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Travelling waves in laser sustained plasma 
Constant coefficient case 

B. KA.iM IERCZAK (WARSZAWA) 

W E USE the Conley index theory to prove existence of trave lling waves to a system of partial 
diffe rentia l equations dcscribing a two-temperature mudcl o f plasma sustained by a laser beam. 
These waves connect two asymptotic state of gas: a cold one and a hot partiall y ionized one. 

1. Introduction 

THE AIM OF THIS PAPER is to prove the existence of travelli ng wave solution to 
the equations of a two-temperature model describing the laser-sustained plasma 
(see system (0)). The problem was positi vely solved by means of the implicit 
function theorem in [5] under the condition of suffi ciently large values of the 
coupling parameter. This time we use the technique of Conley connection index 
theory (see [1 , 2, 3, 4]) . l t seems interesting to compare these two methods. For 
simpli city, we consider the case of constant transport coeffi cients. The case of 
variable transport coeffic ients will be considered in the subsequent paper. 

The evolution of temperatures T1 and T2 of electrons and heavy particles 
(i.e.atoms and ions) in plasma sustained by a laser beam under a constant pressure 
p are described by the following equations (see [5] and references therein): 

(%l +V . grad) c, = div (k, grad T, ) + r, - (T, - T2)W, 

(0) 

(%t + v • grad) c2 = div (/.:2 grad 'I2) + 1·1- (T1 - T2)W. 

Here ki are efTective heat conductivity coeffi cients, c; their efTective heat capac-
iti es per unit volume. F1, F2 are nonlinear source functions. The term ('f1- T2)W 
describes coll isional energy exchange betweeen electrons and heavy particles. W is 
proportional to the frequency of electron-heavy particle coll isions. This frequency 
tends to infi ni ty ｡ｳｰ ｾ＠ oo. So, we can write W(71; T1, '/2) = /\(7J)II'(T1, T2), where 
>. is a real parameter, >.(p ) ___,. oo as p ___,. oo. The functions k; > 0, ci > 0, Fi, 
i E {1, 2}, and W > 0 depend in general on T1 and 12. However, for simplici ty 
of presentation we will assume that ki, ci, and 11' are constant. The dependence 
on T1 and T2 will be retained only in nonli near source terms F1 and F2• 

Dy looking for solutions in the form of a travell ing wave, that is by making a 
substitution: 

T1(x, t ) = u1(x · 11 + x_l), 12(x, t ) = 1l2(x . 11 + xt), 
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where n E JR.3 can be interpreted as the direction of propagation and x as a speed 
of the wave, we are led to a system of ordina1y differential equations of the form: 

ｫＱ Ｑｌ ｾ Ｍ c1Bu'1 + F1(u) + A. ll ' (ul - u2) = 0, 

k2u'2- c2Bu2 + F2(u) + /\ll ' ( tq- u2) = 0, 

where':= dj ､ｾＬ＠ ｾ＠ := x·n + >._t, B := ( \ + v· n) and ·u := (u 1, u2). It is obvious that 
by changing the scale of the independent variable and redefining the constants 
Ct. c2 and >.we may obtain a simpler (but less symmetric) form of this system: 

(1.1) 
u;'- c1Bu; + F1(u) - >.(ul - u2) = 0, 

ku].- c2Bu2 + F2(u) + >.(tLJ- u2) = 0. 

The roots of the corresponding algebraic system 

F1(tt)- A.(zq - u2) = 0, 

F2(u) + A.(ul - u2) = 0, 

are called constant states for (1.1 ). So, we are in terestcd in solutions defined for 
｡ｬｬｾ＠ E JR.1 whose derivatives vanish at ±oo and such that (u1(0,u2(0) tends to 
different constant states as ｾ＠ ± oo. Such solutions are call ed heterodinics. For a 
given >. such solutions can exist only for certain values of the parameter fJ. (The 
problem considered is a sort of a nonlinear eigenvalue problem). Thus it makes 
sense to speak of heteroclinic triples ( B, u 1, u2) satisfying Eqs. (1.1 ). Our aim is 
to prove existence of a heteroclinic connecting appropriate constant states of 
Eqs. (1.1). These constant states can be interpreted as the two states of gas: the 
cold incoming one (at - oo) and the partiall y ionized hot one (at oo ). The existence 
theorem is stated in Theorem at the end of Sec. 7. 

Th analyze heteroclinic connections for Eqs. ( 1.1) we will consider the follow-
ing family of systems: 

(l.ry) 
ｵｾＭ c10u; + F 1r1 - /\(ul - u2) = 0, 

ku'.f. - c2,1fJ n2 + f2,1 + /\( 11 I - 'U2 ) = 0, 

where 1J E [0, 1] and 

C21J = CJk(1 - 1J) + 1JC2, 

:F11) := Fs + ry(F1 - Fs), :F2,1 := Fs + ry(F2- Fs), 

Fs(UJ,u2) := (FI + F2) (C1 + k)-1(ul + l.: u2), (1 + k)- 1(ul + ku2)). 

When we denote w := (1 + k)- 1(u1 + ku2), d := tL 1 - u:!, add and subtract the 
both sides of Eqs. (l. ry ), we obtain the system: 

w"- c1Bw' + 2(1 + k)- 1 F5 (w, w) 

(2) + 7)(1 + k)- 1 (Ft + F2 - 2Fs- (c2- CJk)Bu2) = 0, 

d" - c1Bd'- (1 + k- 1)/\ d + 17k- 1 (kF1 - F2 + (c2- clk)Bu2) = 0. 
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Sections 2-5 have a preparatory character. Section 2 contains the assumptions 
imposed on the coeffi cients of system (1.1 ). In Sec. 3 we examine properti es of 
constant states of system (l.ry ), and especiall y their behaviour for large >.. In Sec. 4 
we prove a priori estimates fo r fir st derivatives of the solutions to (l. ry) provided 
they are contained in a certa in bounded region of ( u1, u2)-space and prove that 
the set of 8, fo r which a he teroclinic o rbit can exist is comprised in some bounded 
open interval (80, 81), where 0 < 80 < 81• Such estimations are necessary, because 
we want an isolating neighbourhood to be a compact subset o f the phase space. 
In Sec. 5 we examine the e igenvalues and e igenvecto rs of the system linearized at 
its singular points. In Sec. 6 we construct an 17-family of compact subsets of the 
phase space such that: 

1) they are continuously varying with 17, 
2) each of them is an isolati ng neighbourhood with respect to the fl ow gener-

ated by E qs. (l.ry). 
For 17 = 0 the system (l.17) has almost a "classical" structure and is relatively 

easy to analyze. Then, using the invariance of the connection index under con-
tinuation relation we can analyze existence o f he teroclinics for the system (1.1 ). 
We did it in Sec. 7. Fo r reader's convenience we have coll ected the necessary 
statements o f the connection index theory taken from [1] in the Appendix A. 

2. Assumptions 

AsSUMITION 1. All the considered functions are of C2 class. 0 

A ssuMITION 2. The constants k, c1 and c2 are posit ive. 0 

AssuMIT ION 3. In the inteJval [ - 2T, 1 + 2T ], T > 0, the equation 

(3) F (y, y) := F't(y, y) + Fz(y, y) = 0 

has exactly three solut ions 0, 1 and vo E (0, 1) such that ｬ ｾｹ＠ (0, 0) < 0, F,y (1, 1) < 0 
and ｬ ｾｹ Ｈ ｙｯ Ｌ＠ Yo) > 0. 0 

I 

A SSUMITI ON 4. J F(y, y) dy := I > 0. D 

0 

3. Constant states dur ing continuation 

First of all, we will examine the behaviour o f constant states fo r (l.17) i.e. 
solutions to the algebra ic system: 

F111(1tJ,u2) - >.(u, - uz) = 0, 
(4) 

Fz,1(1t t , u2) + .A (a t - u2) 0, 

while the parameter 17 changes in the inte1val [0 , 1]. 
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REMARK. Let us note that the functions :F1,P :F2, satisfy the relation 

where 1(17) = 2- 7]. 0 

To begin with, we will characterize the properties of the solutions to the system 
( 4) with respect to the solutions of Eq. (3). First, it is easy to note, by means of 
the implicit function theorem, that for sufficiently brge A and u1 E [ -2r, 1 + 2r] 
the equations ＺｆＱＷ Ｗ ＨｵｾｯｵＲＩ Ｍ A(ul - u2) = 0 and :F2,1(u1, u2) + >.(ui- uz) = 0 
are uniquely solvable with respect to u2. The solutions to these equations will be 
denoted below respectively by ttz = Jl,l (ul) and lL2 = v,,(ul)· 

Below, :F;11,j will denote the partial deri vative of F ;,1 with re:-;pect to Uj. 

