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BRIEF NOTES

A note on the hyperelastic constitutive equation
for rotated Biot stress

K. WISNIEWSKI and E.TURSKA (WARSZAWA)

THE FORWARD-ROTATED BIOT STRESS and the right stretch strain are defined, and the virtual work of
the rotated stress is found. It is shown that it involves a corotational variation of the Green-McInnis-
Naghdi type. For the strain energy assumed in terms of principal invariants of the right stretching
tensor, a constitutive equation and a constitutive (4th rank) operator for the Biot stress is derived.
Subsequently, they are subjected to the rotate-forward operation, and it is demonstrated how their
structure is carried over to the rotated measures.

1. Introduction

THE CO-ROTATIONAL FORMULATIONS are applied to many problems of mechanics,
ranging from finite strain plasticity to large rotation shells, mostly due to relative
simplicity of manipulating on orthogonal rotation tensors.

In finite strain plasticity, see e.g. DIENES [3] and JOHNSON, BAMMANN [4], the
so-called rotated description is based on a back-rotated Kirchhoff stress ¥ =
Q77Q and a back-rotated spatial rate of deformation D = QTd Q, where d =

sym (F F~1). The rotated measures are exploited to define a constitutive equa-

tion, which later is converted to T and d, where T is the Green - McInnis - Naghdi
objective stress rate.

It was noticed by several authors, e.g. see the introduction to CRISFIELD [2],
that nonlinearities resulting from large rotations of beams or shells can be elimi-
nated if corotational local frames are introduced. Among recent works using the
corotational frames, we would like to mention contributions of RANKIN, BROGAN
[6], Stmo [7], StMo, Vu-Quoc [9], and CrisriELD [2]. In RANKIN, BROGAN [6]
a general framework to handle large rotations has been constructed, in which
already existing linear finite elements can be embedded. In [7] and [9] a fi-
nite strain/rotation beam model for dynamics has been consistently derived from
three-dimensional equations. In [2] an issue of symmetry of the tangent operator
for the finite rotation beam has been undertaken. In all these papers separation
of frame rotations simplified the equations.

In the present note we extend the concept of the corotational frame used
for beams and shells and introduce a forward-rotated description: the rotated
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stress and strain measures, and the corotational variation. We address in detail
an issue of a hyperelastic constitutive equation and a constitutive operator for the
rotated measures as derived from the constitutive relations for the Biot stress.
The forward-rotated description, as a general concept, can be found convenient
in problems involving independent rotation fields, not only in beam or shell the-
ories but also in three-dimensional elasticity formulated as e.g. in Simo, Fox,
HuGHEs [8].

Notation

Small letters — vectors, capital letters — 2nd rank tensors, capital letters with
a superscribed digit 4 — 4th rank tensors, dots « - scalar products, colons : —
contractions of a 4th and a 2nd rank tensors yielding a 2nd rank tensor, ® —
tensorial products.

2. Rotated stress and strain

In this section the rotated strain and stress measures are introduced and a
corresponding form of the virtual work of stress is given.

The Cauchy (true) stress, T, can be expressed in terms of other stress measures
as follows, see e.g. OGDEN [5],

(2.1) T=Jlr=JPpF = J-IFSFT,

where T is the Kirchhoff stress, P is the 1st Piola - Kirchhoff stress, (its transpose
is a nominal stress), S is the 2nd Piola - Kirchhoff stress. Besides, F denotes the
gradient of deformation, and J = detF.

Let us introduce a symmetric Biot stress tensor, T? = sym (Q”P). The rotation
tensor Q € SO(3) is obtained from the polar decomposition of the deformation
gradient. The Biot stress T? and the right stretch strain E are work conjugates
because the virtual work of stress can be expressed as follows

(2.2) P.§F = TP . ¢E,

where E = U — I is the right stretch strain, and U = (F'F)!/? is the right
stretching tensor. This tensor appears also in the (right) polar decomposition of
the deformation gradient, F = QU. On the basis of Eq.(2.1), the Biot stress is
related to other stress measures in the following way

(2.3) TP = sym (Q"P) = sym (QTT7F~ 1) = sym (US).

