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The stationary transverse Euler and Stokes gas flows
through a cylindrical region with large variations
of density and viscosity coeflicient

Z. PLOCHOCKI and B.KAZMIERCZAK (WARSZAWA)

THE FLOW of a gas in space, which encounters a cylindrical region, where the density of the gas
(and its viscosity coefficient) changes abruptly, is considered both in the Euler and the Stokes
approximations. The flow is homogencous at infinity. Density and viscosity cocfficients of the gas
are assumed to be constants, which are different outside and inside the cylinder. The analytical
solutions of the problem are found in both cases. These solutions may be useful for building the
modcls of flow in flames or laser-sustained (or generated) plasmas.

1. Introduction

MobDEL EXAMPLES of a stationary gas flow through a region with large variation of
density (and viscosity coefficient) may be useful for constructing the simple hy-
draulic models of gas flow in systems with large heat perturbation, as for example
—in flames or laser-generated or sustained plasmas. The idea of such models de-
pends on the assumption, that the constant density of a gas inside the region is
small as compared to (also constant) density outside the region. Such a density
distribution is thought to be generated by a suitable temperature field, therefore
in fact the viscosity coefficient of the gas should also be assumed to vary in a
similar way.

The first such a hydraulic model was proposed in [1] for a spherical region in
the Euler approximation. Numerical solution of the Navier - Stokes equations for
such a flow was presented in [2]. The Stokes approximation of a gas flow through
a spherical region was analyzed in [3]. The stationary transverse gas flow through
a cylindrical region both in the Euler and the Stokes approximations is examined
in the present paper.

2. General assumptions

Let us consider a stationary and homogeneous at infinity, transverse gas flow
through a cylinder of radius 2. The z-axis of the Cartesian coordinate system is
the symmetry axis of the cylinder. At infinity the gas flows along the z-axis toward
the cylinder. The flow is assumed to be plane in the sense, that the z-coordinate
of the velocity is identically equal to zero. The gas density and the shear viscosity

http://rcin.org.pl
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coefficient are assumed in the form:

0
D= 9; =e,4+ (1 —g,)H({FT - 1),
2.1 Ly
(2.1) _ n 1 1-¢ .,
Ni= —=————72H(F-1),
Mo Eq En
Qint
EQ = g—,
o0
=2 e 2= Jeo
T e

where p.o, Oints 0> Mint Stand for constant density and shear viscosity coefficient
outside and inside the cylinder, respectively, H (z — z() stands for the Heaviside
function, ¥ = r/R is dimensionless r-coordinate, and cylindrical coordinate sys-
tem r, o, z is used. Let us note that because the assumed distributions of ¢ and
n may be thought to be generated by a suitable temperature field 7, therefore
the quantities ¢, and ¢, are interrelated. In the case of an ideal gas (o « 1/T,
1 o /T) this relationship has the form:

(23) En = \/Ep -

The solution of the governing equations, which describe the velocity and press-
ure fields, will be looked for separately outside and inside the cylinder, and next
these external and internal solutions will be matched using the continuity condi-
tions for the mass and momentum flux densities at the surface of the cylinder.

3. The Euler approximation
3.1. Formulation of the problem

According to the assumptions adopted, the governing equations in the cylin-
drical coordinate system both outside (¥ > 1) and inside the cylinder (¥ < 1) can
be written in the following dimensionless form:

10 __ 1 0_ _
¥E(1 ,.)+¥%Uw—0,
Jv, T, 0%, V5 1 d4p
3.1 Vp—— t = — — 2+ — =0,
G0 or T 0p 7 2 oF
_ 0w, T, 07, + 5T 1 104p _
"or T O¢ T 20T Dy ’
where . 5—p
Ty 1= —, a =T, E:=2_°°,
a i ¥ I vago
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THE STATIONARY TRANSVERSE EULER AND STOKES GAS FLOWS 935

where, in turn, v, and p., stand for the velocity modulus and pressure at 7 = oo,
respectively.
The boundary and matching conditions are:

T, = COS ¢,
at T = v, = —SIng,
4p =0
(32) at  F=0 5 [0l 35l < oc;
(75 =0,
a  T=1:{[iTG+pR] =0,
[27,7,] =0

where
[v]:=¢F=1+0)—yF=1-0)=yp™F=1)-y"F=1).

Because all the considerations will run in terms of the dimensionless variables
introduced only, therefore from now on, all the bars will be ignored.

3.2. The solution

The velocity field is looked for in the form:

I

f(r)cos e,

—g(r)sin .