LEMMA 1. 

a. For all 1J E [0, 1] and sufficiently large >. > 0, the system ( 4) has exactly 
three solution pairs ( u 1, u2)(>., 17) such that both u 1 and u2 belong to the interval 
[ -r, 1 + r ] and such that for>. --. they tend to appropriate solutions of Eq. (3). 

b. Let V belong to the set {0, y0, 1} of solutions to Eq. (3) and let F,y(V) = 
[(PI + Fz)(y, y)], yiy=V > 0 ( < 0) in some open neighbourhood of V in R1

• 

Let (u1, u2)(.A,17) be this branch of solutions to (4) which tends to (V, V) as 
A --+ oo. Then, in some open (in R2) neighbourhood of this solution we have 

[(:F117 + :F2,7) ( 11 1, uz)], 1 + [(F1,1 + :F2,1)( 'LJ, ＧｾｾｺＩｬＮｺ＠ > 0 ( < 0). 

Delow U.,(A , 1J) := (Uvl (>. , 1]), u.,2(/\, IJ)), I/ E {, 0, +}, will denote the solution 
branch such that U_(A,1J)--. (0,0), L'0(/\,17)(y0,y0) and U+ (A, 17) ---. (1 , 1) for 
>. --+ 00. 

c. For all suffi ciently large>. and all u1 E [U_ 1(/\ ,7J),U+1(.A ,7J)], we have 
ｊＮｌｾＨｵ Ｑ Ｉ＠ > 0, v;/u1) > 0. Moreover in all sufficiently small neighbourhoods of the 
points U_(>., 17) and U+ (>. , 17) we have the inequaliti es, t<, > ·u;,. 0 

P r o o f. Adding and subtracting both sides of Egs. (4) we obtain: 

(4') 
:;:,, + :Fz,, = 0, 

C(:F111 - :F2,7) - 2(ul - uz) = 0, 

where e = >.-I. If e = 0 and v 1 anQ u2 satisfy ing the second equation are 
bounded, then they must satisfy the equality u2 = u1• Putting it into the fir st 
equation we infer, according to the definition of F;,1, that it is equivalent to 
the equation F(u1 , 1t1) = 0 i.e. to Eq.(3). Thus, for e = 0, in the rectangle 
[-2r , 1 + 2r] x [-2r, 1 + 2r] there are exactly three solutions equal to (V, V), 
V E {0 , Yo, 1 }. The determinant of the Jacobian of the mapping (R2 ---. R2) 

determined by the left-hand sides of (4') for C = 0 is equal to 2") (17)F,y(y, y)ly=V, 
V E {0, Yo, 1 }. So, according to Assumption 3 it is nonzero. Hence point a follows 
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from the implicit function theorem. The proof of point b foll ows immediately from 
the continuity of the partial derivati ves of :Fi,1. 

Now, difTerentiating both sides of Eqs. (4) with respect to u1 we obtain the 
equalities: 

All the terms in the expression for 11;1 are taken at a point (n1, Jt,1(u1)), and 
in the expression ｦ ｯ ｲ ＧＡ＿ｾ＠ at a point (u1, '!?,1(u1)). Suppose ｴｨ ｡ ｴ ＧＡ＿ｾ ＾＠ ｉ ｌｾ＠ in some 
neighbourhood of U _ (>.., 17) or U + (>.. , 17 ). Then, fo r /\ suffi ciently large, all brackets 
in the expressions above are positive and we would have 

[- :FI 1),I + >..](1LJ , J.L,1(ui))[ .F2,1,2 + /\]( ui,v,7(uJ)) 

- ( :F2q, l + >..J(nJ,'!?,1(uJ))(F l!7,2 + )..](uJ, IL1J(uJ)) < 0. 

Sufficiently close to Uv(>.., 17) (11 = - or v = + ) the difTerence ('!?11(tt 1) - J.L11 (u1 )) 

can be made arbitrarily small . Consequently, for sufficiently large >.., this would 
imply the inequality 

However, according to Assumption 3 and point b of this lemma, this would imply, 
that the left-hand side of the last inequality would be positiv e, which could not 
be true. This proves point c. 0 

LEMMA 2. Let the assumptions of Lemma 1 be fulfill ed. Then for).. sufficiently 
large determinant of the matrix 

(5) 
(.FJ,1.2(v) + /\)k ] l.: - l 

(:F2q.2(u) - /\) 

has the sign opposite to the sign of the expression 

P r o o f. The determinant of. VI is equal to 

Thus, for ).. sufficiently large, we obtain the claim of this lemma. 0 
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4. A priori estimates 

Global properties of heteroclinic solutions. 
According to Lemma 1, especiall y to the proof of point a of that lemma, for 

suilicien tly large >., the solutions U v ( >. , 7J ), v E { - , 0, +} are isolated. To be more 
precise, there exists a number r* > 0 such that in the rectangle 

there are no other solutions to the system ( 4 ). 

LEMMA 3. For sufTciently large >. there exists a constant L * < oo independent 
of the values of B, 1J E [0, 1] and >., such that for all bounded solutions to (l. ry), 
for which u 1 and u2 stay in the rectangle R,1 for all ｾ＠ we have the estimate: 

P r o o f. First, suppose that the function d(O = U t (0 - u2(0 achieves 
a positive maximum (negative minimum) for some ｾ＠ = ( E ( -oo, oo) and that 
(ut((), u2(()) lies in R w Then at this point d' = 0 and d" ::; 0 (2: 0). Hence, due 
to (2), 

(6) ldl :S ryk-t( lkFI - F2l + l(c2 - Ctk)B u21)(1 + 1.:-1
)-

1>.-1
. 

As we assume that the solution is bounded (fo r all times) and u2(0 = 0 for 
Ｑｾ Ｑ＠ = oo, then Bu2 must attain the global maximum somewhere. As d' = 0 impli es 
u! = u2 = w' at the point of extremum, then by means of the fir st equation in 
(2), we can find an upper bound for l(c2- c1k)Bu21· It is not greater than 

After some computations one can prove that the right-hand side of (6) is not 
greater than max{ry, (1 + c1c2 t7J- t) -t } me:oc(2IF't( n)l + 2IP2(u)l + 2ll::S(u)l)>. - 1, 

11 

where the maximum is taken over Hw This expression has a common bound 
independent of 7]. 0 

Dy means of Lemma 3 we can prove: 

LEMMA 4. For sufficiently large >. there exists a number L < oo independent 
of 7J E [0, 1 ], B E ( - oo, oo) and >., such that for all solutions to (1.ry) which (for 
all 0 stay in the rectangle R,1 the estimates ｬ ｵ ｾ＠ I < L, I u21 < L hold. 0 

