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Travelling waves in laser sustained plasma
Constant coefficient case

B. KAZMIERCZAK (WARSZAWA)

WE UsE the Conley index theory to prove existence of travelling waves to a system of partial
differential equations describing a two-temperature model of plasma sustained by a laser beam.
These waves connect two asymptotic state of gas: a cold one and a hot partially ionized one.

1. Introduction

THE AIM OF THIS PAPER is to prove the existence of travelling wave solution to
the equations of a two-temperature model describing the laser-sustained plasma
(see system (0)). The problem was positively solved by means of the implicit
function theorem in [5] under the condition of sufficiently large values of the
coupling parameter. This time we use the technique of Conley connection index
theory (see [1, 2, 3, 4]). It seems interesting to compare these two methods. For
simplicity, we consider the case of constant transport coeflicients. The case of
variable transport coefficients will be considered in the subsequent paper.

The evolution of temperatures 77 and 75 of electrons and heavy particles
(i.e.atoms and ions) in plasma sustained by a laser beam under a constant pressure
p are described by the following equations (see [5] and references therein):

0
(JE +v -grad) 1

d ad) ¢
(m + v-gra ) (]
Here k; are effective heat conductivity coeflicients, ¢; their effective heat capac-
ities per unit volume. Fy, F3 are nonlinear source functions. The term (77 —T2)W
describes collisional energy exchange betweeen electrons and heavy particles. WV is
proportional to the frequency of electron-heavy particle collisions. This frequency
tends to infinity as p — oc. So, we can write W(p; 1, 12) = A(p)WV (11, 12), where
A is a real parameter, A\(p) — oo as p — oc. The functions k; > 0, ¢; > 0, Fj,
i € {1,2}, and W > 0 depend in general on 7 and 75. However, for simplicity
of presentation we will assume that k;, ¢;, and 1V are constant. The dependence
on 77 and 7T, will be retained only in nonlinear source terms F} and F5.
By looking for solutions in the form of a travelling wave, that is by making a
substitution:

div (k) grad T7) + I — (T} — T))W,

©)
div (ko grad 73) + 15 — (Ty — To)W.

Ti(x,t) = uy(x-n + xt), To(x,1) = uz(x +n + xt),
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870 B. KAZMIERCZAK

where n € R? can be interpreted as the direction of propagation and x as a speed
of the wave, we are led to a system of ordinary differential equations of the form:

kruf — e 0uy + Fy(u) + AW (u; — up) = 0,
kouy — ea0us + Fo(u) + MV (1 — up) = 0,
where ' := d/d§€, € ;= x-n+ xt, 0 := (x +v-n) and u := (u, w). It is obvious that
by changing the scale of the independent variable and redefining the constants
¢1, ¢z and A we may obtain a simpler (but less symmetric) form of this system:
uf — ejfu) + Fy(u) — Muy —up) = 0,
kufy — efuly + Fyp(u) + AMuy —up) = 0.

(1.1)

The roots of the corresponding algebraic system

Filu) - As — w2) = 0,
F(u) + Muy — up) = 0,

are called constant states for (1.1). So, we are interested in solutions defined for
all ¢ € R whose derivatives vanish at +oo and such that (uy(€), u2(€)) tends to
different constant states as & + oo. Such solutions are called heteroclinics. For a
given A such solutions can exist only for certain values of the parameter 6. (The
problem considered is a sort of a nonlinear eigenvalue problem). Thus it makes
sense to speak of heteroclinic triples (0, uy, u3) satisfying Eqs. (1.1). Our aim is
to prove existence of a heteroclinic connecting appropriate constant states of
Eqgs. (1.1). These constant states can be interpreted as the two states of gas: the
cold incoming one (at —oo) and the partially ionized hot one (at o). The existence
theorem is stated in Theorem at the end of Sec. 7.
To analyze heteroclinic connections for Eqs. (1.1) we will consider the follow-
ing family of systems:
uf — c1fu] + Fr, — Mg — ug) = 0,
(L.m) " -
kuy — e, 0us + Fay + AM(ug — ug) = 0,

where 7 € [0, 1] and

e, = c1k(1 —n) + nea,

Fip i= Fs + 9(F — Fy), Foy 1= Fy + n(F, — Fy),

Fy(ui,ug) 1= (F+ B) (U 4+ B)7" (uy + kug), (14 K) (g + k)

When we denote w := (1 + k)~ '(u; + kuy), d := u; — uz, add and subtract the
both sides of Egs. (1.7), we obtain the system:

w” — 0w’ +2(1 + k)7 Ey(w, w)
(2) + (1 + k)" + Fy = 2F, — (c3 — e1k)8ub) = 0,
d" = c10d — (1 + k™D + pk™V (kFy = Fy + (c3 — e1k)fub) = 0.
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TRAVELLING WAVES IN LASER SUSTAINED PLASMA. CONSTANT COEFFICIENT CASE 871

Sections 2-5 have a preparatory character. Section 2 contains the assumptions
imposed on the coefficients of system (1.1). In Sec.3 we examine properties of
constant states of system (1.7), and especially their behaviour for large A. In Sec. 4
we prove a priori estimates for first derivatives of the solutions to (1.n) provided
they are contained in a certain bounded region of (u;, uz)-space and prove that
the set of 6, for which a heteroclinic orbit can exist is comprised in some bounded
open interval (8, 6;), where 0 < #y < ¢;. Such estimations are necessary, because
we want an isolating neighbourhood to be a compact subset of the phase space.
In Sec.5 we examine the eigenvalues and eigenvectors of the system linearized at
its singular points. In Sec. 6 we construct an 7-family of compact subsets of the
phase space such that:

1) they are continuously varying with 7,

2) each of them is an isolating neighbourhood with respect to the flow gener-
ated by Egs. (1.7).

For 1 = 0 the system (1.7) has almost a “classical” structure and is relatively
easy to analyze. Then, using the invariance of the connection index under con-
tinuation relation we can analyze existence of heteroclinics for the system (1.1).
We did it in Sec.7. For reader’s convenience we have collected the necessary
statements of the connection index theory taken from [1] in the Appendix A.