Uy

(3.3)

I

)
Uy

Substituting Egs. (3.3) into Eq.(3.1); one may obtain the following relationship
between the functions f and g:

(3-4) g=@fy =r/"+/,

where prime denotes the derivative with respect to r. Substituting Eqgs. (3.3) into
Egs. (3.1)2 3 and using Eq. (3.4) one may obtain:

1 A

20 arp =r(f'V+[f - {‘7'(]")2 4 2ff’} cos? g,
W 1 0Ap

2—0 a—p = {1-2ffll + i'ff’ - ’_z(fl)z} Sink,?COS(TO,

Integrating Eq. (3.5)2 one may obtain:

Lap = 60) - 2\ cost,
20 2
(3.6)
X() = P20 =
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Comparison of Egs. (3.6) and (3.5); gives, after some algebra:

v =Yoo _ p2y I %L’}'#
(37) ¢=30-1. {L+2f) <0
From Eq. (3.7); one has immediately:
. :
(3.8) ;2= gy,
where [ stands for an integration constant. If 7 = 0, then Eq. (3.8) gives
Cl
(3.9) fo=Ci+ =3,

where C and C stand for integration constants.
If 3 = —c? < 0, then after substituting:

v-(Q

r

f_:

£ =eT;
Eq. (3.8) is transformed to the Bessel equation of the first order, therefore:

(3.10) jo = ;{(‘3.11@ )+ Cy Yiler)},

where ('3 and (4 stand for integration constants, ./; — for the Bessel function of
the first kind and the first order, and Y7 — for the Bessel function of the second
kind (the Neumann or the Weber function) and of the first order.

If 3= ¢% > 0, then in the same way one may obtain:

(3.11) fe = %{('5 L(Er) + Cs K1(En)],

where Cs and C are integration constants, /; is the modified Bessel function of
the first kind and the first order, and A’} is the modified Beessel function of the
first kind (the MacDonald function) and the first order.

The boundary condition at infinity can be fulfilled only by the function given
by Eq. (3.9) with Cy = 1. The boundary condition at » = 0 can be satisfied only
by the functions given by Eqs. (3.10) and (3.11) with Cy = 0 = (. The matching
conditions at r = 1 can be satisfied only by the pair: fp as an external solution
(outside the cylinder) and f_ as an internal one (inside the cylinder). Thus, we
obtain:

a

fcxt=1__2r_2‘ 7.>1’

3.12
( ) fint _ le(c ) ’

7

B
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where the superscripts ext and int refer to the external and to the internal region
of the cylinder, respectively, and «, b, ¢ stand for constants (which have to be
determined from the matching conditions at » = 1).

Thus, the velocity and pressure fields outside and inside the cylinder, which
satisfy the boundary conditions, may be written in the form:

2
r>1: 12 = (1 = —;‘) cos ¢,

r
vt = — (1 + %‘-) sin ¢,
Ap™ = —% (1 :—;) + %coszp,
313) r<1; vt = pL cos g,
vg“ = -b ((:Jo - ?) sin ¢,
Ap™ = d — spbz { ((:JO - ﬂ) + 112(2}

+ se,bz {(J& 4 le)cz - 2']—07:&0} cos® g,

where the abbreviation J, = J,(cr), n = 0,1 was used.

The constants: a, b, ¢, d have to be determined from the matching conditions
at the cylinder surface (Eqs.(3.2)s—7). In fact, using these conditions one may
obtain, after some algebra, the following set for these constants:

1
a = m{(‘ho — /I] = Sy/l.l},
B
b= —
M’
(3.14) (hg + h3)e,c* = M?,

d = —4a(l + a) + £,b*{(hge — h1)* + ¢*h})
2 — da(l + a) — £ 0711,

where
M=chyg-h + EE,/J;;

the second formula for ¢ may be obtained, after some algebra, from the first
one using properties of Egs. (3.14);_3; and, for distinguishing, the abbreviation
hn = Jy(c), n = 0,1 was used.

The scheme of calculations is as follows. First, the third equation is solved
with respect to €,(¢), and next the inverse function ¢(s,) is numerically calculated.
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Then from the first and the second equations the quantities a(e,) and b(e,) are
obtained. Finally, from the fourth equation the quantity d(e,) is calculated. In this
way all the constants considered are obtained (in numerical way) as the functions
of e,:

a = a(g,) = ap — a1,/E,, ag = 0.5, a; = 0.4773,
1
b=ble,) E b+ « 5 by = 0.3276, ay = 1.6405,
(3.15) (o) = bo 2 e 0 2
¢ = c(e,) = co— a3,/Ey, co = 1.8412, a3 = 1.6141,

d= d(EQ) = d() — 04\/5, dg = 00888, g4 = 03639,

where the approximate relationships represent the asymptotical behaviour of
these constants as ¢, — 0. Substituting the constants calculated into Egs. (3.13)
we obtain the final solution of the problem examined.