Proof. Let us consider an arbitrary solution satisfying the above conditions. 
Then there is M such that IFi 11 + ( - l) i >. (u1 - u2) l < M for i = 1, 2 and (tq , u2) E 
R11• Let us note, that due to Lemma 3, l/\ (u1 - n2)l < L*, so !If can also be 
treated as independent of>.. First, let us examine the case: (ctB) 2: 1. Suppose 
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that for some solution I ｵ ｾ＠ I attains a value la rger than AI. Then u'1 and u'{ have 
the same sign and this property is re tained fo r all positive times. Consequently, 
this solutio n will grow exponentiall y, contrary to the boundedness of the solution. 
Hence, lu; I ｾ＠ M . If c1 B ｾ＠ - 1, then changing the directi on of "time" we arrive at 
the equation o f the form: ｵｾ Ｇ＠ = c 1 B u'1 - [ F 111 - A ( u 1 - u2) J, thus fo r all positive times 
ｵｾ＠ and ｵ ｾ＠ have the same sign (as before) and the solution will grow exponentially . 
So, ｬｵｾ＠ I ｾ＠ M . In the same way we can prove that I1L 21 ｾ＠ AI, if lc21JBI ｾ＠ 1. Now, 
let us analyze the case lc1BI ｾ＠ 1. Then for suffi ciently la rge ｬ ｵｾ ｬＬ＠ ｬ ｵｾ ｬ＠ < lu;l + M 
(Remember that IFi'l + ( - 1 )i A( u 1 - u2)l < M). Thus, if ｵｾ＠ (0) = L 1 > 0, then 
ｦｯ ｲ ｾ ＾＠ 0, we would have u;(O > exp(-0[L 1 - M(exp(O - 1)) independently 
of the sign of (c1B). Integrating this inequali ty with respect ｴ ｯｾ＠ over the interval 
(0,1) we obtain that lu1(1) - 1L1(0)1 > L1(1 - e-1)- llf. For L 1 sufficiently 
large, the right-hand side o f this inequality is strictly larger than (U+1(A, 77) -
U _1 (.A. , 77) + 2r* ), which is impossible due to the fact that the solution must lie in 
R'l . If L 1 < 0, the proof is carried out in the same way. Lik ewise the inequality 
lc21JBI ｾ＠ 1 implies the inequalit y I u21 < L2. Consequently lu; I < L, lu21 < L , 
where L = max{Af, L1, L2} . 0 

Let r = (c2k- 1 - cJ), r,) = 1JIFI. If r ｾ＠ 0, let m = 2, ).. (1J) = CJ and 
s = k(1 + k)- 1. If r < 0, then let 1H = 1, \ ('7) = C2,,k-1 and s = (1 + k)- 1. Now, 
the first equation in (2) can be wri tten as: 

(7) 

The next lemma estimates the "possible" values o f B. 

LEMMA 5. There exists >.0 E (0, oo) such that fo r all >. > >.o, 17 E [0 , 1] 
the value of B, fo r which a he tcroclinic solutio n (with nonnegative derivatives) to 
system (l.17) connecting the pain ts U _ ( ,\, 11) and U + (,\, 17) can exist, is positive and 
bounded uniformly from above and below i.e B E (Bo, 01) with 0 < Bo < B1. 0 

Proof. Suppose that, for some B = B(17), (u1 (0, u2(0 ) satisfies (l.ry) . Then 
there is no open interval (comprised in ( - oo, oo )) such for ·i = 1 o r i = 2, 1Li(0 = 
0 ｦｯｲｾ＠ from this interval. For, then ui' = 0, u; = const and F i'l- >.( 1L 1 - 1L2)( - 1 )i - l 
would be equal to 0 in this in terval. Due to Lemma l.c (for >. sufficien tly large) 
the slope of the curve (Fi'l - >.( u1 - 1L2)( - 1 y - l) = 0 is positive and finite, so 
this would imply that Uj = const also, where j is the index complementary to i. 
Consequently this would be a singular poin t. Dut this cannot happen for ＱｾＱ＠ < oo. 

Multipl ying Eq. (7) by w' and integrating with respect ｴ ｯｾ＠ from ( - oo) to (oo) 
we obtain: 

00 00 

(x'l + F1J)B(17) j ｷ Ｇ Ｒ ＨＰ ､ ｾＭ (1 + k)- 1 j (F111 + ｆＲ ｦＩ ＩＨｵ［､ｾ＠ + ku;dO ｾ＠ 0. 
- 00 - 00 

We claim that for .A. sufficiently la rge, the second term at the left-hand side is, 
independently of 17 E [0, 1 ), positive, say, larger than s-1 I (Assumption 4). To 
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prove this, let us consider for example the integral j (F1,1 + ｆＲ Ｌ Ｑ Ｉ ｮ Ｇ Ｑ ､ｾ Ｎ＠ It is equal 

- 00 

to f{F 117(u, ,u2(u1)) + F2,,(1LJ , '112(u,))}rlu, , where u2(u1) = ｵＲＨｾ ＨＱ ｴ ｊＩＩＬ＠ ｾＨ ｵ ＬＩ＠ is 
the inverse of the function 1t1 (0 and the integration is made over the interval 
[U_1(>. , ry) , U+1(>., ry)]. Now, using point a of Lemma 1 (and its proof) and Lemma 
3 we infer, by means of Taylor expansion with respect to (u2(u 1) - u 1), that 

1 

this integral is larger than (1(17) j F(u1)du1- c >.-1), where C is a constant 

0 
independent of>. and 17. The second integral can be esti mated in the same way, 

00 

so, we infer that the claim is true. The integral j w'2(0 ､ｾ＠ can be written as the 
- oo 

integral J w'(w) dw over the interval, which is bounded fo r every TJ. As, due to 
Lemma 4, Jw'(OI < L independently ｯｦｾ＠ E ( - oo, oc) and 17 E [0, 1 ], and (x 11 + 
F,J > 0, then (for all17 E [0, 1]) we infer that O(,J) > 0. Hence inf(B(17)) > Bo > 0. ,, 

To find an upper bound for B(11) let us integrate Eq. (7) from ( -oo) ｴ ｯｾ＠ using 
the fact that w' ｾ＠ 0. We obtain: 

< ( 
2- 1w·2(0 ｾ＠ ,\B(1J) j w'2(0 ｲｬ ｾＭ (1 + k)- 1 j (F 1,1 + ｆＲ Ｌ Ｑ ＩＨ ｵ ｾ＠ ､ｾ＠ + ｬＮＺ ｵ ｾ＠ dO. 

-oo -00 

Now, as before, one can easily prove that fo r >- suffic iently large and all 17 E [0, 1] 
there exists ( E ( - oo, oo) such that ｦ ｯ ｲ ｾ＠ = ( the last term of the above inequality 

y 

(respecting the sign) is positi ve, say, larger than ( - 8- 1 J), where J = mJnJ F(s) ds, 
0 

where minimum is taken over the intetval [0, 1 ]. J is negative due to Assumption 
3. Consequently, there is a point on the trajectory, where 2-1 w'2 ｾ＠ -8- 1 J . Thus, 
at the point of maximum of w' it foll ows from (7) that f:J (17) :::; sup(F 17,(u1, u2)+ 
F217( u 1, u2))2[x1) (J.: + l)JJr ' , where the supremum is taken over u E RT)' The 
right-hand side of this inequality is bounded from above by a number independent 
of 7], let us denote it by f:J 1. Thus, we obtain the claim of the lemma. 0 

5. E igenvalues of the lin earized system 

Belo w Z J and z2 will be vari ables standing f or ｵ ｾ＠ and u2 and z . - (.:-1, z2). 
Equations (l. ry) may be written as the fi rst order system: 

( zJ, Z2,clBz, - F 11J + ,\(ui - ·u2), 

k- 1{c2,/J.:2 - F21J - t\ (u, - u2)}) . 
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It is seen that the zeros of the right-hand side have the fo ll owing form: 

where U(>.., TJ) is a solution to system (4). Thus, for (u1, u2) in the rectangle 
[ -r, 1 + T] x [ - r, 1 + T] and suffic iently large >.. we have exactly three zeros: 
(Uv (>.. , TJ), 0, 0), v E { - , 0, + }. Lin earizing (1.17) around (Uv(>.., 17), 0, 0), 
v E { -, 0, + },we obtain the system: 

(8) I 
ｵｾ＠

u' 2 

z' I 
z' 2 

z, 

U! 

U2 
:= Mv(>.. , TJ) z, 

Z2 

where Mv(>.., TJ) := M(>.. , 17, Uv(>.. , 11)) and A1(,\ , 17, u) is defined in Lemma 2 
by (5). 

L EMMA 6. Let Assumptions 2 and 3 be fulfilled. Then, for all sufficiently large 
>.., () E (0, oo) and all TJ E [0, 1], the matri x M v(,\ , 17), v E { -, + },has four real 
eigenvalues. Two of them are positive and two of them are negative. 0 

The proof of this lemma will be sketched in Appendix I3. I t is easy to note 
that the eigenvector corresponding to the eigenvalue q of the matrix ilfv(,\ , TJ), 
v E {-,0, +} has the form Ｈ ｾ Ｑ ＬＶＬＨ Ｑ ＬＨ Ｒ ＩＬ＠ where(; = ｱｾ ｩ Ｌ＠ i = 1, 2. (See [1] p.335.) 

