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Constitutive relations and internal equilibrium condition
for fluid-saturated porous solids
Nonlinear theory

M. CIESZKO and J. KUBIK (POZNAN)

NONLINEAR CONSTITUTIVE relations for the fluid-saturated porous elastic solid with isotropic pore
structure undergoing pure mechanical large deformations are developed. The fluid-solid com-
position is considered as the immiscible mixture consisting of physically identifiable constituents
preserving its own individual, physical propertics during deformation process. Considerations are
based on the balance equation for the internal encrgy of the whole composition which is required
to be satisficd identically by the internal encrgy constitutive functions postulated for particular

obtained, and the internal equilibrium condition for the whole composition is established. These
relations for the media with incompressible matrix material and for nonsaturated porous skeleton
are discussed.

1. Introduction

MACRO-CONTINUUM constitutive modelling of fluid-saturated porous solids has
been a subject of wide discussion through the last decades. Nonlinear models of
such materials are based mostly upon the fundamental notions of the Classical
Mixture Theory, [5, 23], and its reformulated form — the Theory of Interacting
Continua, [9, 10]. Classical mixtures are considered to be composed of misci-
ble constituents (miscible mixture) and within that theory, a fluid-filled porous
medium is treated as the superposition of two continua (solid and fluid) charac-
terized by two independent velocity fields. In such approach, the microstructure
of solid-fluid composition is not taken into account in formulation of the balance
equations and constitutive relations. At the same time, constitutive theories of
classical mixtures quickly become complex and unwieldy, even for the simplest
constitutive assumptions, when they are based on the principle of equipresence
[23], which assumes that each constitutive quantity of a particular component
depends on a set of independent variables for the whole solid-fluid composition
(see e.g. [1, 2, 7, 11, 12]).

It is evident, however, that such materials as saturated sands, soils, porous
rocks, sintered metals, sponges etc. consist of physically identifiable solid matrix
and a fluid filling its pores that retain their material integrity, and thus their
individual physical properties, during a deformation process. Therefore, porous
materials filled with fluid, contrary to the classical mixtures, have internal geo-
metrical structure reflecting the fact of immiscibility of constituents and charac-
teristics of this structure play important role in both transport phenomena and

http://rcin.org.pl



894 M. Cieszko AND J. KUBIK

constitutive modelling of such materials. This also proves that in the local sense,
each constituent will obey the constitutive relations for that constituent alcne.

Among many works developing the macro-continuum constitutive modzlling
of solid-fluid mixture there are papers that regard the immiscibility effect by
incorporating in the description the parameter of volume porosity characterizing
the volume fractions of the constituents (see for example [4, 6, 8, 13, 19-22]).
Most of these papers have in common the fact that they apply the principle of
equipresence in formulation of constitutive relations for partial quantities of the
individual components of the solid-fluid mixture ([6, 8, 19-22]), or for the energy
constitutive functions concerning the whole aggregate ([4, 13]). Such approach
does not prove to be self-consistent in treating the immiscibility effect as the
immanent feature of the porous solid-fluid composition.

The extensive literature concerning the different descriptions of immiscible
and structured mixtures can be found in the review paper [3].

The purpose of this study is to develop, within the macro-continuum descrip-
tion, the nonlinear constitutive relations for fluid-saturated porous solids under-
going pure mechanical deformations where the main consequences of the immis-
cibility, i.e. the skeleton pore structure characteristics and mutual independence
of mechanical properties of individual constituents are taken into account. The
components are assumed to be elastic and the pore structure has isotropic and
homogeneous properties in the macroscopic (averaged) sense.

Considerations are based on the balance equation for the internal energy of
the whole composition, which is required to be satisfied identically by the internal
energy constitutive functions postulated for particular components, the functional
forms of which reflect their individual features.

This enables one to obtain two nonlinear constitutive relations for stresses
(one for porous skeleton and the other for pore fluid), and the relation for
interface interaction force. Moreover, the additional relation is derived which is
the condition of internal equilibrium for the solid-fluid composition. Tt relates the
pore fluid pressure with independent variables describing the deformation state
of porous skeleton.

In the paper three particular cases of constitutive relations are also consid-
ered. They concern the porous solids with isotropic mechanical properties. with
incompressible material of the skeleton and the case when porous solid is not
saturated with fluid.