2. Assumptions

AssUMPTION 1. All the considered functions are of €% class. o

AssumPTION 2. The constants &, ¢; and ¢, are positive. 0

AssumpTION 3. In the interval [-27,1 + 27], 7 > 0, the equation
(3) F(y,y) = Fi(y,y) + I2(y,y) = 0

has exactly three solutions 0, 1 and yp € (0, 1) such that ,(0,0) < 0, F,,(1,1) < 0
and F (v, y0) > 0. 5

1
ASSUMPTION 4. fF(y,y) dy:=1>0. 4
0

3. Constant states during continuation

First of all, we will examine the behaviour of constant states for (1.5) i.e.
solutions to the algebraic system:

Fry(ur, ug) = Muy — ug) = 0,
}-21;(”11“2) + /\(111 — “2) = 0’

while the parameter 7 changes in the interval [0, 1].

()
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872 B. KAZMIERCZAK

REMARK. Let us note that the functions F,,, F,, satisfy the relation
(Fig + F2)ly, v) = F(y, y)r (),

where y(n) =2 -1n. 4

To begin with, we will characterize the properties of the solutions to the system
(4) with respect to the solutions of Eq. (3). First, it is easy to note, by means of
the implicit function theorem, that for sufficiently large A and u; € [-27,1 + 27]
the equations f[,,(ul, uz) — AM(u; — uz) = 0 and fz,l(lt], u) + Mug —up) = 0
are uniquely solvable with respect to u3. The solutions to these equations will be
denoted below respectively by uy = p1,,(u;) and up = 9, (uy).

Below, F;,, ; will denote the partial derivative of F, with respect to u;.

LEMMA 1.

a. For all n € [0,1] and sufficiently large A > 0, the system (4) has exactly
three solution pairs (uy, u2)(A, ) such that both u; and u belong to the interval
[=7,1+ 7] and such that for A — oc they tend to appropriate solutions of Eq. (3).

b. Let V' belong to the set {0, yp, 1} of solutions to Eq.(3) and let £, (V) =
[(F1 + F2)(y, ¥)] 4jy=v > 0 (< 0) in some open neighbourhood of V' in R'.

Let (u1,u2)(A, n) be this branch of solutions to (4) which tends to (V, V) as
A — oo. Then, in some open (in /2?) neighbourhood of this solution we have

[(]:ln e -7:21;)(“1- “2)].1 + [(flr) o }—211)(“1~ “2)].2 >0 (< 0)

Below U,(A, ) := (U,1(N, 1), Ua(N, ), v € {,0, +}, will denote the solution
branch such that U_(A, ) — (0,0), Ug(A, )(vo, v0) and Us(A,n) — (1,1) for
A — o0.

c. For all sufficiently large A and all v; € [U_i(\,n),Us1(A, )], we have
iy (u1) > 0, 5 (uy) > 0. Moreover in all sufficiently small neighbourhoods of the
points U_(A,7) and U+ (A, 1) we have the inequalities, u), > 0. 4

P ro o f. Adding and subtracting both sides of Egs. (4) we obtain:

.771” + .7'—2,, = [

(4"
{(Fiy — Fay) — 2(ug — ug) = 0,

where ¢ = AL If ¢ = 0 and u; ang u, satisfying the second equation are
bounded, then they must satisfy the equality u; = wu;. Putting it into the first
equation we infer, according to the definition of F;,, that it is equivalent to
the equation F(uy,u;) = 0 ie. to Eq.(3). Thus, for £ = 0, in the rectangle
[-27,1 4+ 27] x [-27,1 + 27] there are exactly three solutions equal to (V,V),
V € {0,y0,1}. The determinant of the Jacobian of the mapping (R* — R?)
determined by the left-hand sides of (4') for ( = 0 is equal to 2y()) F ,(y. ¥)|y=v,
V € {0, 49, 1}. So, according to Assumption 3 it is nonzero. Hence point a follows
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TRAVELLING WAVES IN LASER SUSTAINED PLASMA. CONSTANT COEFFICIENT CASE 873

from the implicit function theorem. The proof of point b follows immediately from
the continuity of the partial derivatives of #;,,.

Now, differentiating both sides of Egs.(4) with respect to u; we obtain the
equalities:

Ii; = (_}—ln,l * )‘)(}-17),2 + ’\)—1’ U’y} = (‘FZI],I %+ A)("—-7[:-2@,2 e o /\)dl'
All the terms in the expression for yu; are taken at a point (uy, s, (u)), and
in the expression for J; at a point (uy, ¥, (u;)). Suppose that 95 > p; in some

neighbourhood of U_(A, ) or U4 (A, n). Then, for A sufficiently large, all brackets
in the expressions above are positive and we would have

[=Fig1 + A(wr, g (u))[Foy 2 + A(ur, 05 (uy))
—[Fap1 + Al(ur, 9y (un))[Fry 2 + A(ui, py(ur)) < 0.

Sufficiently close to U,(\,7) (v = — or v = +) the difference (J,,(u1) — u,(u1))
can be made arbitrarily small. Consequently, for sufliciently large A, this would
imply the inequality

—/\[(}—h7 + .7:2,1)‘1 5 (f],, =t fg,l)yg](lﬂ,(/\. 1)) < 0.
However, according to Assumption 3 and point b of this lemma, this would imply,

that the left-hand side of the last inequality would be positive, which could not
be true. This proves point ¢.

LemMma 2. Let the assumptions of Lemma 1 be fulfilled. Then for A sufficiently
large determinant of the matrix

(Fipa(uw) — Dk (Fryae) + Ak -

5 M(A,n,u) =
©) M@, m,w) (F2pa(w) +A) - (Fz2(u) = A)

has the sign opposite to the sign of the expression
[(Fry + Fap)(ur, uz)] oy + [(Fry + Fop)(wr, )] 2
P ro o f. The determinant of M is equal to
(FinaFag2 = Fig2F20,1) = MFry1 + Faga + Frgp + Fag1)-

Thus, for A sufficiently large, we obtain the claim of this lemma.
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4. A priori estimates

Global properties of heteroclinic solutions.

According to Lemma 1, especially to the proof of point a of that lemma, for
sufficiently large ), the solutions U, (A, n), v € {—,0, +} are isolated. To be more
precise, there exists a number 7 > 0 such that in the rectangle

Ry = {(ug,u2) : w € [U—i(N\,n) =77, Upi(M\,p)+77], i=12}

there are no other solutions to the system (4).