LEMMA 7. Let Assumptions 2 and 3 be fulfi ll ed. Then, for all suffic iently large 
>.., () E (0, oo) and all 17 E [0, 1], the matrix M 0(>.., tJ) has one negative, one positive 
eigenvalue and two complex conjugate eigenvalues with positive real parts. The 
components ｾ＠ t. 6 of the eigenvector corresponding to the negative eigenvalue 
satisfy the condition ＶｾＡ Ｑ＠ < 0. 0 

The proof o f this Lemma 7 will be given in Appendix I3. 

6. I solati ng neighbourhood dur ing continuati on 

In this section we construct an 17-family of compact subsets N3(,J), such that for 
each TJ E [0, l] N3(7J) is an isolating neighbourhood fo r the now generated by the 
fir st order system corresponding to (1.17). Every \ '3('7) consists of a parall elepiped 

plus "small " neighbourhoods of the singular points, which we want to connect 
(N (17)), minus a small neighbourhood of the remaining singular point N3(0 , "'• TJ). 
This point can be excised according to Lemma 7 and the Lemma in 4.D in [1 ]. 
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Let us denote: 

Ft1J(ui,uz) - A(ui- uz) := Ht(A ,1],Ut,'lLz), 

Fz1J(ul , uz) + A(tq - uz) := 1tz(A, ry , u1, 1tz). 

As the proofs carried out below are the same for all 17 E [0 , 1] and all sufficiently 
large A, then, to simplify notation, when there will be no danger of confusion, we 
will write 1ti(0 instead of1t;(A, 17, Ut(O, uz(O). 

According to Lemma 1 for fixed 77 and A (sufficiently large), the zero sets 
of 7-(.1 and H2 near the points U_ (A, ry ) := (U_1,U_2)(A , 77) and U+ (A,ry) := 
( U + 1, U + 2)( A, 77) have the graph like that in Fig. 1. 

I 
FIG. 1. 

LEMMA 8. There exist smooth functions E2vC'tJ), such that for 17 E [0, 1], v E 
{ -, +}, {J E (0, 1] and all sufficiently small ..J 1 > 0, the set 

N(b,ry,v, iJ.I) := {( 1t,z): l·ul-Uvl(/\,17)1 ｾ＠ b.:1t , lu2 -Uv2(A ,17)I ｾ＠ biJ.2v(17), 

I z; I < L, i = 1, 2}, 

where L12v(77) = iJ.1c2v(17) is an isolating neighbourhood. 0 

By means of Lemma 9 it may be proved that (Uv, 0, 0) is the maximal invariant 
set in N(b, ry, v, iJ.1), but we do not use this fact explicit ly belowe. 

Pro o f of Lemma 8. According to point c of Lemma 1 we have ｾ ｴＺ Ｑ Ｈ ｵ ｴＩ＠ > 
ＧＡＹｾ Ｈ ｵ Ｑ Ｉ＠ for u1 E {U_ 1(A, 17), U+1(A , 17)}. Thus, for all sufficiently small iJ.1 > 0, we 
can find a smooth function c2v(17) such that, if ..J2v(17) = E2v(7J).:1t, then the curve 
7-(.1 = 0 intersects the upper and lower side of the rectangle ltLJ - Uv tl ｾ＠ {JiJ.I> 
lu2- Uv2l ｾ＠ bi12v(17) and the curve H2 = 0 intersects the right and left side of this 
rectangle. 7-(.2 < 0 (> 0) at the upper (lower) side and H 1 < 0 (> 0) at its right 
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(left) side. Bounded solutions of the considered family of equations (according 
to Lemma 4) cannot touch the sets lzil = L. They can only touch the boundary 
of this neighbourhood at points whose projection onto the (u1, u2)-plane are 
contained in the sides of the considered rectangle (for fixed 8). However, this is 
impossible. Suppose for example, that u2 has a maximum at the upper side of this 
rectangle. Then z2(() = 0 and z2(() :S 0 for some ( E ( -oo, oo ). Simultaneously 
z2(0 = - 7-l2((). This contradicts the fact that H2 < 0 at that side. The remaining 
cases may be analyzed simil arly. 0 

Let 

Nl(TJ) := {CuJ,U2, ZJ,Z2): u_i (A ,rJ) :s 'tlj :s U+; (A ,rJ), 0 :s Zj :s L, i = 1,2}, 

where L is the number appearing in L emma 4. Then, let: 

N(8,ry) := ｎ Ｈ ＸＬｲｹＬ Ｍ Ｌ ＮｴｾｱＩＩ＠ u N (8, r1, + , L1 1), 

where Ll 1 is fixed and so small that 1\' ( 8, 17, v, .c.l 1 ) , v E {-, +}, is an isolating 
neighbourhood of the point (Uv(>., 17), 0, 0) and 

N3(0, , , ry) := { (<LJ , u2, z1, .:2): ltLJ- Uo J(>. , rJ)I + lz1 l < "-, 

I u 2 - u 02 C >. , TJ) I + I z2l < "'} , 

where "' is a sufficiently small positive number. Finall y, le t 

N 2 ( 8, TJ) : = N 1 ( 17) U N ( 8, 17), 

l\3(8, 77) := /\'2(8, r1)\N3(0. "- , '1) , 

N2('7) := N2(l , rJ) , 

i\'3 (11) := .t\'3(1, 71)· 

For any compact set Z comprised in rlze phase space S ( Z ) will denote the maximal 
invariant set comprised in Z . 

LEMMA 9. Suppose that Assumptions 1-4 are fulfill ed. Then, for suffi c iently 
small"'> 0 and all ryE [0, 1], the set l\ 3(ry) is an isolating neighbourhood for the 
fl ow determined by (l. r7). Furthermore, we have: 

1. S(N2(r7)) = S(NI (r7)). 
2. For any B E [Bo , BJ] 

S(N3(r7)) = {singular points u (perhaps) connecting trajectories} . 0 

P r o o f. First, let us note that the following lemma is vali d: 

LEMMA 10. S(N1(r7))nDN1(r7) consists only of singular points belonging to N 1. 0 

The proof of this lemma is given in Appendix C. 
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Let N2(0, r;) := n{N2(8, 17) : 8 E (0, 1]} . Arguing as in the proof of Lemma 
Sec. 4. in [1] let us note that 

N2(0, r;)\N,(17) = { (-u , , u2, z,, z2) : ( tq, 112) = Uv(.A, 17), 

v E { - , + }, l=d, l=2l < L, z, < 0 or z2 < 0 }. 

Trajectories through the points belonging to this set leave the set N2(0) in ap-
propriate direction. So, if S(N2W', 17)) :f S(N1 (tJ)) fo r some 8* E (0, 1], then 
there must exist 8 E (0, 8* ] such that S(N2(8, 17)) n DN2(8, 17) comprises a point 
not belonging to S(N 1(r; )). The set DN2(8, 17) may be divided into three parts: 
&N(8, r; )\N1(r; ), &N1(r; )\N(8, r;) and D V1(17) n DN(8, 17). In Lemma 8 and the 
fir st part of proof of Lemma 10 (Appendix C) we showed that the in tersection 
of S(N2(8, r;)) with 8N(8, 17)\N1(17 ) and DN1(tl )\N (8, 17) is eiter empty or belongs 
to N1• Thus, it suffices to show the foll owing statement: 

LEMMA 11. S(N2(8, r;)) n DN1(17) n Dl\"(8, 17) = 0 for all 8 E (0, 1]. 0 
The proof of this lemma is given in Appendix C. 
In view of this lemma, point 1 of Lemma 9 is proved. 
Now, due to Assumption 3, Lemma 2 and Lemma 7 we infer that the set 

of points on trajectories comprised in S(i\'2(b, 17)) = S(N 1 ('tJ)) tending to the 
point Uo(.A , 17) as ｾ＠ -> oo is empty. Thus, according to Lemma in Sec. 4.D, for "' 
sufficiently small N3(0, K, 17) can be excised from A2(8, 17), 8 E (0, 1], 17 E [0, 1]. It 
foll ows that N3(17) is a good isolati ng neighbourhood. Point 2 of Lemma 9 fo ll ows 
straightforwardly from the definiti on of i\'1 (tJ). 0 