2. Balance equations for mass, linear momentum and internal energy
In our considerations we use the macroscopic continuum description of fluid-
saturated porous solid, the pore structure of which is isotropic and characterized

by. two parameters: the volume porosity f, and the structural permeability A (or
equivalently k = A/ f, < 1). The quantity f, represents the fluid volume fraction
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and A is the measure of inhomogeneity of the fluid micro-velocity field in its flow
relative to the skeleton, caused by the pore structure [14-16]. The characteristic
feature of this theory is that the description of kinematics and dynamics of the
porous solid-fluid mixture is referred to the so-called virtual components while the
description of constitutive properties of the mixture is formulated for its physical
constituents.

The physical constituents are: the fluid (|/) and the porous skeleton (|*), which
are chemicaly inert and their mass is conserved. Therefore the appropriate con-
tinuity equations have the classical form used within the mixture theory [5]

07°

W‘*‘le(QV):O,
8% . B
T +div(a’v') = 0,

where 5° and g/ are the partial densities of porous solid and fluid, respectively,
and v* and v/ stand for the mass average velocities of the constituents.
The virtual constituents are formed by the porous skeleton and fluid associated

o : : . o1
with it — the first virtual constituent (|') moving at the skeleton velocity v, and
& ’ g ) . ; . 2
the free fluid - the second virtual constituent (|*) moving at its own velocity V.
These velocities are related to velocities of the physical constituents as follows,
[14, 15]:

= v.‘;‘

<ty <

1
=v + —(v/ - v*).
K

The virtual constituents in the macroscopic description result from the require-
ment that the whole linear momentum and Kinetic energy of the particular con-
stituents considered within the Elementary Volume Element and described by
the quantities defined at the micro-level (pore, grain level) should be fully rep-
resented by the macroscopic (averaged) quantities at the macro-level.

Since during a deformation process the amount of associated {luid can change,
the virtual constituents form systems interchanging their masses and the core-
sponding continuity equations have the following form, [15],

0}» 1
Spdiv(ey) = g.

¥ 22
5[2 +div(ov) = —g.

(2.1)

The function ¢ is the mass exchange intensity between the free and associated
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fluid and is given explicitly by the expression

The motion equations of the virtual constituents are, [14-16],

1
D LA 1
2’7; = divT + b + ‘1:+5g(3_$),
(2.2) ] ‘
2
D .2 2 1
é—v = d:vT+52)b + Tt+—g(\2’—€’);
dt 2
b)) _ 20 L@ . o
T —W+v-gmd(), a=1,2
where e and 12t ('!]t =7 =— 12t) stand for the internal interaction forces beween

constituents and b is the external body force per unit mass. The last terms on the
RHS of Egs. (2.2) represent the coupling between virtual constituents caused by
the linear momentum exchange accompanying their mass exchange.

. o i B ; 1 2 N
The partial densities p, ¢ and partial Cauchy stresses T, T of the virtual con-

stituents are related to the partial densities 5°, / and partial Cauchy stresses
T, T/ of the physical constituents through the following equations, [14]

1 2
(2.3) p=72"+(1-xr)a’, p=Kp’,,
1 )
(2.4) T=T4+{0-, T=gW,
where

3l =f0f, wP=(Q1-f)°

and o/, o® stand for the effective density of fluid and porous skeleton, respectively.
1 2
Stress tensors T and T/ are assumed to be symmetric, so that stresses T and T

are also symmetric.

The local form of the internal energy balance equation can be formulated
both for the individual components or for the whole solid-fluid composition. In
our case we use the second one that allows us to avoid the specification of the
terms describing the interchange of energy between constituents.

Accounting for the immiscibility of the physical constituents, the internal en-
ergy of the porous solid-fluid composition is considered as the sum of the internal
energies of these constituents. When thermal efects are disregarded, its form is
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as follows, [16, 17],
1 5 1 1
@5) T+ (-nE s

2
3= n’ﬁf Del
- Dt

1 d A |
= .(¥-v)+tr(TTL) + tr(TTL),

where e/ and ¢* are the internal energies per unit mass for the fluid and the solid
skeleton, respectively, and the tensors

1 1 2 2

L = grad v, L=grad v
are the velocity gradients of the virtual constituents. The subscript 7" stands for
the transposition of the tensor.

