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Constitutive relations and internal equilibrium condition
for fluid-saturated porous solids
Linear description

M. CIESZKO and J. KUBIK (POZNAN)

USING THE NONLINEAR THEORY established in the paper [5], the constitutive relations for small de-
formations of the fluid-saturated porous solid are derived. It is assumed that the elastic propertics
of porous skeleton are non-isotropic while the skeleton pore structure is isotropic. Fluid filling
pores is assumed to be barotropic. Such approach made it possible to construct the consistent lin-
ear description of elastic behaviour of porous medium in which all material constants are precisely
defined and represent mechanical properties of individual constituents. It is shown that the pure
elastic properties of fluid-filled anisotropic skeleton are characterized by 36 material constants and
reduces to 7 constants for the isotropic case, and to 4 constants when the skeleton is isotropic and
its material is incompressible. In each considered case, the only one material constant character-
izes mechanical propertics of the pore fluid whercas the remaining constants characterize elastic
properties of porous skelcton.

1. Introduction

The purpose of this paper is to formulate the linear constitutive theory for
fluid-saturated porous elastic solid using as a starting point the results of nonlinear
theory established in [5], where the special attention was paid to the consequences
of the constituent immiscibility in such a medium.

The elastic properties of porous skeleton are assumed to be anisotropic while
its pore structure is isotropic and is described by two scalar parameters: volume
porosity f, and the structural permeability A (or, equivalently, by parameter x =
A/ ), [10].

The comprehensive constitutive macro-description of mechanical behaviour
of fluid-saturated porous solids during a deformation process — also within the
linear theory — should include all characteristic features resulting from the fact
of immiscibility of physical constituents. Therefore, in the case of a solid-fluid
elastic system, apart from the constitutive relations for the skeleton stresses and
the pore fluid pressure, the additional relations for pore structure parameters and
effective skeleton mass density changes must be established. The formulation of
such relations should provide clear physically motivated interpretation of inter-
actions between the porous skeleton and pore fluid and to give precisely defined
material constants with clear physical interpretation.

In the commonly used linear theory of fluid-saturated porous solids devel-
oped by Bior [1-3], the problem of changes of pore structure parameters and
skeleton mass density do not appear. The Biot constitutive relations derived from
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the internal energy function postulated for the whole aggregate does not provide
simple interpretation of mechanical couplings between constituents, and the cor-
responding material constants characterizing these couplings are complex [3, 7,
8]. The above difficulties are unfortunately not overcome in works in which the
linear constitutive relations are obtained from their nonlinear form formulated
with the use of the principle of equipresence (see e.g. [4, 6, 9, 12]).

In our analysis of the porous solid deformation process the notions of the
external (bulk) deformation defined by the right Cauchy-Green deformation
tensor C (the infinitesimal strain tensor E in the linear case) and of the internal
deformation measured by the change of the effective skeleton mass density o* (or,
equivalently, volume porosity f,) are used. Such approach enables one to obtain
the linear constitutive description of elastic solid-fluid composition in which the
mechanical coupling between the deformable skeleton and pore {luid appearing in
constitutive relations, and the corresponding material constants are well defined
and have clear physical meaning.

In the paper, it is shown that the elastic properties of fluid-filled anisotropic
skeleton with isotropic pore structure are characterized by 36 material constants
and reduces to 7 constants for the isotropic case and to 4 constants when the
skeleton is isotropic and its material is incompressible. It should be pointed out
that in each considered case, only one material constant characterizes the me-
chanical properties of the pore fluid whereas the remaining constants characterize
elastic properties of the porous skeleton.

2. Initial set of constitutive relations for an elastic porous skeleton filled with
barotropic fluid

The starting point for our considerations is the macroscopic nonlinear consti-
tutive description of an elastic porous skeleton filled with barotropic fluid, for-
mulated in the former paper [5]. It is assumed that the skeleton pore structure is
isotropic and characterized by two scalar parameters: the volume porosity f, and
structural permeability A (or, equivalently, parameter x = A/ f,). From different
forms of the constitutive relations derived for the elastic porous skeleton in this
discussion we use that one in which the independent variables are the effective
mass density ¢° and the right Cauchy-Green deformation tensor

C=F'F,

where F is the porous solid deformation gradient and the superscript 7' stands
for transposition of the tensor.