7. Connection index for ry = 0 and exis tence proof 

Now, for 7J E [0, 1 ], let 

ｳ ｾ＠ := (U_(.>., 77),0, 0) x [00, ol] , 

Let SI') denote the maximal invariant set in the set N3(tl) x [00 , /JI] wit h respect 
to the fl ow generated by (1.17) together with the equation 01 = 0. Due to the 
results of the above sections, the connection triples (S0. S0, So) and (S;, ｓ ｾ

Ｑ
Ｌ＠ S1) 

are related by continuation. l3y Theorem in Sec. 2.D o f [1] these triples have the 
same (homotopic) connection indices. According to the definition (see [1] and the 
Appendix A) , the connection index of the triple (S0, S0, So) is the Conley index 
of N3(0) x [00, 01] with respect to the flow generated by Eqs. (1.0) (by which we 
mean (l.17) with ry = 0) wri tten as a fir st order system, i.e. the system: 

I 
U t = Z [ , 

I 
u2 = Z2, 

zi - c10.:1 + Fs- ,\ ( n t - 1t2) = 0, 
ｫｺｾ Ｍ Ctf.:0.:-2 + Fs + .A ( tt t - 112) = 0, 
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together with the equation 

where {3 is a sufficiently small positive parameter. Let U' and U" denote open 
neighbourhoods in R4 x (Bo - E,B1 + c) of S'(Bo) u S'(B1) and S"(Bo) u S"(B1), 

respectively, having disjoint closures. The real-valued continuous function cp is 
arbitrary except for the fact that it is positive in U' and negative in U" (see 
Definition A.4 of the Appendix A). 

To analyze the connection index for the above system it is convenient to change 
the dependent variables, namely to consider the system: 

(9.a) 

(9.b) Ll1 = Z.j , 

(9.c) 

where 

and 

The transformation (a1, 1t2,z1,z2,B) __,. ＨｷＬｾＬｺ ｷ Ｌ ｺ Ｎｪ Ｌ ･ Ｉ＠ is a lin ear homeo-
morphism which transforms N3(0) x [Bo, 81] to a compact set; let us write it as 
NwL> x [Bo, BI]. The set of exit points are transformed into the set of exit points, 
so the invariant set comprised in N w.:1 x [Bo, BJ] has the same Conley index as the 
invariant set contained in JV3(0) x [80, BI]. Let us denote: 

p := { (w, _:_1 , Zw , Z.J): ｾ＠ = 0, Z _j = 0}. 

LEMMA 12. For >. > 0 the set S(N w..:l x [Bo , BI]) is comprised m the set 
P x [Bo , BI] 0 

P r o o f. For any finite values of f) all nonconstant trajectories of solutions 
to system (9.b) lie either on stable o r unstable manifold of the singular point 
(0, 0, 0, 0), so it leaves NwL> in positive or negative " time" direction. 0 
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So, in variables (w, Ll , zw, zLl, B) the sets S0 and S0 are contained in P x 
[Bo, BI]. Moreover, without losing generalit y we may assume that the function 
<PLl (w, Ll, zw, zLl ) is constant with respect to (....l , .:.J) in some open neighbourhood 
of the plane P. It is clear that the set [( lU Zu )nNw..1] x [Bo, BJ] , where Zu is 

xENw.:.nP 

the set of points of a plane perpendicular toP at x (in (w, .d, zw, z..1)-space) and 
whose distance from P is not greater than£, is a good iso lating neighbourhood of 
the considered invariant set. Moreover, according to the robustness of the Conley 
index theory for sufficiently small (positive) £, the set 

where J is the subset of NwLl n P, such tha t Zxe: is completely comprised in NwL1 
for x E J, retains this property only if € is taken sufficiently small. 

Obviously this set can be written as a Cartesian product 

N* := Nw X N & X [Bo, BI] := Nw X { (_j, .:.J) : dist [( ....l , .:...1), (0, 0)] :S €} x [Bo, BJ] , 

where Nw is equivalent to :1 (defined in terms of w and zw)· Note, that the 
system consisting of (9.a) and (9.c) does not depend, for suffi ciently small c, 
on Ll. According to this fact the trajectories belonging to the invariant set do 
not change, if the second equation in (9.b) is replaced by any of the famil y of 
･ｱｵ｡ｴｩｯｮｳ ｺ ｾＭ｡｣ Ｑ ｂ ｺ ｌｬＭＨＱ Ｋ ｫ Ｍ Ｑ Ｉ Ｎ｜ＮＮＮＮｬ＠ = O,where o. E [0, l] . Thus,foralla E [0, 1], 
the set N* is a good isolating neighbourhood and we can replace (9.b) by 

(10) Ll' = ZL1 , 

In this way the system for (....l, z.J) is completely decoupled from the rest of the 
system as the equations of (9.a) and (9.c) do no t depend on (....l, z..1). Due to the 
known properti es, the Conley index of N · is homotopic to h..1 1\ hwo, where h..1 
is the Conley index of N Lltc with respect to (1 0) and hwo is the Conley index of 
Nw x [Bo, BI] with respect to the fl ow generated by (9.a), (9.c). 

Now, according to A ssumptions 2-4 there exists Bs E (B0, B1) such tha t (9.a) 
has a heteroclinic solution connecting the poin ts (w, .:w) = (0, 0) and (w, zw) = 
(1 , 0). Let T1 denote the trajectory of (9.a) fo r B = BS, crossing the zw axis at 
a point, say (0, J ). Let Be E (0, Bo) be so small that for B = Be the eigenvalues 
of the lin earization matrix of the sytem (9.a) at ( w0 , 0) are complex conjugate 
(and have positiv e real part). Let 12 denote a (connected) segment of the spiral 
trajectory of (9.a) with B = Be which li es in the halfplane z 2:: 0 suffi ciently close 
to (wo, 0). One can see that (without changing the Conley index) Nw x [Bo, BI] can 
be deformed to the region bounded by T1, T2, the lines w = - w , w = 1 + w, w > 0 
small, the boundaries of small diamonds consisting o f the points (1, 0) and (0, 0) 
and the line zw = 0 as it is done in [1 ]. (During the deformation the invariant 
trajectory, if it exists, does no t touch the boundary of the deformed region). Thus 
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the Conley index of Nw x [Bo, Bt] with respect to the fl ow generated by (9.a), (9.c) 
can be computed to be homotopic to 0. Consequently, the connection index of 
N* i.e. hLl /\ 0 ｾ＠ E 1 /\ 0 ｾ＠ 0. On the other hand, according to the results of 
Sec. 5, for any TJ E [0, 1], the singular points (U+(,\ , 17), 0, 0) and (U_(A, 17), 0, 0) 
are isolated invariant sets and the Conley index of them is homotopic to E 2• As 
(E 1 /\ E2) v E2 = E3 v E2 is not in the homotopy class of 0, then according to 
Theorem in Ses.2.F of [1], it follows that s;us; f 51. Consequently in view of 
Lemma 9 point 2 we infer (by Jetting j3 -+ 0) that the following theorem is true: 

THEOREM. Let Assumptions 1-4 be satisfied. Then there exists B• E (Bo, Bt] such 
that for B = B* and all sufficiently large A > 0, there exists a heteroclinic solution to 
system (1.1) connecting the constant states U_(A, 1) and U+ (A , 1). 0 

8. Discussion 

It is possibl e to estimate the minimal value of A which is sufficient to prove 
existence of a heteroclinic solution to the system (1.1 ), which was rather imposs-
ible in the method chosen in [5]. An example of such an estimation will be given 
below. It is worthwhile to note, that this value of A depends only on the functions 
Fi and their fir st derivatives. Especially, as one could foresee, this value does not 
depend on the other coefficients i.e. k, c1, c2. Finally, let us stress that from the 
mathematical point of view Assumpti on 4 is not necessary. This condition, which 
refl ects the physical situati on described by the system (0), was assumed only for 
definiteness. 

Th see, how the minimal value of A can be estimated, let us take for example 
a quite realistic situation, when F2 = 0 and F1 = F(u1) (which corresponds to 
the assumption that the energy is gained and radiated out only by the electron 
component). 