The particular terms of the LHS of (2.5) describe the rate of changes of the
internal energy in the matrix material, associated {luid and free fluid, respectively,
which are balanced by the rate of work of volume and surface forces represented
by the RHS terms of (2.5). Equation (2.5) will be used in further part of this
work to derive the necessary constitutive relations.

3. Constitutive relations for the elastic porous solid filled with barotropic fluid.
The internal equilibrium of the system

In this section we formulate constitutive relations for porous solid filled with
fluid undergoing large elastic deformations. It is assumed that both, porous skele-
ton and fluid filling pores have elastic properties, and mutual solid-fluid interac-
tion on the interface is that of mechanical type only. We disregard the viscous
effects of the fluid confining our considerations to the pure elastic interactions.

Under the above assumptions, the f{luid-saturated porous solid forms the
non-dissipative system of two immiscible constituents, each of which preserves its
own physical properties during a deformation process. The mechanical behaviour
of such system is entirely described by the mass and linear momentum balance
equations of virtual constituents (2.1) and (2.2), respectively, and appropriate
constitutive relations which have to be formulated for the physical components.
At the same time, the balance equation (2.5) for the internal energy of the system
must be identically satisfied by constitutive relations for an arbitrary mechanical
process.

We apply the internal energy balance equation (2.5) to obtain nonlinear con-
stitutive equations for the elastic porous solid filled with fluid. Their forms will be
derived from Eq. (2.5) which has to be identically satisfied by the postulated func-
tions for the internal energies of individual physical constituents of the solid-fluid
system.

Such method of derivation of the constitutive relations is analogous to the
clasical approach used for the hyperelastic medium.
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3.1. Constitutive postulates for the fluid and porous skeleton internal energies

The essence of the immiscibility is the fact that the physical constituents of
porous solid-fluid mixture remain separated during a deformation process and
then, in the local sense, each constituent shall obey the constitutive relations for
that constituent alone. Therefore it is reasonable to define the internal energy
for each physical constituent independently by the field quantities describing its
own state of deformation.

In the case of the elastic (barotropic) fluid filling pores of the skeleton, its
local state is defined by the effective fluid mass density o/. Thus, the constitutive
function for the fluid internal energy can be written as follows:

(3.1) el =el(o).

The local deformation state of the elastic porous skeleton filled with fluid,
contrary to a non-porous material, is characterized by two kinds of independent
variables describing, say, the internal and external skeleton deformations. The
internal deformation of the skeleton is connected with a change of its geometrical
pore structure and is measured by variations of the pore structure parameters:
fv and A (or equivalently «). Both the pore structure parameters will be used in
the description as the internal state variables.

The external skeleton deformation (bulk deformation of a porous sample) is
defined by the deformation gradient

_ Ox _ ()

(3.2) =X -

XL(X t),

where :
x =X, (X, 1) = X(k ' (X), 1)

is the deformation function of the porous body B which relates the position X of
the skeleton particle (macroscopic particle) X' € B in the reference configuration

X =Kk(\)
to its position x in the current configuration
x = x(X, 1)
The derivative in (3.2) is defined by the identity, [18],

(?)({"D XA(x + 1D, 1)|=0

where D is an arbitrary vector quantity.
The deformation process in which the pore structure parameters of porous
skeleton changes while the deformation gradient F is constant and equal to the
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identity tensor is called the pure internal deformation, whereas the case when the
pore parameters are constant during the deformation measured by the gradient
F is called the pure external deformation.

Taking the above into account, the constitutive relation for the internal energy
of porous elastic solid can be proposed in the following form

(3.3) e’ = el (F, fu, k).

Because of dependence of the deformation gradient F on the choice of reference
configuration, the function e] must also depend on the reference configuration
to ensure the value of internal energy e® to be insensitive to changes of this
configuration.

It is commonly accepted that each constitutive relation should satisfy the prin-
ciple of material objectivity, that is to be independent of the choice of reference
frame.

The relation (3.1) as the scalar-valued scalar function satisfies this principle
automatically whereas the objectivity condition for the relation (3.3) takes the
form of the following identity, [18],

(3.4) €2 (QF, fo, ) = ei(F, fu, 1),

that has to be satisfied for every orthogonal transformation Q (Q” = Q1) and
for arbitrary values of independent variables F, f, and .
The condition (3.4) when applied to (3.3) yields

(3.5) e’ = e;(C, fu,K),
where
(3.6) C=F'F

is the right Cauchy-Green deformation tensor.