In such a case the complete set of constitutive equations comprises:

¢ the constitutive stress-strain relation for the porous skeleton

e
2.1 T = —af1 4 20 FZ 7
(2.1) p O°Fo=F

http://rcin.org.pl



CONSTITUTIVE RELATIONS AND INTERNAL EQUILIBRIUM CONDITION. PART 11 913

e the internal, mechanical equilibrium condition for the porous solid-fluid
aggregate
»f de*

22) @)Y~ 9’

o the equation for the x-parameter variation
(2.3) k= R(C, p*);
o the constitutive relation for the barotropic fluid

f déf
R ot
(2.4) @R~ 9ol

In the above equations, the constitutive relations
e =8%(C,0%), ¢ =&l

represent the internal energies of the porous skeleton and fluid, respectively, and
T is the effective Cauchy stress tensor related to the partial stress tensor T* by
expression

T = (- f,)T.

The quantities p/ and o/ stand for the fluid pore pressure and its mass density,
respectively.
The derivative in (2.1) is defined by the identity, [11]
o8 ‘)
9 b= Lec+ b, 0% /

(2.5) ac oh

2

=0

where D is an arbitrary second order symmetric tensor.

Equations (2.1)-(2.4) have been derived from the internal energy balance
equation of porous solid-fluid aggregate which was required to be identically sat-
isfied by the independent internal energy functions postulated for the physical
constituents and an arbitrary nondissipative mechanical process. Such approach
takes into account the fact of immiscibility of the physical components that pro-
vides preservation of their individual physical properties during a deformation
process.

The constitutive functions in Egs. (2.1)-(2.3) are related to the elastic prop-
erties of the porous skeleton and do not depend explicitly on the volume porosity
fv. It reduces the number of quantities appearing in these equations simplifying
their forms. Therefore the internal equilibrium condition (2.2), that relates the
quantities p/, C and p°, may be considered as the equation describing variations
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of the skeleton mass density ¢° during a deformation process. Consequently, vari-
ations of the volume porosity parameter f, are defined by the continuity equation
for the skeleton

(2.6) (1 - f)o* dew(F) = (1 - f)af,

where quantities ff,’ and g} are the values of f, and g°, respectively, in the refer-
ence configuration.

All the three quantities: p*, f, and x can not be controlled directly by the
boundary conditions and in this sense they play the role of internal parameters.

3. Linear constitutive relations for elastic fluid-filled porous medium

We are interested in the linear constitutive description of elastic porous solid
filled with barotropic fluid undergoing small deformations. We consider defor-
mations around the equilibrium state of the medium that is assumed to be its
reference configuration. The linear constitutive relations are derived by lineariza-
tion of the general nonlinear equations (2.1)-(2.4).

Since the fluid does not have the natural stress-free states, both physical con-
stituents (fluid and porous solid) are in some initial stress state (in any arbitrary
reference configuration). Assuming that the medium in the reference configura-
tion is homogeneous, its initial state will be characterized by the following set of
quantities:

TBS« Qaa fl?’ KO, P({:ﬂ 06»
the values of which, due to (2.1)—(2.4), are related to each other by

. ,des o
{31} Ty = *]’Lf)] 3 25’[)%
/ a~s o
py _ 0e’)o
(3.2) (95)2 - dos |’
(3.3) k= #&°,
/ o= f
P del o
(3.4) & =
(e 02!
where e ozl
0 _ . ¢t 0 _ (Je f
al” = a(Cy, 7). e 0—97(90)
for o o
Lo 0E e
oC ' ps’
and .
Co=F) Fg=1L
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For further discussion we introduce the solid displacement gradient H
(3.5) H=F-1I
and the Lagrange strain tensor E
2E=C-1
that are linked by the geometrical relation
(3.6) 2E=H+H+H'H.
Then, at small values of the displacement gradient H, from (3.6) we obtain
E~(H+H)/2=E
and the right Cauchy- Green deformation tensor C can be expressed as follows
(3.7) C~1+2E,

where E is the infinitesimal strain tensor of the skeleton. The quantity 2E is the
linear increment of the deformation tensor C.

To obtain linear constitutive relations from (2.1)-(2.4) we introduce the in-
cremental form of quantities T**, p/, 0°, o/, and &

T = Ty® + AT, ])f = pg + Apf,
(3.8) 0* = o) + Ao", ol = of + Ao,
K= Ky + Ak.
Then, using expressions (3.5), (3.7) and (3.8) in the constitutive relation (2.1),

after expansion of the internal energy function we can write the effective stresses
in the skeleton as follows

(39) Ty + AT = —(pf + Ap))I
e |0 0%
aC aC?