LEMMA 13. For F2 = 0 the solutions to system ( 4) are independent of TJ. 0 

P r o o f. The system ( 4) takes the form: 

- A.d + 17F(tt1) + (1 - 17)Fs(w) = 0, 

,\_j + (1 - 1))Fs(w) = 0, 

where L1 = (u1 - u2) and w = (u1 + ktt2)(1 + k)-1• We have F(u1) = F5 (w) + 
F'( w* )k(k + 1)-1..:1, where w* E [u1,w]. Suppose that, for a fix ed 17 E [0, 1], this 
system has a solution (u1, u2), for which -.l f 0. Multiplying the second equation 
by (1 - TJF' ( w* )k( k + 1 )- 1 A -I) and adding it to the first one we obtain an equation 
[1 + (1 - 17)(1- TJF'(w*)k(k + 1)- 1A- 1]Ps = 0. Consequently, for A sufficiently 
large Fs = 0, and from the second equation we infer that .d = 0. 0 

To find the estimation we will verify in turn all the conditions imposed on A 
in the text above. 
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First, the positiveness o f the determinant at Uv, t/ E {, - , + }, its negativeness 
at Uo and the conditions (-,\(u1 - u2) + 11F + (1 - ＱｊＩ ｬ ｾ Ｉ Ｎ ｺ＠ > 0, (A('u1- 7t2) + 
k(l - ry)Fs),1 > 0 (which were necessary in the proof of Lemmas 7 and 10) are 

guaranteed by A > F := max IF'(u)l. 
uE[O, lj 

Now, according to the proof of Lemma 3, lu1 - ttzl is a pri01i smaller than 

Let 

d = 6A - I ( max IF'(a)l) := 6A - I Fm . 
uE[O, lj 

1 

j F(u)du = I > 0, 
0 

u j 

min j F( n)du = J = jF( u)clu < 0. 
uE[O,lj 

0 0 

We have 
00 

I:= (1 + k)- 1 j (F JT1 + Fz,1)(u; ｣ｬ ｾ Ｋ＠ ku; dO 
- oo 

(X) 

= (1 + k)- 1 j [17F'( u1) + 2(1 - Ｑ ｊＩｉ ｾ Ｈ ｷ Ｉ｝Ｈ ｮ ［＠ ｣ｬｾ Ｋ＠ ku; dO 
-oo 

1 1 

= 2(1 - 17) j F(w) rl w + (1 + 1.:)-1 ry j F(ut) clu1 

0 0 

+ (1 + W 1 
'I Ll fo'( u,)ku2 dE + _l F' ( u • )dku2 d(} , 

where u" (O E [Ut (0, uz(O ]. 
The sum of the fir st three terms is equal to [2- 17] I and the module o f last 

term is estimated by the number i\ Lk = 6/\ - I ｦＧ ｉＭ ｾｮ ﾷ＠ Thus, fo r A > 6F F,J - 1 the 
integral I is la rger than 0. Li kewise, we can a priori estimate the minimum over 
ｾ＠ of the integral 

< 
.:7(0 := (1 + 1.:)- 1 j (F t11 + Fz,J(u'1 ｲｬ ｾ＠ + k u2 rLO. 

- oo 

So, acting as before we can wri te .:J as: 
w (O 1'1(0 

2(1- 17)) j F (w)dw + (1 + /..:)- 1
11 j F(.-)ds 

0 0 

{ 

u2(0 ｵ ｾＨｏ＠ } 

+(l+ k)-
1

17 I ｆ Ｈ ｵ ｺＩ ｫｵ Ｒ ､ｾ Ｋ＠ I ｆ ＧＨ ｵＢ Ｉ｛ ｵｺ Ｈｏ Ｍ ｵ ｴＨＰ｝ ｨ Ｒ､ｾ Ｌ＠

where u*(O E [u1 (0, ttz(OJ. 
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Let us choose ( in such a way that u1(0 = j . T hen, ] can be estimated from 
above by: 

2(1-1J)J + ry(1 + 1.: )- l (1 + I.:)J + 2(1- 1J)dFm + 1)(1 + k) - l k { Fmd + F d(j + d)} 

= [2 -ry]J + [2(1- 17) + 1)(1 + k)- 1k] F111d + Fdk1)(1 + k)- 1(j + d). 

As the trajectory must stay in the rectangle [0, 1] x [0, 1 ], then (j + d) ::; 1 and ] 
is small er than zero if 

T his condition is sati sfi ed for 

The right-hand side of this inequali ty is small er than ＶＱ ｾ ＱＱ Ｈ ｆ ＱＱＱ＠ + F)IJI- 1, inde-
pendently of 1J and 1.:. Putting everythi ng together we can say that the he teroclinic 
trajectory for some finite () = B* > 0 exists if only 

.A > ｭ ｡ｸ ｻ ｆ Ｌ Ｖ Ｑ ﾷｭ ｕ ｾ ｮ＠ + F)IJI-1, 61,;) 31-1
} . 

As IJI < Fm, I < Fm, then 

In a general case the evaluation can be carried out in principle in the same way, 
though it would be a litt le bit more laborious. 

Appendix A 

Let us recall the basic facts of the co nnection triple theory taken from [1] 
(see also [2, 3]) , which are used to prove existence of beteroclinic o rbits. Suppose 
that we are given a system o f n fir st order o rd inaty difTerential equations (in R11

) 

parametrized (continuously) by a parameter () belonging to some nonempty closed 
interval [B0, BI] . Let X = Rn x [B0, Bt] . Let 5'', S" and S be iso lated invariant sets 
for the fl ow on X determined by this famil y of equations and let S'(B), S"(B), 
5(B) be the set o f points in 5'', S" , S wit h parameter value B. 

D EFIN ITI ON A.1. The triple S', S". S is call ed a connection triple tf the following 
conditions are satisfied: 

a. S' u 5" c S, 
b. S' n 5" = 0, 
c. for B = Bo and B = B1, 5 (8) = S''(B) U S'" (B). 0 
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Now, suppose that we are given a family of local flows on a space X parametr-
ized in a continuous way by a parameter 17 E [0 , 1 ]. Suppose that So and S1 are 
isolated invariant sets for the flows on X corresponding to 17 = 0 and 11 = 1. 

D EFINITI ON A.2. We say that So and S1 are related by continuation, 1jthere exists 
a compact set N in the space X x [0, 1] such that N ,1 (i.e. the set of points in N 
with parameter value 7]) is an isolating neighbourhood and such that No and N 1 are 
isolating neighbourhoods for So and S 1, respectively. 0 

DEFINITON A.3. Suppose that for each 1] E [0, 1] there exist compact sets N', 
N", N such that ｎｾＬ＠ ｎ ｾＬ＠ N 11 are isolating neighbourhoods for the isolated invariant 
sets ｓｾ＠ ｓｾ＠ and S,.,, respectively. Suppose then, that for each 17 E [0, 1] (S:, s:;, ST)) 
is a connection !lip/e. Then, we say that the triples (S0, S0, So) and (Si , Si', S 1) are 
related by continuation. 0 

With a connection triple an index h(S', S", S) may be connected. Its definition 
may be found for instance in [1] (see Lemma, p. 325). 

DEFINITION A.4. Let (S' , S " , S) be a connection triple for a family of differential 
equations on Rn parametrized by B in the inten ·al [Bo, BI]. /lssume the equations are 
defined for B E ( Bo - £ , Bt + £ ) for some £ > 0 (this is no real restri ction - they 
can be extended to such an interval). Let U' and U" be open neighbourhoods in 
Rn x (Bo- £, B1 + c) of S'(Oo) u S'(B1) and S"(Oo) U S"(B 1) (re!>pectively); choose 
these to have disjoint closures. Let <P be a continuous real-valued function on Rn 
which is positive on U' and negative U". /lppend to the given family of equations the 
equation 0' = JI<P(x )[B- 2- 1 (Bo + B1 )]. where J1 is a small positive parameter. Let N 
be a compact neighbourhood in Rn x ( Oo - £, 01 + £) such that N (B) is an isolating 
neighbourhood of S(B) for each B. Then, there is a PO > 0 such that if J1 E (0, Jto) 
then N is an isolating neighbourhood for the "enlarged !>ystem ". Let hJ.L be the index 
of S(N). J1 E (0, Jto). Then hJ.L is independem of f l. and in fact depends only on the 
triple (S', S", S). o 

Now, let us assume (as it is in our case) that for every B E [0, 1] S' (B), S"(B) 
are fixed hyperbolic singular points and their indices a re constant. Let us denote 
them by h' and h", respectively. Now, if there was no connection be tween S' and 
S", then due to point b of D efinition A.l , and Definition A.4 we would have 
h(S' , S" , S) = ＨＲｾ Ｇ Ｑ＠ 1\ h') V h", where h' and h" are the Conley indices of S'(B) 
and S"(B), B E [Bo, Bi] . So, if h(S', S" , S) 'f Ｈ ｾ Ｑ＠ 1\ h' ) v h", then S 'f S' U 5'". 