Accounting for the fact that the independent variables C, f, and « are objective
quantities, the scalar-valued function (3.5) satisfies the objectivity principle for
arbitrary form of €.

The representation (3.5) is the general (nonlinear) constitutive relation for the
internal energy of porous solid of anisotropic elastic properties and the isotropic
pore structure.

The relation (3.5) is not the only form that represents the internal energy
of porous skeleton. We can derive two other, equivalent forms replacing the cur-
rent volume porosity f, with the porosity f (say Lagrangean porosity) defined

by
(37) f:: = .fu']a
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where
(3.8) J = det(F) = [det(C)]'/?,

or with the skeleton density ¢° related to the porosity f, by the skeleton continuity
equation

(3.9) o’(1- )] = a(1- ) =125 -

In (3.9) 0§ and f? stand for the values of o° and f,, respectively, in the reference
configuration.

The porosity fI is the ratio of the pore volume contained in the Elemen:ary
Volume Element (macro-particle) of the porous body in the current configurazion
to the total volume of the same Volume Element in the reference configuraton.
Variation of this quantity, contrary to variation of f,, is the local absolute meawure
of the change of a pore volume during a deformation process.

Similarly, the skeleton mass density variation may be considered as the local
absolute measure of the change of a skeleton volume. In such a case the dersity
o*, similarly to the porosity f,, plays the role of internal state variable.

These are good points in application of f* and 0® to the skeleton intenal
energy formulation. We obtain

(3.10) e* = & (C, fl ),
(3.11) e’ = €.°(C,o°,r),

where the constitutive functions ¢/ and ¢.° are defined by the following identties

(3.12) g 1C, J1L.8) = e, [B14),
(3.13) €.°(C,0° k) = €5(C,1-735/0° ], K).

The constitutive functions for the fluid (3.1), and for the porous skeleton (3.5)
or its alternative forms (3.10) and (3.11) entirely describe the energetic stat: of
elastic porous solid filled with fluid and undergoing finite deformations.

3.2, Constitutive relations for stresses. The condition of mechanical internal equilibrium

To establish constitutive stress-strain relations for each constituent of the
fluid-porous solid immiscible mixture, and relations describing mutual solid-fuid
interaction, we apply the approach characteristic for the hyperelastic mediim.
We introduce the relations (3.1) and (3.5) to the energy balance equation (.5)
for the whole porous solid-fluid mixture which has to be identically satisfied for
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an arbitrary mechanical process. Using, moreover, the continuity equation (2.1),,
Eq.(2.5) can be written as follows

e s e/ 1
(3.14) tr{[?.@sFQ(iFT—dc (Qf)zfl,(l—ﬂ;)[—ﬂ L}

oC do!
1
2 _,0¢p  ded ;2| DS,
ol -5 @]

de! 2 2
— il P Rt
tr{[dgf (o) kil +T

1
.(\1,_\2,).,._8&@:0.

de’ 2
— I ad ()
[ (@ ) grad(\) + = e Dl

do?

Equation (3.14) is the linear function of the independent quantities

1 1
Df, Dk

Dt Dt’

for an arbitrary mechanical process in the body. Since these quantities can assume
arbitrary values, equation (3.14) will be identically satisfied if the corresponding
coefficients are equal to zero. Defining the quantity

1 2
L: L7 (‘1’ - %’)a

f)2 det

F_
(3.15) = (o o

which is considered as the effective pore pressure, from (3.14) we have

1 9
(3.16) T4+(1 = 1) fup’l = 25 FLLFT,
JdC
2
(3.17) T = —xfp/1,
oeg
of = 5395k
(3.18) o =g
geg _
(3.19) Sk =0,
(3.20) w = —plgrad ()).

Condition (3.20) describes the force exerted on the solid skeleton by fluid filling
its pores. From (3.20) it is seen that, despite the lack of {luid viscosity effects in
the considerations, the solid-fluid interface interaction force does exist due to the
nonhomogeneity of the skeleton pore structure.

The expression (3.19) is the necessary condition for minimum of the skeleton
internal energy function at constant strain tensor C and volume porosity f,. If,
additionally, the sufficient condition is satisfied, i.e.

0225
J°e;

Or?