LemMA 3. For suffciently large A there exists a constant L* < oo independent
of the values of 6, n € [0,1] and A, such that for all bounded solutions to (1.7),
for which u; and wu; stay in the rectangle R, for all £ we have the estimate:

lur = wzllco < ()7'L7. g

P r o o f. First, suppose that the function d(£) = u;(£) — ua(€) achieves
a positive maximum (negative minimum) for some £ = ( € (—o0,o0) and that
(u1(€), u2(¢)) lies in R,. Then at this point ¢’ = 0 and ¢” < 0 (> 0). Hence, due
to (2),

(6) ld| < nk~Y(|kFy = F3| + |(c2 — e k)Oub))(1 + k1)~ IA1

As we assume that the solution is bounded (for all times) and u5(¢) = 0 for
|€] = oo, then fus must attain the global maximum somewhere. As d’ = 0 implies
u}y = vy = w' at the point of extremum, then by means of the first equation in
(2), we can find an upper bound for [(c; — ¢;k)0u5|. Tt is not greater than

[(eq = e1k)((2 = 20)Fs + nFy + nI2)(ep + e + ek — ('17]L:)_l|.

After some computations one can prove that the right-hand side of (6) is not
greater than max{n, (1 + c;c5 'y~ 1)1} max(2| ()] + 2| Fp(u)] + 2| Fy(u))A1,
where the maximum is taken over [¢,. This expression has a common bound
independent of 7.

By means of Lemma 3 we can prove:

LemMA 4. For sufficiently large A there exists a number L < oc independent
of n € [0,1], € (—o0,¢) and A, such that for all solutions to (1.n) which (for
all £) stay in the rectangle R, the estimates |u}| < L, |uj| < L hold. 4

Proof. Let us consider an arbitrary solution satisfying the above conditions.
Then there is M such that | F;, 4+ (=1)'A(uy —uz)| < M fori = 1,2 and (uy,u;) €
R,. Let us note, that due to Lemma 3, [A(u; — u2)| < L*, so M can also be
treated as independent of A. First, let us examine the case: (¢;0) > 1. Suppose
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that for some solution |u}| attains a value larger than M. Then uj and u{ have
the same sign and this property is retained for all positive times. Consequently,
this solution will grow exponentially, contrary to the boundedness of the solution.
Hence, |u}| < M. If ¢;6 < —1, then changing the direction of “time” we arrive at
the equation of the form: u{ = ¢,0u} —[F},, — A(uy —uz)], thus for all positive times
u} and u} have the same sign (as before) and the solution will grow exponentially.
So, |uj| £ M. In the same way we can prove that |u5| < M, if |c2,0| > 1. Now,
let us analyze the case |c;0| < 1. Then for sufficiently large |u}l, |uf] < |uj| + M
(Remember that |7, + (=1)'A(uy — up)| < M). Thus, if «j(0) = Ly > 0, then
for £ > 0, we would have u}(£) > exp(—&)[L; — M (exp(§) — 1)] independently
of the sign of (¢;#). Integrating this inequality with respect to £ over the interval
(0,1) we obtain that |uj(1) — u1(0)] > Ly(1 — e™') — M. For L sufficiently
large, the right-hand side of this inequality is strictly larger than (Us1(A,n) —
U_1(A, n) + 27*), which is impossible due to the fact that the solution must lie in
R,. If L; < 0, the proof is carried out in the same way. Likewise the inequality
le2,8] < 1 implies the inequality |u}| < L,. Consequently [u}| < L, |uy| < L,
where L = max{M, L, Lp}.

Let I' = (k™' —¢y), I, = |l IE T > 0, let m = 2, x(n) = ¢, and
s=k(1+k)"L.If I <0, thenlet m =1, \(17) = c2,k~ ! and s = (1 +k)~!. Now,
the first equation in (2) can be written as:

7 w” - \an' - ()f'rpsu' + (1 + ‘I")_l {f"f L fz”} =0.

m

The next lemma estimates the “possible” values of 6.

LEMMA 5. There exists \g € (0,c0) such that for all A > Ag, € [0,1]
the value of 8, for which a heteroclinic solution (with nonnegative derivatives) to
system (1.77) connecting the points U_(A, ) and U4 (A, ) can exist, is positive and
bounded uniformly from above and below i.e # € (#y,6;) with 0 < by < 0;. 4

P ro o f. Suppose that, for some 8 = (), (u;(£), u2(£)) satisfies (1.n). Then
there is no open interval (comprised in (—oo, o)) such fori = 1ori = 2, u}(§) =
0 for ¢ from this interval. For, then «/ = 0, u; = const and F;;, — A(u; —uz)(—1)""!
would be equal to 0 in this interval. Due to Lemma 1.c (for A sufficiently large)
the slope of the curve (i, — Mup — w2)(—1)"') = 0 is positive and finite, so
this would imply that u; = const also, where j is the index complementary to i.
Consequently this would be a singular point. But this cannot happen for [{| < occ.

Multiplying Eq. (7) by w’ and integrating with respect to £ from (—o0) to (o)
we obtain:

o0

(o + 1)) [ w(E)de = 1+ 07 [ (Fiy + Fa)(udde + kuyde) 2 0.

—00

We claim that for A sufficiently large, the second term at the left-hand side is,
independently of 7 € [0, 1], positive, say, larger than 8~'1 (Assumption 4). To
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o0
prove this, let us consider for example the integral f (F1y + Fauidé. Ttis equal

to [{F1,(u1, ua(uy)) + Fo,(uy, ua(uy))}duy, where ua(uy) = ua(€(uy)), £(uy) is
the inverse of the function u(§) and the integration is made over the interval
[U_1(A, 1), Us1(A, n)]. Now, using point a of Lemma 1 (and its proof) and Lemma
3 we infer, by means of Taylor expansion with respect to (uz(u;) — up), that

1

this integral is larger than (7(:])/1?(1:1)([(11 — C'A7Y), where C is a constant
0

independent of A and 7. The second integral can be estimated in the same way,

so, we infer that the claim is true. The integral f w'(€) d€ can be written as the
integral [ w'(w)dw over the interval, which is bounded for every 7. As, due to
Lemma 4, |w'(§)| < L independently of £ € (—o0,oc) and 7 € [0,1], and (x,, +
I';) > 0, then (for all 5 € [0, 1]) we infer that (1)) > 0. Hence inf(6(7)) > 6p > 0.
7

To find an upper bound for 8(1)) let us integrate Eq. (7) from (—oc) to € using

the fact that w’ > 0. We obtain:
4 ¢

2_1w‘2(§) > x8(y) ] w'z(f) dé — (1 + l.')_l '/‘(]:1,', + F,)(u) d€ + kuj dE).