The asymptotical behaviour of the flow functions outside and inside the cylin-
der at small ¢, is, according to the structure of the solution, completely deter-
mined by the asymptotical behaviour of the functions f*' and f™, which are
given by the formulae:

- 1
fcxt =1 - 7._2 (1 == 2(1’1\/5) ’

—as Jo(cor) + _-]1(:’—07) ((.r6 P ) ,

R

fim

as = 2.6480, ag = 1.7658, a7 = 1.6405,

=

“e

where «; is given by Eq. (3.15)/3, and ¢ - by Eq. (3.15)3/2.
3.3. Results

From the results given in the previous subsection one may obtain all the infor-
mation about the flow examined. Examples of two types of such an information
will be present.

The information of the first type concerns the flow fields at a given ¢,. The
example value ¢, = 2.5 x 1072 is assumed. Thus, the lower half of Fig. 1. presents
the streamlines picture. Figure 2 presents the dimensionless z-coordinate of vel-
ocity:

Vg = ¥, COS  — U, SiN @

at the flow symmetry plane (¢ = 0,n, respectively) as a function of dimen-
sionless z-coordinate (as referred to the cylinder radius). Figure 3 presents the
dependence of the dimensionless pressure difference Ap on the dimensionless
z-coordinate at the flow symmetry plane.



F1G. 1. Streamline pictures for the flow through the sphere in the Euler (the lower half) and
Stokes (the upper half) approximations under the assumptions: e, = /g, €, = 2.5 X 14,

-3 -2 =1 1 2 3

F1G. 2. Dimensionless velocity (as referred to v..) at the flow symmetry axis as a function of the
dimensionless z-coordinate (as referred to R) under the same assumptions about e, and ¢,
as in the case of Fig. 1, in the Euler (solid line) and Stokes (dashed line) approximations.

[939]
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-2 -1 1 2

-0s | N

F1G. 3. Scaled relative pressure at the flow symmetry axis for e, = /g, €, = 2.5 % 1075

solid line — the Euler approximation: 2(p — peo)/(000 v,
dashed line — the Stokes approximation: 2(p — pes) /(000 v )(Re)/(20).

The information of the second type concerns the characteristics of the flow
considered as functions of ¢,, as for example: velocity and pressure at the sym-
metry plane at the center and the boundary of the cylinder (Fig.4 a, Fig.5a) (}):

v(1) = 1 - 2a &8 26y 455
: g ag = 0.1906,
int =) > ae +

v (1) = bA(e) “wr e ag = 0.9546,
; ,. 0 = 1.0224,
0f"(0) = jbe = g+ L 00

\/q gl =15102,
Lvz] = 1-2a—-0bJi(c) = —v™(1),
(3.16) Ap™(1) = dafl - a) &1 — ape,, apy = 09112,

. N a3 = 0.8223,
Apmt(l) = o — Egszlz(C) = —a)3 — ald\/‘ia ajg = 07278,

ays = 2.1920,
ag = 27242,

114

. 1
Apmt(o) = i — Z&.gbzcl —ays5 + ("16\@’

[Ap] = 4a(1—-a)—d
+ ¢,0%7%(c)

114

a7 T a14,/€,,s apy = 1.8223,
(*) Note, that the part of the gas flux flowing through the cylinder (per unit of its length) as referred to
8

the flux incoming from infinity is given by v&(1) (if follows from an immediate calculation and application of
Eqgs. (3.4), (3.2)5 and (3.16),).
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a)

b)
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FiG. 4. Dependence of 7£4(1) (solid line), 72(1) (dashed line) and 7."(0) (bold line) on &,
for the flow through the cylinder in the Euler (a) and Stokes (b) approximation

under the assumption: ¢,) = | /€.

where the first column represents the exact formulae, the second one - the asymp-
totic formulae for small ¢,; a; is given by Eq. (3.15)/3;

P(1) :
'([r(()) = 'd’(‘r? =7r,r= O)’

Plp=m,r=1),

and [[ # ]| is defined by the equation following Egs. (3.2).
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b)

s,

Rt
02 \

—~
—

—— aZ
u..z o4 n'n D‘J 1
FiG. 5. Dependence of Ap (1) (solid line), Zp "™ (1) (dashed line) and Ap'"™(0) (bold line) on
e, for the flow through the cylinder in the Euler approximation (a) and %{A_pm‘(]) in the Stokes
approximation (b) under the same assumptions as in the case of Fig.3.

4. The Stokes approximation

4.1. The problem

The governing equations in this case may be written in the form (in terms of
the same dimensionless variables as previously):

10 100, _
FarU g, =0
/ ) 920 (
oy lrelO 1D (0uy 10 20
2" Or rdr \ Or r2 9p? 12 dp r?
1.,1194p 10 _a%) 1 9%, 23dv, o,
ZRen; 3(,9_?37'(1 r +r20<,92+'r28ap_r2’
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where the Reynolds number
_ PV R
Nexcs
plays the role of the scale factor only, and 7 stands for the dimensionless shear
viscosity coefficient (dimension coefficient as referred to 7).
The boundary conditions at r = oo and r = 0 are the same, as in the Euler
approximation (Egs. (3.2);-4), the matching conditions are:
dv,
.