> 0,
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then Eq. (3.19) indicates that the saturated porous body undergoes a deformaton
process in such a way that the parameter « takes values for which the skeleion
internal energy has a minimum, (Fig.1). Therefore, the condition (3.19) may
be treated as the implicit equation of variation of the s-parameter during a
deformation process.

K = k(C, £,

Fic. 1. Illustration of the changes of the pore structure parameter x during the deformation
process.

Assuming that (3.19) is the smooth function of &, it can be rewritten (at least
locally) in the explicit form

(3.21) K= R(C, o),

that has to satisfy the condition

deg :
U:(Cv fv"h) 0.

n=:(C,fU)

Equation (3.21) offers the possibility of exclusion of the x-parameter from theset
of independent variables defining the skeleton internal energy function. In sich
a case, the constitutive functions (3.5), (3.10) and (3.11) take the form

(3.22) &2(C, fo) = €X(C, £, R(C, 1)),
(3.23) el = g(c, sl R4, 1),
(3.24) &(Cy0") = §%(C, 0%, R2(C, ™)),
where

(3.25) RUC, Ey = ’(C, 1E) D),

(3.26) Re(C,0%) = R(C,1-733/e")).
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From the condition (3.19), due to identities (3.12) and (3.13), we obtain

dey et

PR o =0

and consequently (3.12) and (3.13) reduce to the following identities, respectively

(3.27) e (e, 1y = e, £L14),
(3.28) €29(C, 0%) = €X(C,1-3/0°J).

From the above consideration it is seen that the condition (3.19) should be treated
not only as the condition of independence of the skeleton internal energy of
the parameter «, but also as the equation of changes of this parameter. Such
interpretation of the condition (3.19) is supported by the analysis given in Sec. 4.3
where the skeleton mass density changes of non-saturated porous material is
obtained as a particular case of the internal equilibrium condition (for p/ = 0)
in the same form as the condition (3.19).

Now, taking into account relations (3.22), (3.19) and (2.4), Eqs. (3.16) - (3.18)
can be written in the following form

S . A=S ﬁ T
(3.29) T* = 25 F S LF,
(3.30) T/ = —f,p'1,
(331) o = 53‘; .

Equations (3.29) and (3.30) (together with (3.15)) are the constitutive relations
for the partial stresses of an elastic porous skeleton and of a barotropic fluid
filling its pores, respectively. Equation (3.31) relates the pore fluid pressure p/
with the deformation tensor C and the volume porosity f,; quantities which define
the state of deformation of the porous skeleton. It is the condition for internal
mechanical equilibrium between porous skeleton and fluid filling its pores. As
will be shown in Sec. 4.2, this equation does not appear in the description in the
case when the skeleton material is incompressible.

The condition (3.31) and the skeleton continuity equation (3.9) define (op-
tionally) changes of the two internal parameters: the volume porosity f, and the
skeleton mass density o°.

From the above considerations it is seen that the constitutive functions

oy 0

ac”’ dfe
in relations (3.29) and (3.31) are defined by the mechanical properties of porous
skeleton and do not depend on the properties of the fluid filling its pores. In
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such constitutive formulation the mechanical coupling between fluid and porous
skeleton appears only in the internal equilibrium condition (3.31) where the fluid
pore pressure p/ is present.

It is worth to note that relation similar to (3.31) was considered by KENYON in
his paper [13] on the equilibrium theory of the solid-fluid mixture. He introduced
constitutive postulate relating the volume porosity f, to the fluid bulk density 57/
and J = det(F), without any physical motivation. Such relation can be consid-
ered as a particular case of the equation (3.31) that has the resonable physical
interpretation.

The form of the constitutive equation (3.29) and the internal equilibrium
condition (3.31) will change if the Lagrangean porosity f or the skeleton mass
density p®, instead of the current volume porosity f,, is used in the expression
for skeleton internal energy. In the first case, after differentiation of (3.27) with
respect to C and fL, we obtain

oz aeg 0%}

aCc  oC 2f‘ dfb '
oet _ 1o

afE oL’

The above relations, when applied to (3.29) and (3.31) yield

a=sf
(3.32) T = 71 = 25°F O T
= JC
o~ s
_. ¢
(3.33) Y =k

Taking Eq. (3.30) into account, we can conclude that Eq. (3.32) is the constitutive
relation for the total stress

T=T+T

in the solid-fluid composition.