Now, as before, one can easily prove that for A sufficiently large and all 5 € [0, 1]

there exists ( € (—o00, 00) such that for £ = ( the last term of the above inequality
Y

respecting the sign) is positive, say, larger than (-8~1.J), where J = min [ F(s) ds,
P g 8 P y, farg ’

0
where minimum is taken over the interval [0, 1]. J is negative due to Assumption

3. Consequently, there is a point on the trajectory, where 2~ 1w > —8~1J. Thus,
at the point of maximum of w’ it follows from (7) that 6() < sup(F1,(u1, uz)+
Fon(uy,ug))2[xn(k + 1)W/J]7!, where the supremum is taken over u € R,. The
right-hand side of this inequality is bounded from above by a number independent
of 7, let us denote it by #,. Thus, we obtain the claim of the lemma.

5. Eigenvalues of the linearized system

Below zy and z will be variables standing for v\ and u5 and z := (z1,2).
Equations (1.77) may be written as the first order system:

’ {i ’ ’
(uy,us, 21, 23) = (31,32,(.'1(131 — Fip + Alug — up),

™Y ep, 020 = Fapy — Muy — uz)})‘
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It is seen that the zeros of the right-hand side have the following form:

(u1,u2, 21, 22) = (U(A, 1),0,0),

where U(A,7n) is a solution to system (4). Thus, for (u;,uz) in the rectangle
[-7,1 + 7] x [-7,1 + 7] and sufficiently large A we have exactly three zeros:
U,(A,1),0,0), v € {—,0,+}. Linearizing (1.n) around (U,(A,7),0,0),
v € {—,0,+}, we obtain the system:

uj 0 0 1 0 uy u
(8) ‘u’z _ 0 0 0 1 w2l M(M 1) u2 ,

2] M (A 77) Cl() 0 21 2]

zé i 0 Cz,,(}k_l 23 22

where M, (A, ) := M\ 1,UL(\, 7)) and M(\,7,u) is defined in Lemma 2
by (5).

LemmMa 6. Let Assumptions 2 and 3 be fulfilled. Then, for all sufficiently large
A 8 € (0,) and all n € [0,1], the matrix M,(\,n), v € {—, +}, has four real
eigenvalues. Two of them are positive and two of them are negative. 5

The proof of this lemma will be sketched in Appendix B. It is easy to note
that the eigenvector corresponding to the eigenvalue ¢ of the matrix M, (A, 7n),
v € {—,0, +} has the form (¢, &2, (1, (2), where ; = ¢&;, i = 1,2. (See [1] p.335.)

LemmAa 7. Let Assumptions 2 and 3 be fulfilled. Then, for all sufficiently large
A, 8 € (0,00) and all 5 € [0, 1], the matrix Ay(\, 1) has one negative, one positive
eigenvalue and two complex conjugate eigenvalues with positive real parts. The
components &1, & of the eigenvector corresponding to the negative eigenvalue
satisfy the condition 525[' <0.

The proof of this Lemma 7 will be given in Appendix B.

6. Isolating neighbourhood during continuation

In this section we construct an 7-family of compact subsets N3(7), such that for
each n € [0,1]N3(7) is an isolating neighbourhood for the flow generated by the
first order system corresponding to (1.7). Every N3(y) consists of a parallelepiped

Ny = {(uua,z102) 0 Uoi(Aun) < wi € UsiAm), 0< % < L, i = 1,2},
plus “small” neighbourhoods of the singular points, which we want to connect

(N (1)), minus a small neighbourhood of the remaining singular point N3(0, «, ).
This point can be excised according to Lemma 7 and the Lemma in 4.D in [1].
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Let us denote:

Fig(ug, uz) — AMuy — up) := Hi(A, 1, uy, uz),
Fop(ur, uz) + Muy — uz) := Ha(A, n, uy, up).

As the proofs carried out below are the same for all € [0, 1] and all sufficiently
large A, then, to simplify notation, when there will be no danger of confusion, we
will write H,;(€) instead of H,;(\, n, u1(£), ua(§)).

According to Lemma 1 for fixed n and A (sufficiently large), the zero sets
of H; and H; near the points U_(A,7n) := (U_1,U_2)(A\,n) and Us(A,7n) =
(Us1,U+2)(A, 1) have the graph like that in Fig. 1.

o0
/
/

xl >0
|~
=0
.;\’2 <0 / // xz
//’/l
///
/‘//
///
~ ,/
/
/
/
/
Fig. 1.

Lemma 8. There exist smooth functions ¢2,(7), such that for 5 € [0,1], » €
{-,+}, 6 € (0,1] and all sufficiently small 2; > 0, the set

NG, v, A= {(u2) t Jur=Un (A 0)| < 621, Jua—Usa (A m)| < 822, (n),
|5l < L, i = 1,2},

where A;,() = Aie2,(n) is an isolating neighbourhood.

By means of Lemma 9 it may be proved that (U,,0,0) is the maximal invariant
set in N (6, n,v,A;), but we do not use this fact explicitly belowe.

Proof of Lemma 8. According to point ¢ of Lemma 1 we have u},(u;) >
) (uy) for ug € {U_1(A, 1), Us1(A,n)}. Thus, for all sufficiently small Ay > 0, we
can find a smooth function £,,(7) such that, if A9,(;) = 2,(1)A, then the curve
H, = 0 intersects the upper and lower side of the rectangle |u; — U,y| € 64y,
|ug —U,z| < 6A,,(n) and the curve H, = 0 intersects the right and left side of this
rectangle. Ha < 0 (> 0) at the upper (lower) side and H; < 0 (> 0) at its right
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(left) side. Bounded solutions of the considered family of equations (according
to Lemma 4) cannot touch the sets |z;| = L. They can only touch the boundary
of this neighbourhood at points whose projection onto the (uy,u;)-plane are
contained in the sides of the considered rectangle (for fixed ¢). However, this is
impossible. Suppose for example, that u; has a maximum at the upper side of this
rectangle. Then 2,(¢) = 0 and z3(¢) < 0 for some ¢ € (—o0, ). Simultaneously
25(¢) = —H2(¢). This contradicts the fact that H, < 0 at that side. The remaining
cases may be analyzed similarly.
Let

Mi(m) = {1, w2, 21, 2) 1 UiQom) S wi S Uwihm), 0< <L, i=1,2},
where L is the number appearing in Lemma 4. Then, let:
N(@,n):= N(6,n,—, A1) U N(6,n,+,4y),

where A, is fived and so small that N(é,7,v, 2), v € {—,+}, is an isolating
neighbourhood of the point (U, (A, 7),0,0) and

N3(0,k,7) := {(111,‘112,:1.:2) ¢y = UM 9)| + |21] < &,
Juz = Uoa(\, m)| + |22 < K},
where « is a sufficiently small positive number. Finally, let

Na(6,7m) :
N3(é,7) :

Ni(n) U N(6,7), Na(n) := Na(1, ),
Na(6, )\ N3(0, 5, 17),  N3(n) := N3(1,7).

