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Scattering of oblique waves by a thin vertical wall

with a submerged gap

P. DAS, S. BANERJEA and B.N. MANDAL (CALCUTTA)

THiIS PAPER is concerned with scattering of an obliquely incident train of surface water waves by a
thin vertical wall with a submerged gap. Utilizing Havelock’s expansion of water wave potential, two
integral equations, one involving the horizontal component of velocity across the gap and the other
involving the difference of velocity potential across the wall, are obtained. The quantities of physical
interest, namely the reflection and transmission coefficients, are related to the solutions of these
integral equations. For the case of normal incidence of the wave train these integral equations have
exact solutions. These exact solutions provide one-term Galerkin approximations to the solutions of
the corresponding oblique incidence integral equations. Identifying the reflection and transmission
coefficients as some inner products involving the solutions of these integral equations and exploiting
the properties of self-adjointness and positive semi-definiteness of the integral operators defining
the integral equations, the one-term approximations result in some lower and upper bounds for
the reflection and transmission coeflicients. Numerical evaluation of these bounds for any angle
of incidence and any wave number reveals that they are very close to each other, and as such
they produce good approximations to the exact values of the quantities of physical interest. For
the special case of normal incidence this method produces numerical results which are in good
agreement with the results available in the literature obtained by other methods.

1. Introduction

WATER WAVE scattering problems involving fixed plane vertical barriers are be-
ing studied in the literature, assuming linear theory, over the last fifty years by
employing various mathematical techniques. Since a thin barrier models a break-
water which shelters a port from the rough sea, study of its effect on surface
water waves is of some physical importance. PORTER [1] considered the prob-
lem of water wave diffraction by a thin vertical wall with a submerged gap for
the case of normal incidence of the wave train, and used a complex variable
technique as well as an integral equation procedure based on Green’s integral
theorem to solve it in closed form. A number of researchers also studied the
narrow gap problem assuming the gap width to be very small compared to the
depth of submergence of its midpoint below the free surface. Tuck [2] used the
method of matched asymptotic expansion to obtain the transmission coefficient
approximately. PAckHaM and WiLLiams [3] used an integral equation formulation
based on a suitable use of Green’s integral theorem for uniform finite depth of
water, wherein the integral equation was solved approximately by exploiting the
concept of narrowness of the gap, and then the transmission coefficient was ob-
tained approximately. MANDAL [4] also considered the narrow gap problem for
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deep water by an integral equation formulation based on Havelock’s expansion
of water wave potential and used the idea of PAckHAM and WiLLiams [3] to solve
it approximately, and also obtained the transmission coefficient approximately.

For oblique incidence of the wave train, the narrow gap problem was con-
sidered by Liu and Wu [5] who utilized Tuck's [2] idea of matched asymptotic
expansion to obtain the transmission coefficient apparently for low wave numbers,
since approximation of Helmholtz’s equation by Laplace equation for obtaining
the near-field solution is not valid for large values of the wave number. MANDAL
and Kunpu [6] used Havelock’s expansion of water wave potential satisfying
Helmbholtz’s equation to obtain an integral equation across the gap, which was
then solved by assuming the gap to be narrow and the transmission coefficient
was determined approximately.

ManpAL and Dovai [7] recently used the idea of Evans and Morris [8] to
obtain very accurate lower and upper bounds for the reflection and transmission
coefficients in oblique wave diffraction problems, involving four basic configura-
tions of a thin vertical barrier present in water of uniform finite depth.

In the present paper the problem of oblique water wave diffraction by a thin
vertical wall with a submerged gap (not necessarily narrow) is studied by utilizing
the idea of Evans and Morris [8]. The reflection and transmission coefficients
are obtained in terms of two integrals involving the unknown horizontal compo-
nent of velocity across the gap, and difference of velocity potential across the wall,
respectively. These unknown functions satisfy some integral equations which have
exact solutions for the case of normal incidence. Following Evans and MorRis [8],
these known exact solutions for normally incident waves are utilized as one-term
Galerkin approximations to the solutions of these two integral equations. The
refllection and transmission coefficients are identified with some inner products
involving the solutions of these integral equations. Exploiting the properties of
self-adjointness and positive semi-definiteness of the integral operators defin-
ing the integral equations, the one-term Galerkin approximations produce upper
and lower bounds for the reflection and transmission coeflicients for any angle
of incidence and any wave number. It is analytically verified that for the nor-
mal incidence case, the upper and lower bounds coincide. The bounds involve a
number of integrals which are evaluated numerically by standard techniques. The
numerical results reveal that the two bounds for any angle of incidence and any
wave number are very close, and as such they produce very good approximations
to the exact values of the reflection and transmission coeflicients. In our numeri-
cal scheme, if the angle of incidence is taken to be zero (for the case of normal
incidence of the wave train), the numerical values of the two bounds coincide
by more than four decimal places. This verifies the correctness of the numerical
scheme. Also, for the normal incidence case, the numerical results obtained by
the present method are in good agreement with the graphical results obtained by
PorteR [1] and Tuck [2].
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2. Formulation of the problem