0

0 _ 02‘53 AQS N

14
E+0980C H+I)".

+2(0) + Ap°)(H + 1)

The above relation, when the condition (3.1) is taken into account and all the
nonlinear terms are neglected, assumes the form

Ap®

S

2o

x5 Yi AQS o * § wxsyyl

+(T +]JOI)-—-Qs + 2pyE + HTR® + Te°H',
0

(3.10) AT+ Ap/I=C" -E+K"
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where quantities

(3.11) C* =4 0% 0 K* = 2(o 3 dE
' el ) jgac

are the effective material constants of the porous skeleton which have tensorial
character; C” is the fourth order tensor and K™ is the second order tensor.

In a similar way we can obtain the linear form of Eqgs.(2.2) and (2.3). They
are

(3.12) Apf = K -E+ (K +2p
(3.13) Ak = v} =
20
where
(3.14) Kr = (08— ‘)‘
. _ s OR IR
(3.15) v = 00()05 : P = 7c"

In derivation of (3.12) the commutative law of differentiation

0 3 UZFS 0

* — (02 = 2(pP——
(3'16) K ( U "(’—)“) ()C(.)L“'

d03dC

was used.

Equations (3.10), (3.12) and (3.13) are the set of linear constitutive rela-
tions for fluid-saturated porous solid of an anisotropic elastic properties and the
isotropic pore structure. From the definitions (3.11), (3.14) and (3.15) it is seen
that the material constants C*, K*, AZ, v7 and IP” characterize the mechanical
properties of porous skeleton only and depend on the chosen initial state of the
porous solid. The fourth order tensor C™ in (3.10) is the tensor of elastic con-
stants for the porous skeleton undergoing small external deformations at constant
effective skeleton mass density p°. The material constant A7* in (3.12) represents
the volumetric modulus of elasticity of the skeleton material corresponding to
the pure internal deformation caused by the change of the pore pressure p/ at
constant deformation tensor C (E = 0, external deformation does not exist).

The second order tensor K~ as it is seen from the definition (3.16) and re-
lations (3.10) and (3.12), is the tensor characterizing the coupling between two
independent kinds of deformations measured by tensor C and the increment of
o®. Due to the symmetry of tensor C, the tensor K" is also symmetric.
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Combination of the tensor K™ with the constant A’} in the form
(3.17) V, = K*/(K7 +2p))

characterizes the volume changes of the skeleton material caused by external

deformation of the porous solid at constant pore pressure (p/ = p{)). In such a
case from (3.12) we have

(3.18)

On the other hand, in the case when the external deformation does not exist
(E = 0), from equations (3.10) and (3.12) we obtain the relation

(3.19) AT = —Ap 1+ Ve Ay,

where the tensor Vg is expressed by tensor K*and quantities A7, Tj® in the
following way

(3.20) Vi =V, + (T3’ + p{1)/(KF + 2p]).

It characterizes the change of the skeleton stresses resulting from the internal
solid deformation caused by the change of the fluid pore pressure.

Coeflicients appearing in equation (3.13) describe the changes of the pore
structure parameter « during the deformation process. The scalar coefficient v}
defined by (3.15); characterizes the change of x as a result of the change of
the effective skeleton density at the constant deformation tensor C, whereas the
coefficient " is the symmetric second order tensor characterizing the changes of
x caused by the external skeleton deformation defined by E at constant eflective
density g®.

The changes of the second pore parameter, i.e. the volume porosity, are char-
acterized by the skeleton mass continuity equation (2.6). Its linear form is

Af, Ap®
1- /0~

(3.21) + tr (E).

To complete the linear constitutive description of an elastic porous solid-fluid
composition it is necessery to linearize the constitutive relation (2.4) for fluid.
We have

(3.22) Ap? = af Ao,
where

G0, et o\
(3.23) ap = (205W +(00) o

is the velocity of the wave-front propagation in a bulk fluid.
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Constitutive stress-strain relations of the porous solid (3.10), the internal equi-
librium equation (3.12), the constitutive relation for the barotropic fluid (3.22)
and the equation of changes of the pore parameter « (3.13) form the complete
set of the linear constitutive equations for the elastic fluid-saturated porous solid
of an anisotropic mechanical properties and isotropic pore structure.

These equations contain six material constants. Three of them are scalar coef-
ficients (K¥, ag, v¥) and three other are tensorial coeflicients of the fourth order
(C*) and second order (K, IP").