For any compact set Z comprised in the phase space S(Z) will denote the maximal
invariant set comprised in Z.

LemMA 9. Suppose that Assumptions 1-4 are fulfilled. Then, for sufficiently
small x > 0 and all n € [0, 1], the set N3(5) is an isolating neighbourhood for the
flow determined by (1.7). Furthermore, we have:

L S(Na(m) = S(N1(1)).
2. For any 8 € [0y, 6,]

S(N3(n)) = {singular points U (perhaps) connecting trajectories}.

P roof. First, let us note that the following lemma is valid:
Lemma 10. S(N1(n))NdN1(n7) consists only of singular points belonging to Ny.
The proof of this lemma is given in Appendix C.
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Let N2(0,7) := N{Ny(é,7) : 6 € (0,1]}. Arguing as in the proof of Lemma
Sec.4. in [1] let us note that

N0, )\ Ni(n) = {(ul, ug, 21,22) 1 (uy,uz) = U, (A, n),
ve{-,+}, |al, |2l <L, 21<0 or 2 <0}.

Trajectories through the points belonging to this set leave the set N(0) in ap-
propriate direction. So, if S(N2(6%, 7)) # S(N1(n)) for some é* € (0, 1], then
there must exist 6 € (0,6%] such that S(N,(8, 1)) N IN,(6,7) comprises a point
not belonging to S(N(7)). The set dN,(é,17) may be divided into three parts:
IN (6, )\ N1(n), IN\(m)\N (6, n) and ON () N IN(é,7). In Lemma 8 and the
first part of proof of Lemma 10 (Appendix C) we showed that the intersection
of S(Na(é,n)) with AN (6, )\ N1(5) and ON(y)\ N (6, 1) is eiter empty or belongs
to Ny. Thus, it suffices to show the following statement:

LemMa 11. S(N2(8, 7)) NIN1(n) N IN(é,m) = 0 for all 6 € (0,1]. 4

The proof of this lemma is given in Appendix C.

In view of this lemma, point 1 of Lemma 9 is proved.

Now, due to Assumption 3, Lemma 2 and Lemma 7 we infer that the set
of points on trajectories comprised in S(N2(6,7)) = S(Ni(n)) tending to the
point Up(A,n) as £ — oo is empty. Thus, according to Lemma in Sec.4.D, for &
sufficiently smalil N3(0, &, 7) can be excised from N,(8,1), 6 € (0,1], 5 € [0,1]. Tt
follows that N3(7) is a good isolating neighbourhood. Point 2 of Lemma 9 follows
straightforwardly from the definition of Ny(1). 4

7. Connection index for » = 0 and existence proof

Now, for 7 € [0, 1], let
1= (U_ (A, 7),0,0) x [60.6,], 7= (U+(A,1),0,0) x [6p, 61].

Let 5, denote the maximal invariant set in the set N3(y) x [0g, 0;] with respect
to the flow generated by (1.77) together with the equation ¢ = 0. Due to the
results of the above sections, the connection triples (57, 53, So) and (57, 57, 51)
are related by continuation. By Theorem in Sec.2.D of [1] these triples have the
same (homotopic) connection indices. According to the definition (see [1] and the
Appendix A), the connection index of the triple (5, 5, So) is the Conley index
of N3(0) x [0y, 0;] with respect to the flow generated by Egs. (1.0) (by which we
mean (1.7) with n = 0) written as a first order system, i.e. the system:

“’1 =z,

11’2 = f
21— ez + Fy — Mup — up) = 0,
kzy — e1hlzy + Fs + Muy — ug) = 0,
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together with the equation
0" = B(u, u')(O - 2716 + 6,)),

where § is a sufficiently small positive parameter. Let U’ and U” denote open
neighbourhoods in R* x (6y — ¢,0; + ¢) of S'(0p) U S'(61) and S"(8y) U S"(61),
respectively, having disjoint closures. The real-valued continuous function ¢ is
arbitrary except for the fact that it is positive in U" and negative in U” (see
Definition A.4 of the Appendix A).

To analyze the connection index for the above system it is convenient to change
the dependent variables, namely to consider the system:

(9.a) w =2,z -0z, + 201 + k) (w) = 0;
(9.b) Al = gy, 2y —efza — (1 +E7H)AA = 0;
(9.c) 0 = B, (e — 5N, 4 91)) ,

where

(w, A, z2y,24) = [(1 + 1) Yy + kuy), uyp — w2, (1+ /.')_l(:l + kz), 21 — ::2]

and
¢a(w, A, ', A" = ¢(u(w, A), ' (2, 24)).

The transformation (up, ug, z1, 22,6) — (w, A, z,,24,60) is a linear homeo-
morphism which transforms N3(0) x [6p,6;] to a compact set; let us write it as
Nya X [60,61]. The set of exit points are transformed into the set of exit points,
so the invariant set comprised in N, x [0, #;] has the same Conley index as the
invariant set contained in N3(0) x [6p, ¢1]. Let us denote:

Pi={{w,A,zyy24): A=0, za =0}

LemmAa 12. For A > 0 the set S(NV,a x [0g,61]) is comprised in the set
P x [0o,61] 4

P r o o f. For any finite values of  all nonconstant trajectories of solutions

to system (9.b) lie either on stable or unstable manifold of the singular point
(0,0,0,0), so it leaves N, in positive or negative “time” direction. 5
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So, in variables (w, A, z,,z4,0) the sets S) and S are contained in P x
[fo, 81]. Moreover, without losing generality we may assume that the function
da(w, A, z,, 24) is constant with respect to (A, z4) in some open neighbourhood
of the plane P. Itis clear thattheset[( U  Z,.)NN,a]x[0g, 0], where Z,. is