The final theorem necessary for our proof is stated in [1] Sectio n D p. 326. 

PROPOSITION. The index of a connection tri ple is constant on equivalence 
classes under the continuation relatio n. 0 

Appendix B 

In this appendix we prove Lemmas 6 and 7 concerning the eigenvalues of the 
tinearized system. 
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Let us fix .X, ry and v and denote for simplicity: 

M := Mv(.X, 17) := [: ｾ＠ l, 
Let Ｈｾ Ｑ ＬＶ Ｌ Ｈ Ｑ Ｌ Ｈ Ｒ Ｉ＠ be the eigenvector of lii corresponding to an eigenvalue q of 
M. As we mentioned in Sec. 5, it follows from the structure of .M(.X, ry) and 
considerations in [1] p. 335 that Ｈｾ＠ 1, 6 , ( 1, ( 2) and q are coupled simultaneously 
by the following three relations: 

(i = ｱｾｩ＠ ' i = 1, 2, 

(B.l) q = 2-1t ± J '4-- Ｍ ｾｌ Ｍ Ｒ＠ Ｍ ｟ Ｍ Ｈ ｟ ｡｟ Ｋ ｟｢ｾＭＲＭｾｬＭ Ｑ Ｍ Ｉ＠ , 

q = 2- 1Tt ± j4-1(Tl)2 - (d + ｣ｾｺＭ Ｑ ｾＱＩ Ｎ＠

The eigenvalues of A/(.X , 17) are the roots of the equation: 

(B.2) det(M) + q( -ell - atT) + (/(a + d + t2T) + l( -l - tT) + q4 = 0. 

Using this fact we can prove the following lemma. 

LEM MA B.l. Suppose that deLvt ::f 0, a < 0, d < 0, l > 0, tT > 0. Then the 
real part of the eigenvalues of M is dif ferent from 0. 0 

P r o o f. As we have noticed, these eigcnvalues are given by the roots of 
Eq. (B.2). It is obvious that 0 is not a solution of it. So, suppose that there is a 
pair of eigenvalues q1, q2 such that q1 = i L, q2 = - i L, L ::f 0. Substituting in 
(B.2) first q = iL and next q = - i L and subtracting the obtained equations, we 
arrive at the equation 2iLI( - aT - d + (1 + T) L2) = 0. However, according to 
the assumptions of the lemma we infer that the expression in the bracket is not 
equal to zero. 0 

Now, let us note that according to Lemma 2 and Assumption 3 for sufficiently 
large .X the following conditions are fulfilled (independently of 7J E [0, 1]): 

(B.3) det(M) ::f 0, t > 0, tT > 0, a < 0, d < 0, be > 0. 

P r o o f of Lemma 6. Let us note that, if we put v E {-, +} in the definition 
of M, then, due to Assumption 3, Lemma 1 and Lemma 2, det(M) > 0 for suf-
ficiently large .X (independently of 17 E [0, 1 ]). Lemma 6 follows straightfonvardly 
from the following more general lemma. 

L EMMA B.2 Assume (B.3) and tha t det(;vt) > 0. Then the matrix M(.X, ry) has 
four real eigenvalues. lWo o f them are positi ve and two are negative. Moreover, 
ＶｾＡ Ｑ＠ > 0 only fo r one of the positive and one of the negative eigenvalues. 0 
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Proof. The condition det(/vt) > 0 implies that either a2-li > 0 or d2-c2 > 
0 (or both). However, as one can easily see by renumbering the components of 
u, we may always assume that the first one is satisfied, i.e. (a2 - &2) > 0. 

As a starting point of our analysis we will take the situation characterized by 
the equalities: T = 1, a = d, v = c. In this case (D.2) takes the form: 

(-a-b- q2 + ql)( - a + b- r/ + ql) = 0. 

As (a2 - b2) > 0, then this equation has four real solutions: 

ql± = r 1 (t ± J -4a - 4b + 12 ) , fJ2± = 2- 1 (t ± J -4a + 4b + t2) . 

1\vo of them are positive and two are negative. 
For f2 E [0, 1] let us make the following deformation: 

(D.4) 
a(Q) =a, d(g) =a+ (d- a)g, b(Q) = b, 

c(g) = b + (c- b)g, T(e) = 1 + (T - l)g. 

Then we have: 

(D.5) det(M(g)) = (1 - g)det(.,vt(O)) + odet(-vt(1)). 

Thus, it follows that the deformed coefficients retain assumptions (D.3). For sim-
plicity we will omit the explicit dependence of c, d and T on o, if it does not 
cause confusion. 

Now, as band c (= c(g)) are both nonzero, then, according to relations (D.1) 
and to the structure of eigenvectors, we can assume that ( 1 is nonzero (the ratio 
6()1 must stay fin ite). Thus without losing generality we can assume for definite-
ness that ( 1 = 1 and the eigenvector corresponding to an eigcnvalue q has the 
form (1, 6 , q, q6). So (D.1) can be written as: 

q = r 1t ± J4- 1t2 - (o + &6)' 

q = 2-1'Ft ± J 4- 1('f't)2 - (d + ｣ｾＺＲ Ｑ Ｉ Ｎ＠
(D.6) 

Now, it can be easily proved that during the above deformation (with respect 
to f2) the eigenvalues of M stay real (and according to Lemma 8 two of them 
are positi ve). For f2 = 0 the eigenvectors of .\/ take the form {1, 1, q1±, fJt±} , 

{1 ,-l ,rn±,q2±}, where fJ I± = 2- 1(1 ± v'-4a - 4b+L2) and fJ2± = 2-1(t ± 
J - 4a + 4b + t 2) . (Remind that we have set ( 1 = 1 for defin iteness). 

As 6 never becomes 0, then its sign will not change during the deformation. 
The proof of Lemmat D.2 is thus completed. 0 

P r o o f of Lemma 7. Let us note, that, if we put v = 0 in the definition 
of M , then, due to Assumpti on 3, Lemma 1 and Lemma 2, det(M ) < 0 fo r 
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suffic iently large >. (independently of 17 E [0, 1 ]). In this proof we will also use 
the fact that for suffici ently large >. both u and c are posit ive. Note, that during 
the deformation (13.4 ), the condition det(}vt (g)) < 0 retains its validi ty according 
to (13.5). Using arguments as in the proof of Lemma 6 we may assume without 
losing generality that (u2 - &2) < 0. According to Lemma 13.1, the eigenvalues of 
M cannnot cross the imaginary axis. The number of eigenvalues with positive or 
negative real parts is constant during the deformation. As (a + u )(a- u) < 0, then 
one of these factors is positi ve and the other is negative. Thus for {! = 0 there 
exists only one eigenvalue with negative real part and three ones with Re q > 0. 
As b and c are posit ive, then the sign of ｾ Ｒ＠ fo r negative eigenvalue is the same 
as its sign for 12 = 0, as it cannot become 0 (see the proof of Lemma 6). As 
(a- b) < (a + u) and (a - u) < 0, then, for (} = 0 the negative eigenvalue is equal 
to q = z-1(t - V 4a + 4& + t2 ) . Comparing it with (13.6)1 we obtain the claim of 
the lemma. 0 

Appendix C 

P r o o f of Lemma 10. To prove Lemma 10 we will show that a trajectory 
in the closure of N1 cannot touch DIV1 and then return to its interior unless at 
singular points. As, according to Lemma 4, all bounded solutions of our system 
have its derivatives estimated in their absolute value by a common fin ite constant, 
then it suffices to examine the following cases: 

1. Ui (() = U_i (>. , 17) or 1Li(() = U+i(,\ , 17) fo r some ( E (-oo,oo). 

a. Let .=;(() f. 0. Then the trajectory leaves .\" 1 immediately. 

b. Let z;(() = 0. Due to Lemma 1, 11:
1 

and ｶｾ＠ cannot achieve nonpositiv e 
values, so the lines 711 = 0, 712 = 0 cannot intersect the sides N1(17) n {(u 1,u2)} 
except at the singular points. Moreover, at the upper (lower) side of this rectangle 
we have 712 < 0 (> 0) and at the right (left) side H 1 < 0 (> 0), except fo r the 
singular points. The proof that such a trajecto1y leaves N 1 (17) if it does not reach 
singular points is carried out as in Lemma 8. 