It should be mentiond that in the above description the velocity «; or, equiv-
alently, the fluid volume compressibility i/

(3.24) k' = ggd?

is the only material constant characterizing the fluid properties while the remain-
ing parameters characterize the skeleton properties.
Regarding the symmetry of tensorial coeflicients we have, in general, 3+ 21 +
6 + 6 = 36 scalar quantities that have to be determined experimentally. More-
over, in solving any mathematical problem it is necessary to know the quantities
0% 00 K» f9 and p(f, characterizing the state of saturated solid in its reference
configuration.

4. Linear constitutive relations. Special cases

The obtained constitutive equations of an anisotropic fluid-saturated porous
solid are a good basis for derivation of constitutive relations for elastic porous
solids with high symmetry of mechanical properties or reduced physical proper-
ties. In this section we consider elastic behaviour of the fluid-porous solid compo-
sition with skeleton of isotropic mechanical properties, the case when the skeleton
material is incompressible and the case when the porous medium is unsaturated.
Constitutive relations for porous materials of such reduced properties have simple
form and are important in practical applications.

4.1. Porous medium with isotropic skeleton

The constitutive relations (3.10), (3.12), (3.13) and (3.22) will describe the
isotropic properties of a porous body if their form is invariant under any orthog-
onal transformation of the dependent and independent variables

{Apf, Aof, Ao®, Ak, AT™, E, H}
Taking the orthogonal transformations of these variables, i.e.
‘apf = ap!, ‘Al =4, A’ =40, 'Ar= 4k,

(4.1) » B
‘AT = QAT*Q", 'E=QEQ', 'H=QHQ,
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the constitutive relations (3.10), (3.12) and (3.13) assume the form

42)  QAT*Q"+ ) 1=C"-(QEQ") + K‘i)_g
0
* 5 Ags ot " - -
H(TG + oD + 20 (QEQT) + (QHQN)TE + T3 (QHQT)T,
0
(43)  p =K .(QEQ)+ K12 42028
20 24

@4y As= u;“:)—f + P (QEQT),
0

where Q (Q Q7 =) is the orthogonal tensor.

Equations (4.2) - (4.4) will be identical with the corresponding equations (3.10),
(3.12) and (3.13) for arbitrary values of variables Ap/, Ap®, Ak, AT, E, H and
any orthogonal tensor Q if the following conditions are satisfied

Q=
(4.5) QK Q" = K", QPQf=p,
QT Q" = T7.

where Q= is a linear operator defined by the equation
Q+(vi®v20Vv3AV)=Qvi®Qv2@Qv3® Qv

and ® denotes the tensorial product of vectors.

It follows from (4.5) that the isotropy conditions for the constitutive relations
are equivalent to the requirement of isotropy of tensorial material constants C~,
K" and IP* and, additionally, the isotropy of the skeleton stress state T;® in the
reference configuration.

The isotropy conditions (4.5) reduce the quantities C*, K™ and " and Tj® to
the following form

Cr= AT+ 2u7],
(4.6) K* = K1, P =1,
TZ* = —pil,

where J is the fourth order unit tensor defined as the identity operator for the sec-
ond order tensors A (J -:A = A). The quantities A} and ;. are the effective Lamé
constants of porous skeleton measured at the constant effective mass density of
the skeleton material, and p; is the initial stress in the skeleton.
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Using (4.6) in Egs. (3.10), (3.12) and (3.13) we obtain

(4.7) AT* + Ap'T = 205 + pf - p))E
(,\ tr(E) + (K" + pl — p3) ‘)1
)
(4.8) Apl = K tr (E) + (K
@9)  Ax=wit(®)+ v "2)2

In the case when the initial stress in the porous skeleton is equal to the intial
pore fluid pressure

=1t
Eq. (4.7) takes the reduced form
* S f - Jns
(4.10) AT + Apll = 2)E + | Ajtr (E) + K~ e L
%

Equations (3.22), (4.7) (or (4.10)), (4.8) and (4.9) form the complete se of
the linear constitutive relations for fully isotropic porous solid filled with flud.
Seven material constants

* * "% - % * * -f
s /\Q, L™, K7, Yoy Py I

are involved in the description, where the first six constants characterize elistic
properties of the porous skeleton and one constant describes the mechanical fuid
property.

Methods of determination of these material constants will be discussed n a
seperate paper.

4.2. Saturated porous medium with incompressible matrix material

In the analysis of deformation processes of fluid-saturated porous media tlere
are many physical situations in which the skeleton material can be considerec as
incompressible. The incompressibility condition takes the form

(4.11) 0° = 0j

and is the kinematic constraint that confines the skeleton motion during itsde-
formation.