2ENwanp
the set of points of a plane perpendicular to P at z (in (w, 4, z,, z4)-space) and
whose distance from P is not greater than ¢, is a good isolating neighbourhood of
the considered invariant set. Moreover, according to the robustness of the Conley
index theory for sufficiently small (positive) ¢, the set

(U, Zs2) x [60, 1],

where 7 is the subset of N,,4 N P, such that Z,.. is completely comprised in N,
for z € 7, retains this property only if ¢ is taken sufficiently small.
Obviously this set can be written as a Cartesian product

N* 1= Ny X Njs X[Ho,gl] = Ny X {(_\ za): dist [(J :'_\), (0,0)} = E} X [00,91],

where N, is equivalent to 7 (defined in terms of w and z,). Note, that the
system consisting of (9.a) and (9.c) does not depend, for sufficiently small &,
on A. According to this fact the trajectories belonging to the invariant set do
not change, if the second equation in (9.b) is replaced by any of the family of
equations z/y —ac10z4— (1+k~1)AA = 0, where a € [0,1]. Thus, for all « € [0, 1],
the set N~ is a good isolating neighbourhood and we can replace (9.b) by

10 A =z, - (14 E~Haa = 0.
A

In this way the system for (4, z,) is completely decoupled from the rest of the
system as the equations of (9.a) and (9.c) do not depend on (A, z4). Due to the
known properties, the Conley index of N* is homotopic to ha A hyg, where hy
is the Conley index of N . with respect to (10) and h,, is the Conley index of
Ny X [6p,6,] with respect to the flow generated by (9.a), (9.¢).

Now, according to Assumptions 2—4 there exists 6° € (6p, 6;) such that (9.a)
has a heteroclinic solution connecting the points (w, z,) = (0,0) and (w, z,) =
(1,0). Let T} denote the trajectory of (9.a) for # = 6, crossing the z,, axis at
a point, say (0,1). Let 8. € (0,0y) be so small that for § = 6. the eigenvalues
of the linearization matrix of the sytem (9.a) at (wg,0) are complex conjugate
(and have positive real part). Let 75 denote a (connected) segment of the spiral
trajectory of (9.a) with § = 6. which lies in the halfplane =z > 0 sufficiently close
to (wp, 0). One can see that (without changing the Conley index) N,, x[6g, ;] can
be deformed to the region bounded by 71, 15, the lines w = —w, w = 1+w,w > 0
small, the boundaries of small diamonds consisting of the points (1,0) and (0, 0)
and the line z,, = 0 as it is done in [1]. (During the deformation the invariant
trajectory, if it exists, does not touch the boundary of the deformed region). Thus
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the Conley index of N, x [fp, #,] with respect to the flow generated by (9.a), (9.c)
can be computed to be homotopic to 0. Consequently, the connection index of
N*ie. han0 = L' A0 = 0. On the other hand, according to the results of
Sec. 5, for any n € [0, 1], the singular points (U+(A,7),0,0) and (U-(A,7),0,0)
are isolated invariant sets and the Conley index of them is homotopic to X2, As
(Z'A L% v 8% = 53 v £?% is not in the homotopy class of 0, then according to
Theorem in Ses.2.F of [1], it follows that S{US] # S;. Consequently in view of
Lemma 9 point 2 we infer (by letting 5 — 0) that the following theorem is true:

THEOREM. Let Assumptions 1-4 be satisfied. Then there exists 0 € [0y, 0] such
that for § = 6* and all sufficiently large \ > 0, there exists a heteroclinic solution to
system (1.1) connecting the constant states U_(A\,1) and U4+ (A, 1). 4

8. Discussion

It is possible to estimate the minimal value of A which is sufficient to prove
existence of a heteroclinic solution to the system (1.1), which was rather imposs-
ible in the method chosen in [5]. An example of such an estimation will be given
below. It is worthwhile to note, that this value of A depends only on the functions
F; and their first derivatives. Especially, as one could foresee, this value does not
depend on the other coefficients i.e. k, ¢1, c2. Finally, let us stress that from the
mathematical point of view Assumption 4 is not necessary. This condition, which
reflects the physical situation described by the system (0), was assumed only for
definiteness.

To see, how the minimal value of A can be estimated, let us take for example
a quite realistic situation, when /% = 0 and F; = F(u;) (which corresponds to
the assumption that the energy is gained and radiated out only by the electron
component).

LemMma 13. For F, = 0 the solutions to system (4) are independent of .

P r o o f. The system (4) takes the form:

—AA+ 1]17(!1;) + (1 . ’I)Fs(-ux') =0,
AA+ (1= n)Fs(w) = 0,

where A = (u; — up) and w = (u; + kup)(1 + k)~1. We have F(u;) = Fi(w) +
F'(w*)k(k + 1)~14, where w* € [u), w]. Suppose that, for a fixed 5 € [0, 1], this
system has a solution (up, up), for which A # 0. Multiplying the second equation
by (1—=nF'(w*)k(k+1)~'A~1) and adding it to the first one we obtain an equation
[1+ @1 =790 =nF'(w)k(k + 1)"'A"1F, = 0. Consequently, for A sufficiently
large Fs = 0, and from the second equation we infer that A = 0.

To find the estimation we will verify in turn all the conditions imposed on A
in the text above.
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First, the positiveness of the determinant at U, v € {, —, +}, its negativeness
at Uy and the conditions (=A(uy — wp) + nl' + (1 — ) Fy)2 > 0, (AM(ug — uz) +
k(1 — n)F,)1 > 0 (which were necessary in the proof of Lemmas 7 and 10) are
guaranteed by A > F o ulgl‘%xll | F' (1))

Now, according to the proof of Lemma 3, |u; — ua| is a priori smaller than
d = 6A"'(max |F(u)]) := 6A71E,.
(uG[O.ill (w)])

Let |
/F(u)du =1>0, mm /[(u)du =J= /1 (u)du < 0.
(]

We have -
I:=(1+ k)_l f(fl,, -+ fz,})(ull d€ + L'u'zdf)
= (1 + By / [1F(0) + 201 — ) Fy(w)] (i, d€ + kdy dE)

1 i
=2(1—-17) / Flw)dw + (1 + l;)"”}/ F(uy) duy
0 0

+(1 + /;)—lr]{ / Fup)kub d€ + / F'(w*)dku) (lf} )

where w(§) € [u1(£), ua()]-

The sum of the first three terms is equal to [2 — #]/ and the module of last
term is estimated by the number Fdl: = 6)\~1} I,.. Thus, for A > 61 F. 17" the
integral 7 is larger than 0. Likewise, we can a priori estimate the minimum over
¢ of the integral

T = +k)? /(fl,, + Fo, )u) dE + kub dE).

