx - s· ( ·) G X l .'l: • 3 .'l: 2 .'l: 

0 b a 

(k > 0). 

Again, integrating 

(k > 0, 0 < v < a) 

along the same contour together with an indentation above the pole at :: == v 
(0 < v < n) on the positive real axis, we obtain 

a oo 

- dx + d.T - - --J x sin kx j .T sin k:r 1r cos k u 

(u2- :u2).5't(.r) (v2 - ＺｾＮﾷ Ｒ Ｉ ｓＳＨＮｲＩ＠ 2 S't(v) 
0 b 

(k > O. 0 < P < a). 

Using the above two identities suitably in the expression (5.7), in terchanging the 
order of integration and util izing the result (GRADST EYN and R YZ HIK [9]), pp. 415) 

{ 

7r , . 
oo . -e- '"cosh/1·1 , 

J k cos ky Sin ku dk = 2 y 
1.2 + ,,·2 7r , . ,; ' - \ Y ' hf . 0 - 2r . SIJl \ ll. 

0 < y < IL . 

0 < 11 < y, 

we obtain after some calculations that the expression (5.7) is equal to - (7r/4)./ I . 
Hence for (\ = 0, we have 

J 
Ao =l3o = - -

1r ! 

thereby giving an exact value of C for a = 0, so that in this case R = if j (.J + if), 
which was earlier obtained by P ORTER [1]. 
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6. Numerical results 

The expressions (5.5) and (5.6) of llo and no, respectively, and hence the 
lower and upper bounds for IRI and ITJ are evaluated numerically for a number 
of values of the non-dimensional parameters r,· u, af u and the angle of incidence 
a. The various single integrals appearing in these expressions are evaluated by 
using the Gauss quadrature formula appropria tely. For the repeated integrals, 
the inner integrals are evaluated by using the Gauss quadrature formula while 
the outer integrals over (0, oo) are split into those over (0, 1) and (1 , oo ). The 
integrals over (0, 1) are computed by using the Gauss quadrature form.ula. The 
integrals over (1 , oo) are evaluated by Simpson's rule over (1 , X) (X ｾ＠ 1 ), where 
X increases till the values of the integrals correct to some desired decimal places 
are obtained. A representative set of values of the lower and upper bounds R1 

and R2 of I RI for various values o f the parameters is displayed in Tables 1 to 
3. Table 1 gives the bounds of J HJ fo r various values of the wave number A'b, 
the angle of incidence a and for afb = 0.05. Tables 2 and 3 give the same fo r 
afb = 0.1 and 0.5, respectively. 

Table I. Lower and upper bounds for the reOeclion coefficient IRI for uf b = 0.05. 

() = oo () = 30° 0 = 60° 0' = 85° 

l\' b R1 = Rz R, Rz R, Rz HI /lz 

0.05 0.7065 0.6256 0.6376 0.3899 0.4062 0.0712 0.0783 
0.4 0.3250 0.2412 0.2580 0.1181 0.1376 0.0194 0.0233 

1.2 0.0787 0.0492 0.0565 0.0215 0.0282 0.0034 0.0047 

2.0 0.0316 0.0214 0.0245 0.0100 0.0132 0.0016 0.0023 

3.0 0.0382 0.0320 0.0326 0.0178 0.0186 0.0030 0.0032 

4.0 0.0657 0.0564 0.0565 0.0321 0.0323 0.0056 0.0056 

Table 2. Lower and upper bounds fur the reOection coeflkienl I Ill for a f b = 0.1. 

() = oo () = 30° (I = 60° 0 = 85° 

kb R1 = Rz nl Rz RI flz RI Rz 

0.05 0.7072 0.6264 0.6384 0.3907 0.4070 0.0714 0.0785 

0.4 0.3284 0.2444 0.2612 0.1200 0.1397 0.0197 0.0237 

1.2 0.0963 0.0640 0.0722 0.0292 0.0374 0.0047 0.0063 

2.0 0.0806 0.0636 0.0671 0.0335 0.0377 0.0056 0.0065 

3.0 0.1545 0.1324 0.1327 0.0751 0.0756 0.0130 0.0131 

4.0 0.2802 0.2411 0.2414 0.1378 0.1386 0.0239 0.0241 

It is observed from the Tables 1-3 that in most cases the bounds are very close 
to each other so that their mean value provides a very good approximation to 
the actual value of I HI. I t may be noticed that the d i!Terence between the bounds 
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Table 3. Lower and upper bounds for the reflection coefficient IRI for a.fb = 0.5. 