We choose a rectangular Cartesian coordinate system in which the y-axis is
taken vertically downwards into the fluid, ¥ = 0 is the undisturbed free surface.
A train of progressive surface waves represented by the velocity potential

Yo(z,y,2,t) = Re{exp(— 'y + ipz + ivz — iot)},

where ¢ = K cosa, v = Ksina, K = ¢%/g, and ¢ is the gravity and o is the
circular freequency, is assumed to be obliquely incident (from negative infinity)
on a fixed thin plane vertical wall at an angle « to the normal to the wall. The
wall occupies the position z = 0 and has a gap which is represented by z = 0,
y € 5,5 = (a,b). The geometry of the problem allows the z-dependence to be
eliminated by assuming the velocity potential to be of the form

Y(z,y,z,t) = Re {¢d(z, y) exp(ivz — iot)}
throughout. Then ¢(z, y) satisfies the boundary value problem described by

(2.1) (VP-v®p =0 for y>0,
(2.2) Ko+¢,=0 on y=0,
(2.3) b =0, y =0, ye S =(0,0c)-S5,
(2.4) P27 ¢ is bounded as r — 0,
where 7 is the distance from a submerged end of the wall,
(2.5) Vo —0 as y— o,
and
m(}—l\'yﬂfu- § I —s 0
(2.6) ¢z, y) ~ {(l_ Rybipe o p o~Ky-ius Z: ; B icoo

where R and 7 are the (complex) reflection and transmission coefficients, respect-
ively, to be obtained.

3. Method of solution

By Havelock’s expansion of water wave potential, a suitable representation for
¢(x, y) satisfying (2.1), (2.2), (2.5) and (2.6) is given by

T e~ Kutiue 4 / AR L, )=+ g for @ >0,
0

(31)  #(x,y) = _ . 7
f—[\y+zu.x‘ % R(‘—I\y—mr +/B(k)[,(k,?j)ﬁ(ul+k2)‘fzr dle
0

for = <0,
with L(k,y) = kcosky — K sinky.
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Let us define

(3.2) f(¥) =¢.0.y), 0<y<oc,

and

(3.3) 9() = o(+0,y) - 6(-0.y), 0<y<x,
then

(34) fp)=0 for yeb&,

and

(3.5) g(y) =0 for yeS.

The constants 7', R and the functions A(k). B(k) are related to f(y) and ¢(y) by

(3.6) T=1-R= —2;,[‘ /f(g)(_—"'y dy,
5
(7 AW) = —B() = -2 1 [ Fik. sy
' S R CEYRY WLk, y) dy,
o
(3.8) R = -1\'/‘(/(‘5/)(""’” dy,
S
1
(3.9) AR = = s ] gLk, y) dy.

5

Using (2.3) in (3.1) along with (3.9) we obtain an integral equation for g(y) in
the form

(3.10) /y(u);’ll(y. uydu = wip(l — R)e ™ for ye S,
S
where
o0
12 4 2172
3.11) My, 1) = EI:tO/(—A%—I.(k.y)L(k. w)e==* dk,
0

so that M (y, u) = M(u,y) and the exponential term is being introduced to ensure
the convergence of the integral.
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Again, use of (3.5) in (3.1) along with (3.7) produces an integral equation

for f(y)

(312) [f(u);\’(y_“) du = _g[?(_[\'y for pes.
S

where

(3.13) N(y,u) = | L(k,y)L(k,u)

/] 7+ )P+ D -

so that N(y,u) = N(u,y).