So, acting as before we can write 7 as:

w(f) u(£)
2(1 - 7)) f F(w)dw + (1 +k)71y ] I'(s) ds
0 0
uy(€) u2(€)
{1+ By ]F(uz)/\:u’z(lf+ / () [uz(€) — w(€)] kel dé §,
0 0

where u*(§) € [u1(£), ua(€)].
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Let us choose £ in such a way that «,(£) = j. Then, J can be estimated from

above by:
2(1-n)J +n(1+ k)" (V) +2(0=n)d Fy+ (1 +E) "k { Fud + Fd( + d)}
=[2-qg)J + 200 = u) + n(1 + k)" K] Eud + Fdky( + k)71 + d).

As the trajectory must stay in the rectangle [0,1] x [0,1], then (j + d) < 1and J
is smaller than zero if

~1—1
A" P < d < 2= )|J| [201 = ) Fp + (1 + 1) kFy + k(1 + k)“F] .
This condition is satisfied for

A > 6Fn [200 = )P + 91+ k) (B + )] @ = n)7 )72

The right-hand side of this inequality is smaller than 6 £, (F,, + F)|J|~!, inde-
pendently of » and k. Putting everything together we can say that the heteroclinic
trajectory for some finite & = 6~ > 0 exists if only

A > max { 65, (F + F)J|™ 65, P17}
As |J| < Fy,, I < F,,, then
A > 6F, (F, + F)(min {|J].1})7".

In a general case the evaluation can be carried out in principle in the same way,
though it would be a little bit more laborious.

Appendix A

Let us recall the basic facts of the connection triple theory taken from [1]
(see also [2, 3]), which are used to prove existence of heteroclinic orbits. Suppose
that we are given a system of n first order ordinary differential equations (in ")
parametrized (continuously) by a parameter 6 belonging to some nonempty closed
interval [0y, 0;]. Let X = R"™ x [0y, 6;]. Let 57, 5" and § be isolated invariant sets
for the flow on X determined by this family of equations and let S'(6), S”(0),
5(6) be the set of points in 5/, 5", S with parameter value 6.

DEeFINITION A.1. The triple S', 8", S is called a connection triple if the following
conditions are satisfied:

asSus’cs,

b. S'NnS" =40,

c.for § =06y and 0 =6, 5(0)=5()us"(l). 4
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Now, suppose that we are given a family of local flows on a space X parametr-
ized in a continuous way by a parameter 7 € [0, 1]. Suppose that Sy and S; are
isolated invariant sets for the flows on X corresponding to 5 = 0 and 5 = 1.

DEFINITION A.2. We say that Sy and Sy are related by continuation, if there exists
a compact set N in the space X x [0,1] such that N, (i.e. the set of points in N
with parameter value 1) is an isolating neighbourhood and such that Ny and N are
isolating neighbourhoods for Sy and S\, respectively.

DEerFINITON A 3. Suppose that for each 1 € [0,1] there exist compact sets N,
N", N such that N}, N, N, are isolating neighbourhoods for the isolated invariant
sets S 85 z'md S,,, respecziveb& Suppose then,. that for each n € [0,1] (5,’, S,’,’ 5o
is a connection triple. Then, we say that the triples (S, 5, So) and (51,57, 51) are
related by continuation.

With a connection triple an index /(5’, 5", .S) may be connected. Its definition
may be found for instance in [1] (see Lemma, p.325).

DEFINITION A.4. Let (S', 5", S) be a connection triple for a family of differential
equations on R" parametrized by 6 in the interval |8y, 6,]. Assume the equations are
defined for 0 € (0y — ¢,0, + ¢) for some ¢ > 0 (this is no real restriction — they
can be extended to such an interval). Let U’ and U" be open neighbourhoods in
R™ x (6g — €,01 + ¢) of S'(6y) U S'(6)) and S"(6y) U S"(8)) (respectively); choose
these to have disjoint closures. Let ¢ be a continuous real-valued function on R™
which is positive on U’ and negative U". Append to the given family of equations the
equation 0' = pug(x)[0 — 2710y + 0,)], where p is a small positive parameter. Let N
be a compact neighbourhood in R™ x (6 — ¢, 0y + <) such that N(0) is an isolating
neighbourhood of S(6) for each 9. Then, there is a g > 0 such that if p € (0, jg)
then N is an isolating neighbourhood for the “enlarged system”. Let h, be the index
of S(N), n € (0, p19). Then hy, is independent of i, and in fact depends only on the
triple (5',5",5). o

Now, let us assume (as it is in our case) that for every 8 € [0, 1] 57(6), S”(0)
are fixed hyperbolic singular points and their indices are constant. Let us denote
them by &' and h”, respectively. Now, if there was no connection between S’ and
S”, then due to point b of Definition A.1, and Definition A.4 we would have
h(5',5",8) = (X' A R') v h", where b’ and h" are the Conley indices of 5'(8)
and 5"(8), 6 € [8g,6,]. So, if A(S",5",5) # (X' ARV L, then § # S'U §”.

The final theorem necessary for our proof is stated in [1] Section D p.326.

ProrposiTioN. The index of a connection triple is constant on equivalence
classes under the continuation relation.

Appendix B

In this appendix we prove Lemmas 6 and 7 concerning the eigenvalues of the
linearized system.
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Let us fix A,  and v and denote for simplicity:

a b

M= M,(\n):= [c J

], M := M,(A, 1), t:= 0, Tt := cz,,k_lﬂ.

Let (&,£&2,¢1,(2) be the eigenvector of M corresponding to an eigenvalue ¢ of
M. As we mentioned in Sec.S, it follows from the structure of AM(A,7) and
considerations in [1] p.335 that (&, &, (;,(2) and ¢ are coupled simultaneously
by the following three relations:

Ci qé_t » 1= 1921
(B.1) g = 27N 4 412 — (0 + 066V,
¢ = 2771+ \ 41 (Tt — (d + c€5'61).-

The eigenvalues of M (A, 7) are the roots of the equation:
(B2) det(M) + q(—dt — atT) + ¢*(a + d + *T) + P (—t —tT) + ¢* = 0.

Using this fact we can prove the following lemma.

LemmA B.1. Suppose that det M # 0, a < 0,d < 0, ¢t > 0, tT > 0. Then the
real part of the eigenvalues of A/ is different from 0.