In such a case the macroscopic volume deformations of porous skeleton aise
at the cost of the change of pore volume. This is evidently seen in the skeleon
continuity equation (3.21) that has the form

Afy
fO

(4.12) = tr (E).
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The incompressibility condition (4.11) is, at the same time, a particular case of
the equation defining changes of the effective skeleton mass density and, as it was
shown in [5], it replaces the internal equilibrium condition (in our case, Egs. (3.12)
and (4.8)).

The skeleton material incompressibility has no influence on the form of con-
stitutive relation (3.22) for the fluid pressure, however, it substantially simplifies
the form of two other relations (3.10) and (3.13) reducing the number of material
constants. We have

4.13 AT + Ap'1 = (C + 2p! ) E + HT:® + T;°HT,
0 0 0
(4.14) Ak

v tr(E).

In this case the increment of fluid pressure Ap/ is the part of the skeleton stresses
that during the skeleton deformation does the work over the pore fluid but does
not change the energetic state of the skeleton due to its material incompressibility.
Equations (4.13) and (4.14) for the fully isotropic porous solid, according to the
analysis done in Sec.4.1 assume the form

(4.15) AT + Apl1
(4.16) Ak

205 + pg — p{)E + X3 t(E)L,
vy tr (E).

The above equations form, together with (3.22), the set of three constitutive
relations defining the mechanical behaviour of fluid-saturated, isotropic porous
solid with incompressible skeleton material. Such porous medium is characterized
by four material constants:

;1;. /\Z, 1/;, L.
The first three constants describe mechanical properties of porous skeleton and
the last one describes the pore fluid.
4.3. Non-saturated porous solid

To obtain the constitutive relations describing the elastic behaviour of an
anisotropic porous solid not saturated with fluid, one can assume in the equa-
tions (3.10) and (3.12) that the pore fluid pressure p/ is equal to zero (pf = 0).
Therefore, these equations get the form

= Ap? .
(4.17) AT* = C+E + (K" + T3) =% + HT; + T3HT,
4]
B Ap®
(4.18) 0=K-E+ 1=,
)

while the equation (3.13) is not changed.
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Equation (4.17) will be simplified, if the skeleton reference configuration is
its natural configuration, i.e. Tg* = 0.
We have

Ap*®
==

20

(4.19) AT =C*-E+ K"

From the internal equilibrium equation (4.18) it follows that for fluid-free porous
skeleton, the density change of the skeleton material is uniquely defined by the
porous solid strain tensor E. Therefore the constitutive relation (4.19) can be
written in the form

(4.20) T =C:-E

which is analogous to that of non-porous elastic solid.
Tensor

(4.21) C.=C-(K e@K")/K;

is the equivalent elasticity tensor of the effective elastic constants of a porous
skeleton.
In the isotropic case relation (4.20) is

(4.22) T = 2)°E + A= tr (E)I,

where
I R S e (Z A o

If, additionally, the incompressibility of the skeleton material is assumed, the
stress in the skeleton can be written as

(4.23) T = 25E + A tr (E)L

The material coefficients appearing in relations (4.20), (4.22) and (4.23) play an
analogous role as those in the classical linear elasticity of solids, and their mea-
surement can be done in the classical way. These material constants completely
assure the determination of stress and strain state in the porous skeleton. For de-
scription of the change of the skeleton mass density ¢*, or the change of the pore
structure parameter « it is necessary to evaluate additional coefficients appearing
in Egs. (4.18) and (3.13) or in their reduced forms (4.9) and (4.8). Measurement
of these coeflicients requires some new methods to be proposed.
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5. Final remarks

The complete set of constitutive relations for a fluid-saturated porous solid
with anisotropic properties of elastic skeleton and isotropic pore structure char-
acterized by two parameters have been formulated in the paper. It comprises: the
constitutive relations for the effective skeleton stresses and the pore fluid pres-
sure, the internal mechanical equilibrium condition and the equation of changes
of the pore structure parameter x. These relaticns are supplemented with the
skeleton continuity equation which describe the changes of porosity f,.

Considerations have been based on the nonlinear constitutive relations of such
medium obtained in the paper [5], where the consequences of the constituent
immiscibility for these relations have been analysed.

Such approach made it possible to construct the consistent linear description
of elastic behaviour of porous skeleton filled with barotropic fluid in which all
material constants are precisely defined and have clear physical meaning. Also
the character of couplings appearing in the constitutive relations and their inter-
pretation are simpler.
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