If we let
2
(3.14) F(y) = ———f(y) for ye S,
7R
] N 1 i *“1
(3.15) G) = o) for e,

then (/(y) and F'(y) satisfy the integral equations

(3.16) f(?(u);h'(y. u)du = e= N for yeS,
s

and

(3.17) /15'(11).\"(3/. u)du = e~ NV for yeS.
s

It may be noted that the functions (/(u) and F'(u) in (3.16) and (3.17), respectively,
are real.
The relations (3.6) and (3.8) can be written as

(3.18) f Flye-Kvdy = C,
s

and
(3.19) /G(f/)t Ny gy = ———1-—

’ ks ‘ mK2C’

S
where
. 1-R

(320} e irRseca

It is very important to note that €' is real.
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4. Upper and lower bounds for ('

As in Evans and Morris [8], we define an inner product

(4.1) (f.9)= /f(y).r/(.u)fly-

Then obviously (f,g) = (g, f) and (f,g + L) = (f,g) + (f,h). Also, let us define
the operator

(4.2) (M) = (M(y.w). [(u)).
Since
M(y,u) = M(u,y) and  (M(f1 + f2))Ny) = Mf)(y) + (M )W),

we find
(Mf.q) = (f. Myg)

and
(Mf.fy>0  forall f(y).

Following Evans and Morgis [8], for the solution of (3.16) we choose a one-term
approximation as

(4.3) Gy) = agi(y)

where a; is a constant and ¢,(y) is to be chosen suitably. Then

(g1(y), e~ "Y)
(1 (w), Mg )w))

(4.4) ay =

Hence from (3.19)

1

=Tl (G(y),e ¥)

> {ayq(y), e MY),

by utilizing the properties of self-adjointness and positive semi-definiteness of the
operator (cf. Evans and MoRrRis [8]).
Thus we get an upper bound for €' as

(4.5) C < Ay,
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where

. 2

% (VZ s ,‘_2)1/2‘,—51\' ' '

3;‘00 o / n()Lk,y)dy | dk
j =, 5
(4.6) Ag = 5
h2 | [ e dy
z

Again, let us define another inner product
(+.7) (19} = [ 1@ty

and another operator

(4.8) NV N) = {N(y. u), [(0)}.

Then it is obvious that the inner product {f, ¢} is symmetric, linear, and also the
operator A is linear, self-adjoint and positive semi-definite.
Choosing a one-term approximation to F'(y) as

(4.9) Fy) = bifi(y),

where b is a constant and fi(y) is to be chosen suitably, we find that

(AR
(4.10) "= i) Wi

Thus, by using (3.18) and the same argument as before, we find a lower bound
for (" as

(4.11) &' % By,

where

(4.12) By = 5

2
[ j fiy)e R dy]
1

_/(1/2 + ]‘.2)1/2(‘1‘.2 + I\'z) /fl(_fj)ﬁ(k.y)([y dk
4y 5

Hence for the unknown real constant ', which involves R, we find

(4.13) By < C < Ay,
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where Ay and By are given by (4.6) and (4.12), respectively. Thus the upper and
lower bounds for |R| and |7'| are obtained as

(4.14) Ry <|R| <Ry, T <|T|LS Ty,
where

Cosa COS it
415 R = . Ry = ‘ ‘
(415) ! (cos? o + rrzfl(zl)l/2 * (cos? v + Wzyg.)l/z
(4.16) T, = m Bo T = Ao

(cos2a + w2AZ)/2" (cos?a + w2B2)1/2°

5. Functions g;(y) and f(y)

The functions ¢1(y) and fi(y) are chosen as the explicit solutions of the ap-
propriate integral equations associated with the problem of submerged gap in
deep water for the case of normal incidence of the wave train. These are given
by (cf. PORTER [1], MANDAL and Dotat [7]).

(5.1) gay)=An) (A #0)
and

(5.2) hwy) = BN () (B #0),
where

! Kt
_C—I\u] £ [{1 - z,’i(rz b, l)] dt for 0<y<a,

S1(t)
(3 xw=
-k [ 1 [e‘) - EH(a b I)J dt for y>0b
S3(1) ooV ¥
and
[ ekt 2
(5.4) Aly) = e'f‘y—/ [6 - —H(a b, I)} dt for a<y<b
J Sa(t)
with
2 b te Kt I\ﬂ
g ()H(a b, i)(]l+ T
§ = ;
tfl\’
92(’)

n(a‘b,;)=/ - "12(1.,«-
S —
0
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and
si(t) = {( - ®e? - A},
520 = { - a)0? - 9},
S3(t) = {2 - AP -1}

Substituting these in the expressions (4.6) and (4.12), Ay and By are obtained as