Cl'= oo Cl'= 30° Cl'= 60° a= 85° 

h"b RI= R2 RI R2 RI R2 RI R2 

0.05 0.7251 0.6473 0.6586 0.4106 0.4266 0.0758 0.0831 

0.4 0.4343 0.3456 0.3624 0.1824 0.2060 0.0308 0.0059 

1.2 0.6502 0.5870 0.5891 0.3752 0.3793 0.0693 0.0705 

2.0 0.9466 0.9230 0.9245 0.7861 0.7953 0.2094 0.2175 

3.0 0.9960 0.9931 0.9936 0.9725 0.9771 0.5661 0.6106 

4.0 0.9996 0.9993 0.9993 0.9967 0.9975 0.8949 0.9206 

increases with the increase of the angle of incidence, but not significantly. For 
fixed Kb and afb, from each table it is further obseiVed that IRI decreases with 
the increase of the angle of incidence. For fixed a I b and a, I RI first decreases 
with the increase of l\.b until a minimum is reached, and then it increases to unity 
asymptotically for further increase in /\.b. This behaviour of I RI is expected phys-
ically since for small A. b, the wavelength of the incident field is large compared 
to the width of the gap, so that there occurs a small energy transmission through 
the gap giving rise to large reflection coefficient. However as h. b increases, the 
wavelength of the incident field and the width of the gap become comparable, 
resulting in an increase of energy transmission through the gap. As r\· b further in-
creases, wavelength of the incident field further decreases and the waves are then 
confined within a thin layer below the free surface and as such, the wave energy is 
almost totally reflected by the part of the wall above the gap. The presence of the 
gap is hardly felt by these short waves and in the limit IRI- 1 as kb --+ oo. Thus 
IRI has a minimum for some moderate value of 1\·b. For the normal incidence 
case, qualitatively similar behaviour of IRI is noticed in the figure presented by 
PORTER [1]. It may be noted that for the complementary problem of submerged 
plate, the reflection coefficient exhibits the opposite behaviour (cf. EvANS [1 0]). 

The results obtained from our numerical scheme for normal incidence have 
been compared with PoRTER'S [1] resul ts. PORTER [1] used the non-dimensional 
parameters Jl and /.,; which are given here by 

2(b- a) 
Jl = 

b + (l ' 

For Jl = 0.1 and 1.5 with k = 0.5, 2.0 we obtain from our results the foll owing 
numerical values of IRI (taken as the mean of the two bounds). 

J,; 
ｾ Ｏ Ｎ＠ 0.1 1.5 

0.5 0.8080 0 1609 

2.0 0.9995 0.4368 
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These coincide with the results estimated from the graphical result of PORTER [1 ]. 
Again, for a narrow gap, the results obtained from the present numerical 

scheme for normal incidence are also compared with TuCK'S [2] numerical re-
sults obtained by utilizing the method of matched asymptotic expansion. The 
dimensionless parameters used in TuCK'S [2] analysis are 2c/ h and h/ A (where 
2c is the width of the gap, h is the depth of the mid-point of the gap and A is the 
wavelength) which are given here by 

2c 2(b - a) 
h b +a 

and 
h 

For 2c/ h = 0.05, 0.15, 0.4 and h/ A = 0.05 we obtain here ITI2 = 1 - I Rl2 as 
0.3972, 0.5459 and 0.7202, respectively. 

For 2c/ h = 0.4 and h/ A = 0.1, the corresponding value of ITI2 as obtained 
here is 0.5982. As before, for I RI we have taken the mean of its two bounds. 
These values of ITI2 coincide with the results estimated from the graph of ITI2 

against h/ A given by TucK [2]. 
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