2. z; (() = 0 for some ( E (oo, oo). 

a. Let Z:(() f. 0. Then the trajecto1y leaves .\'1 immediately. 

b. Let zi(() = 0. Then also [ - Fi,1 + A(u 1 - u2)(- 1Y- 1J(() = 0. Let j denote 
the index complementary to i . Then one obtains by di!Terentiation: 

Thus, if >. > 0 is suffic iently large (larger than nondiagonal entries of the matrix 
F;11,j ) and Zj (() > 0, then zi'(() < 0, so that near this point Zi < 0 and the 
trajectory li es outside N 1• Now, let us assume that z1(() = 0. The trajectory 
leaves N 1 (in appropri ate direction), unless zj (() = 0. Then, however, we would 
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have also [ -Fjl) + .A(u1 - u2)(-1)i - 1](() = 0, so this point would be a singular 
point. 0 

P r o o f of Lemma 11. First, let us note that D N 1 ( 11) consists of the following 
sets: 

{z; = 0} n N1(·q), 

{ u; = U_;(.A, 17)} n N 1(17), 

{ z; = L} n N 1 ( '7 ), 

{u; = U+; (.A , '7)} n N1(17), 

i E {1, 2}. The second pair of sets cannot comprise points lying on bounded 
trajectories. The first one intersecting DN(8, 17) gives us eight sets, namely: 

{z; = 0, Ut - U_t(.A,7J) = 8.d1, 0 ｾ＠ Zj < L}, 

{z; = 0, U2- u_2(.A , 77) = 8.d_2(1J), 0 ｾ＠ Zj < L} 

{z; = 0, U]- u +J(A ,1J) = 8Llt, 0 ｾ＠ Zj < L}, 

{z; = 0, 1L2- u+2(A ,1J) = 8....l+2(7J), 0 ｾ＠ Zj < L} , 

where i E {1 , 2} and j is the index complementary to i and v E { -,+}.Below, 
we will show that a trajectory touching one o f the above sets cannot belong to 
S(N2(8, 77)), i.e. it leaves N2(8, 17) when continued in appropriate direction. Let 
us consider particular cases. 

1. u1(0- U+ 1 = -8.d1 for some ( E ( -oo, oo). If z1 (() = 0, then we arrive at 
the case analyzed in Lemma 8. So, let us suppose that .::1 (() > 0 and z2(() = 0. 
We can distinguish the three possibili ties: 

a. 112(() < 0, z2(() = - 112(() > 0. Then, for decreasing " times" the trajectory 
leaves N(8, 77) (as tL 1 decreases) and /1.' 1('7) (as .::2 becomes negative). 

b. 112(() > 0, z2(() = -712(() < 0, so 112 achieves a maximum. Consider 
increasing " times". Then z2 becomes negative and never achieves the value 0 
again while staying in N ( 8, 1J ) . For, suppose to the contrary, that there exists 
(t E ((, oo], such that z2((1) = 0 and z2CO < 0 ｦｯｲｾ＠ E ((,(1). Then z2((1) 2:: 0. 
But, simultaneously z2((1) = - H2((1) < 0, as the curve H2 = 0 li es above the 
starting point P1 (see Fig. 2) and it has positive slope in N (8, 17). The trajectory 
can reach the curve 712 = 0 only outside N(b, 'J). 13ut leaving .1\'(6, 17) would imply 
leaving also N1 (17), as z2(0 < 0 ｦｯｲｾ＠ < (. 

c. 712(0 = 0. Then z2(() = - H2.I (0.::1 < 0. Thus, for increasing "time:>" this 
case is the same as case b. 

2. u1(()- U_1 = 8Ll1 for some ( E (- oo,oo). Tf .::1(() = 0, then we arrive at 
the case considered in Lemma 8. So, let us suppose that .:: 1(() > 0 and z2(() = 0. 
As before, some particular cases are to be distinguished: 

a. 112(() > 0, z2(0 = - 712(0 < 0. Then for increasing " times" z2 bei:omes 
negative and the trajectory " immediately" leaves N(b, ''l) ('u1 grows) and N1(17) 
(z2 decreases). 
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b. 1i2(() < 0, z2(() = -1i2(() > 0, so u2 achieves a minimum. Consider 
decreasing "times". Then z2 becomes negative and never achieves the value 0 
again while staying in N(o, 17). For, suppose to the contrary, that there exists 
(1 E [ -oo, (), such that z2((I) = 0 and z2(0 < 0 ｦｯｲ ｾ＠ E ((I,(). Then z2((I) :::; 0. 
But, simultaneously z2((1) = -1i2((1) > 0, as the curve 1i2 = 0 li es below the 
starting point P2 (see F ig.2) and it has positive slope in N (8,1J). The trajectory 
can reach the curve 1t2 = 0 only outside N(o, 17). But leaving N (o, 1J) would imply 
leaving also N 1(7J), as z2CO < 0 ｦｯｲｾ ＼ＨＮ＠

c. 1i2(() = 0, z2(() = -1i2,1z1 < 0. Thus for increasing "t imes" this case is 
the same as case a. 

3. The remaining cases are considered similarl y. 

Now, the intersection o f the sets: { u; = U _;(A , 17)} n N1 (17), { u; = U +i (.A , 1J)} n 
N1(17) with fJN(o, 1J) gives us the foll owing sets: 

{u1 - U_1(A,17) = 8L1t , 1t2 = U_2(,\ ,1J), 0 :S ::k < L , k = 1,2}, 

{u2 - u_2(A , 1J) = 8.!1_2, UJ = u_ ,(A ,1J), 0 :::; Zk < L , k = 1,2} , 

{u 1 - u+,(A ,17) = -o.d,, u2 = u+2(A,17), o :::; zk < L, k = 1,2}, 

{u2- u+2(.A,1J) = -oL1+2, u, = u+,(A , 7J), o :::; zk < L , k = 1,2}. 

Let us take, for example, the fir st set. Let us look at the projection of the 
trajectory onto the ( u1 , 1t2)-space. This p rojection starts at the point 

As 'H1 Ｈｾ ｳ Ｉ＠ > 0, then, z1 (0 > 0 fo r all ｾ＠ < ｾ ｳ＠ suffi ciently close to ｾ ｳﾷ＠ (If z, Ｈ ｾｳＩ＠ = 0, 
then zi Ｈｾ ｳ Ｉ＠ < 0.) So that the bad.-ward trajectory could stay in the set N _ (o, 1J) u 
N1(7J), for sufficiently ｳ ｭ ｡ ｬｬ ｾ ＼＠ ｾ ｳ＠ we should have ｺ ｾＨｏ＠ < 0 i.e. z1(C) = 0 and 
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z1 (C) = - H 1 (C ) 2:: 0 for some C < (s- Such a situation could happen only 
below the curve H 1 = 0 (or just on it). However, the trajectory arriving at the 
curve H1 = 0 must come below the curve H 2 = 0, fir st. But, below that cu1ve we 
would have z2 2:: 0, due to the fact that z2 ;;::; 0 impli es .:-2 ;;::; - H 2 < 0 (we consider 
the backward trajectory). Consequently, the projection of the backward trajectory 
must cross the boundary of N_(8,17) at the point not belonging to DN1(17). Thus 
this trajectory does not stay in N2(8, ''7) (see Fig. 1). 

The proof that the trajectory (in appropriate time direction) starting at a point 
belonging to the other three of the sets written down below does not stay in the 
set N2(8, ry), is carried out almost verbatim in the same way as above. So, the 
proof of Lemma 11 is completed. 0 
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