1
(4.2) HERe Ap— 2y 5 ]' ;

L ] la'vr)]]
[[”(ar r+r(?t,9 ’

Applying the same procedure as in the previous case, one may find the gen-
eral solution of the problem outside and inside the cylinder, which satisfies the
boundary conditions, namely:

Re

a »s.0% [ ov- =0,

4.2. The solution

2a
! t
r»0 ¢ veX —(l—-r—zw)cosg,
2a\ .
vt = — (1 + T—g) sin ¢,

Re Ap™ = 0,

(4.3) . .
r<l: v = (b + ér¥)cos g,

]

vl = —(b + 3er?)sin g,

Re Ap™ = d + 16—661' cos .
n

The constants @, b, ¢, d have to be determined from the matching conditions
at the cylider surface. In fact, substituting Eqgs. (4.3) into Eqs. (4.2) we obtain the
following set of equations for the constants considered:

1-2@ = ¢,(b+?),
(4.4) 2ag, = —c,
d = 0.
It is seen that we have two equations for three constants: @, band Z.

Thus, in order to obtain a unique solution we should adopt an additional
condition, and the continuity condition for the tangent component of velocity at
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the cylinder surface is assumed (%):

(4.5) [v ]=0,
which leads to the following additional equation:
(4.6) 1+42a =0+ 3z

Now, solving Egs. (4.4) and Eq. (4.6) we obtain:

1 1-¢, o 1
a=z = - — e,
21+eg,(1+2,) 2

= 243y —Eoky o

=S Tre,(+2,) 2t

4.7)
N (5 SRR
1+ ¢e,(1+ 2¢,) e

d =0,

where the first equation in a given line represents the exact relationship, and
the second one — the asymptotical expression as ¢, — 0 (under the assumption
€n = /Eg)-

Thus, Egs. (4.3) with Egs. (4.7) represent the solution of the problem as ex-
pressed by Eqgs. (4.1), Eqgs.(3.2),-4 and Egs. (4.2), which is unique in the class
of functions specified by Eqs.(3.3) (and under the assumption expressed by

Eq.(4.5)).
4.3. Resulls

Similarly to the case of the Euler approximation, two types of information,
which is contained in the formulae given in the previous subsection, will be pre-
sented.

The information of the first type concerns the flow fields at a given ¢,. The
example value ¢, = 2.5 x 10~% is adopted, and ¢, as given by Eq.(2.3) is as-
sumed. Thus, the upper half of Fig.1 presents the streamlines picture. Figure 2
presents the dimensionless z-coordinate of velocity (see the formula given at the
beginning of Subsec.3.3.) at the {flow symmetry plane (p = =,0, respectively).
Figure 3 presents the dependence of the dimensionless pressure difference on
the dimensionless z-coordinate at the symmetry plane.

The information of the second type concerns, as previously, the characteristics
of the flow considered as functions of ¢, (under the same assumption about ¢,

(*) For comments on this assumption - sce [3].
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as above), namely — velocity and pressure at the symmetry plane at the center
and at the boundary of the cylinder, in the same convention as in the case of the
Euler approximation (Egs. (3.16)) (Fig.4b, Fig.5b) (*):

et (1) =1-2a = 2e,,
vint(1) =b+¢ > 2+2./5,
vint(0) =0 = 2+3./5,
[o-1  =1-2a-b-2= —2i™(),

(4.8)
Re Ape(1) = 0,

Re Apin(1) = —16:0— > 16 — 32¢,,
“n

Re A[Iim(O) = 01

Re[ Ap] = —ReApi"(1).

5. Conclusions

Comparing the results obtained for the cylindrical case (in particular — the
asymptotic relationships) with those for the spherical case (see [1] and [3]) one
may conclude, that:

1. The velocity and the pressure fields and their dependence on ¢, in the
Euler approximation are very similar in both flow geometries; there occur only
relatively small quantitative differences; the influence of low density region on
the flow fields is, in general, greater in the case of cylinder as compared to that
in the case of a sphere;

2. The same concerns the flow through the cylinder as compared to that
through the sphere in the Stokes approximation;

3. The similarities and differences between the flow through the cylinder in
the Euler and in the Stokes approximations are, generally, the same as in the
case of flow through the sphere (see discussion in [3]).
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: (*) The part of the gas flux flowing through the cylinder (per unit of its length) as referred to the flux
incoming from infinity is given by v$*(1).
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