. 2
(V;2++k;\?;/2 [_smkka. . y;:;)(syl.) Yy { H (@b y)} dy] "
(5.5) Ag=12 == >
—7
4
and
1,12
(5.6) By= 4 —

b
sin ka Yy COS ky

; 2
: = T 50 l" )
/(Vz +L2)1/2(k2+1\ 2) [ & + 50 {5 . H(a b,y)}ry] dk

where
2
I = 6{a1(N) - a3(N)} - ;{('1‘1([\'. ) — a3(K, )},
] 2 ) e—Na
J = bap(K) — —a(N, H) +
T
with )
ky= [, ' =1,2,3
ai(K) = : dy, i=12,
5i(y)
I
and

; 1, b, > ,_I\--"'
o (KN H) = / yH(aS,’(g‘?))(’ dy, 1 =1,2,3,

where the curve [ is the interval (—a,a), I is (a,b) and I3 is (b, o0).
For the case of normal incidence, the numerator of the expression (5.5) and
the denominator of the expression (5.6) are identical and equal to

2

00 b
k sin ka ycosky { 2 } )
(5.7) O] R {— 7 + 50 o — = H(a,b,y)pdy| dk.
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Integrating

..(‘ik::

{(:2 - a?)(z2 - b2)} 2

in the complex z-plane along the contour consisting of the arc of the quarter
circle of large radius and centre at the origin, the positive imaginary axis, and
a line along the positive real axis cut from 0 to @ and b to oo, the line running
slightly above the cuts, we get

(k> 0)

a . o0 ) b
rsinkx zsinkx rcoskz

, 4+ | e = :
S T S S3(x)

dz (k> 0).

Again, integrating

thz
zZ€
k>0, O<v<a
GaE A )
along the same contour together with an indentation above the pole at = = v

(0 < v < a) on the positive real axis, we obtain

/ rsinkz e+ / rsinkx J T cos kv
dzx adr — — —
(2 = 27)8)(x) (v®* — 22)83(x) 2 51(v)

ha
/ ; ! Cm)s ){[.i' (k>0, 0<v<a).
I" = Qe 1

Using the above two identities suitably in the expression (5.7), interchanging the
order of integration and utilizing the result (GRADSTEYN and RyzHIK [9]), pp. 415)

— T —Ku sh I\
]l.- s Rl B p k cosh Ky, 0<y<u,
————dk =
Ee) 2 T i i
e+ R —Er_[‘*’ sinh A u. 0<u<y,

we obtain after some calculations that the expression (5.7) is equal to —(7/4).J /.
Hence for o = 0, we have

g
Ag=By=-=

thereby giving an exact value of (' for a = 0, so that in this case # = il /(J +i]),
which was earlier obtained by PORTER [1].
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6. Numerical results

The expressions (5.5) and (5.6) of Ay and 13, respectively, and hence the
lower and upper bounds for |®| and |7'| are evaluated numerically for a number
of values of the non-dimensional parameters A'b, «/b and the angle of incidence
«. The various single integrals appearing in these expressions are evaluated by
using the Gauss quadrature formula appropriately. For the repeated integrals,
the inner integrals are evaluated by using the Gauss quadrature formula while
the outer integrals over (0,oc) are split into those over (0,1) and (1,00). The
integrals over (0, 1) are computed by using the Gauss quadrature formula. The
integrals over (1, o) are evaluated by Simpson’s rule over (1, X') (X > 1), where
X increases till the values of the integrals correct to some desired decimal places
are obtained. A representative set of values of the lower and upper bounds R,
and R, of |R| for various values of the parameters is displayed in Tables 1 to
3. Table 1 gives the bounds of |R| for various values of the wave number A'b,
the angle of incidence o and for a/b = 0.05. Tables 2 and 3 give the same for
a/b = 0.1 and 0.5, respectively.

Table 1. Lower and upper bounds for the reflection coefficient | R| for o /b = 0.05.

a=0° a = 30° o = 60° o = 85°

Kb Ry = R, iy R R, R, Ry i,

0.05 0.7065 0.6256 0.6376 0.3899 0.4062 0.0712 0.0783
0.4 0.3250 0.2412 0.2580 0.1181 0.1376 0.0194 0.0233
1.2 0.0787 0.0492 0.0565 0.0215 0.0282 0.0034 0.0047
2.0 0.0316 0.0214 0.0245 0.0100 0.0132 0.0016 0.0023
3.0 0.0382 0.0320 0.0326 0.0178 0.0186 0.0030 0.0032
4.0 0.0657 0.0564 0.0565 0.0321 0.0323 0.0056 0.0056

Table 2. Lower and upper bounds for the reflection coefficient | 2| for a /b = 0.1.