Equations (3.32) and (3.33) coincide with the equations derived in another
way by Bior [4].

In the second case, after differentiation of (3.28) with respect to C and »* we
have

gEe _ oE Ly
oc — oC "_( _f‘)df,,c
o€’ oy 0¢}

dor (@) 0L
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These relations, when applied to (3.29) and (3.31), give

e
(3.34) T = —(1- )1+ ZE”F(};—‘CFF,
f oese
]] - (’L'
(3.35) P~ 90

From (3.34) it is seen that the stress in the skeleton is composed of two parts;
the first part
~{1= fu)/’fl
is due to the presence of the pore fluid in the skeleton pores, and the second
part
e
25°F—L-F'
- dC
is due to the deformation of porous solid.
Introducing the effective stress tensor in the skeleton by the definition

(3.36) T =T/(1- /),

from (3.34) we obtain the constitutive equation for the effective stresses in the
following form

(3.37) T = [}I+.,QFUCF.

It should be noted that the constitutive relation (3.37) as well as the internal
equilibrium condition (3.35) and the constitutive equation (3.15) for the effective
pore fluid pressure, do not depend explicitly on the volume porosity f,. It limits
the number of the quantities appearing in these equations thus simplifying their
forms.

In such a case the condition (3.35) can be considered as the equation de-
scribing variations of the skeleton mass density o® (particularly in the case of
non-saturated pores (p/ = 0); see Sec.4.3). Then the skeleton continuity equa-
tion (3.12) plays the role of equation for the volume porosity changes.

The constitutive relations (3.15) and (3.37), the condition (3.35) and Eq. (3.21)
form a complete set of the constitutive equations for the fluid-saturated porous
solid of elastic mechanical properties (in general anisotropic) and of the isotropic,
initially homogeneous pore structure. This set of equations is supplemented by
the relation (3.20) describing the solid-fluid interface interaction force.

4. Constitutive relations. Special cases

In this section the nonlinear constitutive relations for the practically important
fluid-saturated porous media of simplified mechanical properties are analysed. We
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consider three particular cases that concern porous solids: of isotropic mechanical
properties, of an incompressible skeleton material and the case when porous solid
is not saturated with fluid.

4.1. Saturated porous solid with isotropic properties of skeleton

The constitutive relations (3.29), (3.31) and (3.21) will describe elastic prop-
erties of the isotropic porous skeleton filled with fluid if all of them are isotropic
relations. This can be achieved by imposing the isotropy condition on the relation
(3.4) for the skeleton internal energy.

This condition takes the following form, [18],

(4.1) eQCQ7, fu, k) = €X(C, fuy5),

which has to be fulfilled for all orthogonal transformations Q (Q” = Q') and
all values of independent variables C, f,, «. Such requirement imposed on the
fluid internal energy (3.1) is satisfied identically.

The condition (4.1) shows that the skeleton internal energy is an invariant
of the deformation tensor C and thus, it can be considered as a function of the
invariants of C.

In such case Eq. (3.5) becomes

(4.2) e’ = g(C, f,,x) =efC, I£, 1%, f,,5),
where
If=1w(C), If= %(trz(C) —tr (C?), I = det(C),

are the principal invariants of the tensor C.

Relation (4.2) is a general form of the constitutive equation for the irternal
energy of the skeleton with isotropic mechanical properties.

Isotropy of (4.2), due to the relation (3.19), results in isotropy of Eq. (3.21) and
consequently, due to the identity (3.22), leads to the isotropy of the stress-strain
relation (3.29) and of the internal equilibrium condition (3.31).

We obtain

(4.3) k= ®(IP 17,10, 1),

(4.4) T = 2p° {If P 1+ (BF + 1P EP)B - EfB?},

(45) Vo=

where

(4.6) &l 17,13, ) =P 17 17, fnRUL L 15,15 1))
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and the right Cauchy-Green deformation tensor C is replaced with the left de-
formation tensor -
B=FF,

the invariants of which are identical

I8 = 1O a= 1,23,

a
The quantity £2 stands for

oe;
918"

EB = a=1,23.
Relations (3.15), (4.3)-(4.5) form the set of the constitutive equations describing
the mechanical behaviour of the isotropic, elastic porous solid-fluid composition.