The Biot stress tensor T? and the right stretch strain E can be used to intro-
duce a set of rotated measures defined as follows

(2.4) T =QT5Q", E =QEQ’,
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for which the virtual work of stress (2.2) yields

2.5) TB.6E=T*: 6 E,

where
$E"=QIEQ" = QQ'E'Q)Q".
The above corotational variation corresponds with the Green - McInnis - Naghdi

objective time derivative, and consists of the rotate-back, take a variation and
rotate-forward operations. The definition (2.4) yields

(2.6) E=V-I,

where V = QU Q7 is a left stretching tensor defined as V = (FFT)!/2. Hence, E*
is the left stretch strain. The rotated Biot stress is related to other stress measures
as follows

2.7) T =sym (PQ’) = sym(TV™!) = sym (FSVY).

We can see that T~ is different than other spatial stress measures, such as Cauchy
stress T or Kirchhoff stress T.

3. Constitutive equation for rotated measures

In this section a constitutive equation and a constitutive operator for T? and
U are introduced for an isotropic hyperelastic (Green) material. Next, the same
constitutive equation and the constitutive operator are expressed in terms of the
rotated tensors, T* and V.

Let us assume the existence of a strain energy function W (U). On arguments
discussed e.g. in OGDEN [5], a strain energy given in terms of U is objective, and
provides a response function, which is invariant under an observer transformation.
On the basis of the representation theorem for isotropic functions, we can write

(3.1) W(U) = W(L(U), I2(U), 15(V)),
where the principal invariants of U are defined as follows
(2 LU =trU, ILU)= % (U — V3, (V) = detU.

A constitutive equation for the Biot stress tensor is defined as

oW () _ oW (1;(U), I(U), I3(U))

B
(3.3) * Ju au

1l
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From the chain rule of differentiation we obtain

ow oW on oW oh aﬁf%
9uU 9l U 8L, U ' dl; U

Taking into account that
on al 0z

(3.4)

(35) W_I’ %=[1I—U, QU_IU
the constitutive equation can be rewritten as a polynomial of U
(3.6) TP = Bl + B1U + BU7,

where o, 51 and [3; are scalar coefficients depending on the invariants and deriva-
tives of W with respect to the invariants. Note that using the Cayley - Hamilton
theorem, the above equation can be converted to a second order polynomial of
U. A variation of stress with respect to the strain can be written as

aTE 4
3.7 §TP = — : U= C : U,
(3.7) 30
where the constitutive operator (elasticity tensor) can be defined as a 4-th rank
tensor

(3.8) &_ 018 _ MWL) _ PW(L(U), (V). (V)
' =9U ~ ouau auau

Hence, from the formula for the derivative of the product of a scalar and a second
rank tensor we have

4 oTP a3y . Ol
B9 C=Fg =18 35 *hgg
d[jl 03, au-1
+U® +ﬁ1—+U ®0U+ﬁz a0
where
pi _ 0B 01k . o
(3.10) 50 = o g0 for i=0.12 and k=123

due to the chain rule of differentiation. We can say that in Eq. (3.9) the 1st, 3rd
and 5th components are expressed in terms of nine tensorial products, provided
by all combinations of I, U and U~!. Furthermore, for the 2nd, 4th and 6th
components (and a symmetric U), we have

g _4 U _ 14 s
ou -~ au -~ 2

ou-! 1
) {U'l(e,- ® ej-)U_l} R{e; Qe +e¢; ®e},

(3.11) e

Il
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where e; are vectors of an orthonormal frame. The 4th rank invariants used here
4 4
arel, =e;®e;®e;®e; and I, = e; ® ¢; ® ¢; @ ¢;, and operate on an arbitrary

2nd rank A as follows: ;GA = A and icA = A7, see [1].