=0 a = 30° o = 60° o = 85°
Kb Ry =R I R 1’ R, Ry Ry

0.05 0.7072 0.6264 | 0.6384 | 0.3907 [ 0.4070 | 0.0714 | 0.0785
0.4 0.3284 0.2444 | 0.2612 | 0.1200 | 0.1397 | 0.0197 | 0.0237
12 0.0963 0.0640 | 0.0722 | 0.0292 | 0.0374 | 0.0047 | 0.0063
2.0 0.0806 0.0636 | 0.0671 | 0.0335 | 0.0377 | 0.0056 | 0.0065
3.0 0.1545 0.1324 | 0.1327 | 0.0751 | 0.0756 | 0.0130 | 0.0131
4.0 0.2802 0.2411 | 0.2414 | 0.1378 | 0.1386 | 0.0239 | 0.0241

It is observed from the Tables 1-3 that in most cases the bounds are very close
to each other so that their mean value provides a very good approximation to
the actual value of | Z|. Tt may be noticed that the difference between the bounds
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Table 3. Lower and upper bounds for the reflection coefficient |R| for «/b = 0.5.

= (° a = 30° a = 60° & = 85°

Kb Ri=R; Ry R, Ry R, Ry R,
0.05 0.7251 0.6473 | 0.6586 | 0.4106 | 0.4266 | 0.0758 | 0.0831
04 0.4343 03456 | 03624 | 0.1824 | 0.2060 | 0.0308 | 0.0059
1.2 0.6502 0.5870 | 0.5891 | 03752 | 0.3793 | 0.0693 | 0.0705
2.0 0.9466 0.9230 | 09245 | 0.7861 | 0.7953 | 0.2094 | 0.2175
3.0 0.9960 0.9931 | 09936 | 0.9725 | 09771 | 0.5661 | 0.6106
4.0 0.9996 0.9993 | 0.9993 | 0.9967 | 0.9975 | 0.8949 | 0.9206

increases with the increase of the angle of incidence, but not significantly. For
fixed Kb and a/b, from each table it is further observed that | R| decreases with
the increase of the angle of incidence. For fixed a/b and a, |R| first decreases
with the increase of A'b until a minimum is reached, and then it increases to unity
asymptotically for further increase in A'b. This behaviour of | R] is expected phys-
ically since for small Kb, the wavelength of the incident field is large compared
to the width of the gap, so that there occurs a small energy transmission through
the gap giving rise to large reflection coefficient. However as A'b increases, the
wavelength of the incident field and the width of the gap become comparable,
resulting in an increase of energy transmission through the gap. As A'b further in-
creases, wavelength of the incident field further decreases and the waves are then
confined within a thin layer below the free surface and as such, the wave energy is
almost totally reflected by the part of the wall above the gap. The presence of the
gap is hardly felt by these short waves and in the limit [/Z| — 1 as A'b — oc. Thus
|R| has a minimum for some moderate value of A'b. For the normal incidence
case, qualitatively similar behaviour of || is noticed in the figure presented by
PorTER [1]. It may be noted that for the complementary problem of submerged
plate, the reflection coefficient exhibits the opposite behaviour (cf. Evans [10]).

The results obtained from our numerical scheme for normal incidence have
been compared with PORTER's [1] results. PORTER [1] used the non-dimensional
parameters p and A which are given here by

_ 2(b—a) b= N(a+b)
= % a o 2 ’

For = 0.1 and 1.5 with & = 0.5, 2.0 we obtain from our results the following
numerical values of |R| (taken as the mean of the two bounds).

g
k\ 01 1.5

0.5 0.8080 | 0.1609
2.0 0.9995 | 0.4368
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These coincide with the results estimated from the graphical result of PORTER [1].

Again, for a narrow gap, the results obtained from the present numerical
scheme for normal incidence are also compared with Tuck's [2] numerical re-
sults obtained by utilizing the method of matched asymptotic expansion. The
dimensionless parameters used in Tuck’s [2] analysis are 2¢/h and h/X (where
2¢ is the width of the gap, / is the depth of the mid-point of the gap and A is the
wavelength) which are given here by

2 2(b—a §
2¢ _ (b—a) and h=1\(a+b).
h b+a 4m

For 2¢/h = 0.05, 0.15, 0.4 and h/\ = 0.05 we obtain here |T|*> =1 — |R|* as
0.3972, 0.5459 and 0.7202, respectively.

For 2¢/h = 0.4 and h/\ = 0.1, the corresponding value of |T'|? as obtained
here is 0.5982. As before, for || we have taken the mean of its two bounds.
These values of |T'|? coincide with the results estimated from the graph of |T'|2
against i/ given by Tuck [2].

> |
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