Using the relations (3.7) and (3.9) we can derive two other, equivalent sets of
constitutive relations in which, instead of the volume porosity f,, the mass density
0* or Lagrangean porosity f are used as idependent constitutive variable.

4.2. Saturated porous medium with incompressible skeleton material

Incompressibility of the porous skeleton material is defined by the condition
4.7) o® = pp.

It is a kinematic constraint confining the skeleton motion during its deformation.
This condition, at the same time, is the special (trivial) case of the equation
describing changes of the skeleton mass density and replaces in this role the
condition of internal equilibrium for the solid-fluid composition.

Taking (4.7) into account, the skeleton continuity equation (3.9) reduces to
the relation

(4.8) fo=1=Q=fJ

that uniquely defines the volume porosity changes by means of the skeleton de-
formation gradient F.

The assumption (4.7) and relation (4.8) eliminate the density p* and porosity
f, or f¥ from the set of independent variables describing the internal energy of
the skeleton. We have

(4.9) e = 3(C, k).

Now, requiring the balance equation of the internal energy (2.5) to be identically
satisfied by relations (3.1) and (4.9), one can find the constitutive equations for
the interface interaction force and the efTective fluid stresses identical with the
relations (3.20) and (3.15), respectively. At the same time, the function of the
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s-parameter variation and the constitutive relation for the skeleton effective stress
take forms similar to (3.19) and (3.37), respectively, i.e.

e} _
(4.10) B 0,
(4.11) T = —p/I + ZnSFﬁFT
’ 0t oc

where - ~

£0(C) = £1(C.7(C))
and -

£ =R(C)

is the explicit form of the relation (4.10) defined by the identity

des . B

W(C' & k=m(C) o

The term in (4.11), related to the fluid pressure p/ represents the stresses in the
skeleton caused by the presence of the fluid in pores. These stresses contribute to
the pore fluid energy during the skeleton deformation. However, due to incom-
pressibility of the skeleton material, they do not influence the skeleton internal
energy.

It should be pointed out that the set of constitutive relations mentioned above
does not contain the condition of internal, mechanical equilibrium for the con-
sidered solid-fluid composition. This results from the fact that the skeleton mass
density has been excluded from the set of independent variables.

4.3. The non-saturated porous solid

Constitutive description of non-saturated, elastic porous solids can be obtained
from the constitutive relation (3.37) and the internal equilibrium condition (3.35)
through the assumption that the effective fluid pressure is equal to zero (p/ = 0).
In such case, we have

gese
412 T = 20°F—A_F!,
(4.12) e’F—&F,
9ee
(4.13) B = 0.

The form of Eq.(4.13) is similar to that of (3.19). Therefore, we conclude that
during a deformation process of elastic, non-saturated porous solid, the skele-
ton mass density p° takes values for which the skeleton internal energy has a
minimum. This additionally justifies our interpretation of (3.31) as the internal
equilibrium condition between the pore fluid and skeleton.
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If £.¢ is a smooth function, equation (4.13) can be rewritten in the form
(4.14) 2 = 5(C)

that explicitly describes the skeleton mass density changes. Then the identity

is satisfied.
Introducing (4.14) into the skeleton the mass continuity equation (3.9) we
obtain the equation for the changes of volume porosity

(4.15) fo=1-33/75°(C).

Moreover, the equation (4.14) eliminates the skeleton mass density from the set
of independent variables describing the internal energy of the skeleton. We have

(4.16) e’ = &(C)

I

E{C,.(C))-

Thus, the constitutive relation (4.12), when (4.13) is taken into account, reduces
to the form

(4.17) T = 2£>5F%F"',

similar to that for a non-porous solid.

5. Final remarks

Nonlinear constitutive relations for the fluid-saturated porous solid immiscible
mixture undergoing pure mechanical large deformations have been developed.

Considerations have been based on the balance equation for the internal en-
ergy of the whole composition which was required to be satisfied identically by
the internal energy constitutive functions postulated independently for individual
components.

General constitutive relations for partial stresses in an anisotropic, elastic
skeleton and barotropic fluid have been formulated and the internal equilib-
rium condition for the composition has been established. This condition relates
the pore fluid pressure to independent variables describing the state of porous
skeleton and it does not appear in the constitutive description when the skeleton
material is incompressible. Also the constitutive relations for the medium with
simplified physical properties have been discussed.
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