The derivation of U~ /U, being more complicated, is described below. Con-
sider I = UU™! as a tensor-valued function of a tensor argument. As U is sym-
metric, it may be replaced by %[U + UT], and thus U~! can also be considered as

a function of 3[U + UT]. A directional derivative of I at U in direction A yields

al d

3.12 — A= |-—-I(U+cA =0
(3.12) L [Fw+en)] =0,
where A is an arbitrary 2nd rank tensor. After straightforward calculations, from
(3.12) we obtain
au-! 1
— I A= —=

au 2
To introduce a constitutive operator, we have to rewrite the above equation as a
contraction of a fourth rank tensor and a second rank tensor A. Introducing the
4th rank invariants we have

(3.13) U 'A+ AT UL

4 4
(3.14) A+A) = (I, +1.) : A=e; ¢ {[e;De; +e De] A},

where the identity (T® S) : Q = T(S:Q) is used. Note that the product in the
parentheses is a scalar. Substituting Eq. (3.14) into Eq. (3.13), and recovering the
4th rank tensor, we obtain

7] i - 11 .
(3.15) T A= [ﬁi{U (e; @ ¢))U 1}@ {e;@e; +e;®e}|: A,
where the 4th rank tensor given by Eq. (3.11) can be easily identified. a

Having derived the constitutive equation (3.6) and the elasticity tensor (3.7)
for the Biot stress T?, we can find the respective equations for the rotated stress
T*. For T? given by Eq.(3.6) we obtain

(3.16) T =QT?Q" = Q (Al + AU+ AU™") Q.
On the basis of identities

(3.17) QIQT =1, QuUQT=v, QulQT=v"!
we have

(3.18) T* = Bol + 51V + V7L,

which is a polynomial of the left stretching tensor V.
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Next, we find the elasticity tensor for the rotated stress T*,

T8

o - T 4 ) 1 T _ )
(3.19) T = QITC Q' = Q[C : E“U} Q' =¢ {W : (su} Q7,

where the expression for 9T?/0U is given by Eq. (3.9). Consider the 1st, 3rd and
5th component of this equation contracted with 6U. As mentioned earlier, these
components contain nine tensorial products, and the contraction can be written
as (A; ® A;) : 6U, where A;, A; € {I,U,U"!}. Furthermore, (A; ® A;) : 6U =
A;(A; - 6U), where in the parentheses we have a scalar. Hence,

(3.20) Q[(Ai®A) : 6UIQ" = [QAQ"] (A, -6U) = Bi(A, -6U)

where QA;Q7 = B; and B; € {I,V,V~!} in accordance with Eq.(3.17). Besides,
for the scalar product we have

@) a0 = (€@ )
=t (B;5V) = B; -4V,

where QA;Q” = B;. Hence
(3.22) QAi@A)) : 6UJQ" = (B;®B)) : V.

4
For the 2nd component of Eq. (3.9) we have JI/0U = 0 and the respective term
does not need to be considered. For the 4th and 6th component we have

[ 4 4 =
3—3 s S = %(1u +1.) : 6U= %((sumuf),
(3.23) el
U~ | —. Trpr=1
- = -z 0
-5 U U (6U +sUU,

where Eq. (3.13) was used to derive the second equation. Applying the rotation
operations to both of these equations we obtain

Ju R Jp— T T_1° Sl
Q(m : 6U)Q = 3QUU+6UNQ" = SV + V"),

62 (% . ) = -tou i+ suTyu?
- ou 2

1

D uiv-‘(3v+3v'f)v-1.
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Note that as a result of the rotate-forward operation in the above formulas,
U is replaced by V, U~! by V7!, and éU by 6V Hence, we may introduce an

elasticity tensor C relating 5T with 5 A

o o

4 . 4
(3.25) §T*=Q|C : 6U| Q' =C" : 4V

4
of the same structure as C.

For an infinitesimal deformation, when F = I, we have
ouU-1 ov-1

(326 U=V=L — (l +1 e)s v

Ll +1
—_i(u C)

4 4
and therefore the linearized elasticity tensors C and C* are identical.

4. Conclusion

We have shown that under the rotate-forward operation, the structure of a
general hyper-elastic constitutive equation and the respective constitutive opera-
tor for the Biot stress is carried over to the respective relations for the rotated

Biot stress, with U replaced by V, and ¢U by EV, where the corotational variation
is of the Green -Mclnnis-Naghdi type.
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