P roof. As we have noticed, these eigenvalues are given by the roots of
Eq.(B.2). It is obvious that 0 is not a solution of it. So, suppose that there is a
pair of eigenvalues ¢, ¢2 such that ¢, = L, ¢ = —il, L # 0. Substituting in
(B.2) first ¢ = iL and next ¢ = —iL and subtracting the obtained equations, we
arrive at the equation 2iL{(—aT — d + (1 + T)L*) = 0. However, according to
the assumptions of the lemma we infer that the expression in the bracket is not
equal to zero.

Now, let us note that according to Lemma 2 and Assumption 3 for sufficiently
large A the following conditions are fulfilled (independently of 5 € [0, 1]):

B3)  det(M)#0, >0, (I'>0, a<0, d<0, be>0.

Proof of Lemma 6. Let us note that, if we put v € {—, +} in the definition
of M, then, due to Assumption 3, Lemma 1 and Lemma 2, det(M) > 0 for suf-
ficiently large A (independently of 5 € [0, 1]). Lemma 6 follows straightforwardly
from the following more general lemma.

LeEMMA B.2 Assume (B.3) and that det(\M) > 0. Then the matrix A (), ) has
four real eigenvalues. Two of them are positive and two are negative. Moreover,
5251‘1 > 0 only for one of the positive and one of the negative eigenvalues. 4

http://rcin.org.pl



888 B. KAZMIERCZAK

Proof. The condition det(M) > 0 implies that either >~ > 0 or d®~¢? >
0 (or both). However, as one can easily see by renumbering the components of
u, we may always assume that the first one is satisfied, i.e. (a2 - b%) > 0.

As a starting point of our analysis we will take the situation characterized by
the equalities: 7' =1, a = d, b = ¢. In this case (B.2) takes the form:

(—a—b—¢*+ q)(—a + b — ¢+ qt) = 0.
As (a® — b%) > 0, then this equation has four real solutions:

e =27 (V40 +2), =27 (1 V-da+d+2).

Two of them are positive and two are negative.
For p € [0,1] let us make the following deformation:

a(g) =a, d(g)=a+(d-a)e, ble)=0,

(R4 c(o) = b+ (c—b)o, T()=14+ (T - 1o.

Then we have:
(B.5) det(M(0)) = (1 = o) det(M(0)) + pdet(M(1)).

Thus, it follows that the deformed coeflicients retain assumptions (B.3). For sim-
plicity we will omit the explicit dependence of ¢, d and T on p, if it does not
cause confusion.

Now, as b and ¢ (= ¢(»)) are both nonzero, then, according to relations (B.1)
and to the structure of eigenvectors, we can assume that £ is nonzero (the ratio
267" must stay finite). Thus without losing generality we can assume for definite-
ness that £ = 1 and the eigenvector corresponding to an eigenvalue ¢ has the
form (1, &, q, g&2). So (B.1) can be written as:

¢ =27 412 — (0 + 06),
(B.6)

g = 27004 - (d+ &),

Now, it can be easily proved that during the above deformation (with respect
to o) the eigenvalues of M stay real (and according to Lemma 8 two of them
are positive). For ¢ = 0 the eigenvectors of A/ take the form {1,1,q14,q14},
{1,-1,¢24, 02+ }, where g1z = 271(t £ V-da—4b+2) and ¢y = 271t £
V—4a + 4b + 1?). (Remind that we have set £, = 1 for definiteness).

As & never becomes 0, then its sign will not change during the deformation.
The proof of Lemmat B.2 is thus completed.

Proof of Lemma 7. Let us note, that, if we put » = 0 in the definition
of M, then, due to Assumption 3, Lemma 1 and Lemma 2, det(M) < 0 for
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sufficiently large A (independently of » € [0,1]). In this proof we will also use
the fact that for sufficiently large A both b and ¢ are positive. Note, that during
the deformation (13.4), the condition det(M (o)) < O retains its validity according
to (B.5). Using arguments as in the proof of Lemma 6 we may assume without
losing generality that (a® — %) < 0. According to Lemma B.1, the eigenvalues of
M cannnot cross the imaginary axis. The number of eigenvalues with positive or
negative real parts is constant during the deformation. As (¢ + 0)(a —b) < 0, then
one of these factors is positive and the other is negative. Thus for p = 0 there
exists only one eigenvalue with negative real part and three ones with Re¢ > 0.
As b and ¢ are positive, then the sign of & for negative eigenvalue is the same
as its sign for o = 0, as it cannot become 0 (see the proof of Lemma 6). As
(a—b) < (a+b)and (a —b) < 0, then, for p = 0 the negative eigenvalue is equal
to ¢ = 27Y(t — V4a + 4b + (2). Comparing it with (B.6); we obtain the claim of
the lemma.

Appendix C

Proof of Lemma 10. To prove Lemma 10 we will show that a trajectory
in the closure of N cannot touch &N, and then return to its interior unless at
singular points. As, according to Lemma 4, all bounded solutions of our system
have its derivatives estimated in their absolute value by a common finite constant,
then it suffices to examine the following cases:

1. u;(¢) = U_;(A\,n) or u;(¢) = U4 (N, n) for some ¢ € (—o0, o).
a. Let z;(¢) # 0. Then the trajectory leaves N immediately.

b. Let z;(¢) = 0. Due to Lemma 1, p and ; cannot achieve nonpositive
values, so the lines H; = 0, H, = 0 cannot intersect the sides Ny(n) N {(uy, u2)}
except at the singular points. Moreover, at the upper (lower) side of this rectangle
we have Hy < 0 (> 0) and at the right (left) side H; < 0 (> 0), except for the
singular points. The proof that such a trajectory leaves Ny(») if it does not reach
singular points is carried out as in Lemma 8.

2. zi(¢) = 0 for some ¢ € (00, o).

a. Let z/(¢) # 0. Then the trajectory leaves N immediately.

b. Let z/(¢) = 0. Then also [-F;,; + A(u; — uz)(=1)""1](¢) = 0. Let j denote

the index complementary to i. Then one obtains by differentiation:
7 (Q) = {=(Fin)(Q) — A}z(C)-

Thus, if A > 0 is sufficiently large (larger than nondiagonal entries of the matrix
Fin,;) and z;(¢) > 0, then z/(¢) < 0, so that near this point z; < 0 and the
trajectory lies outside Ny. Now, let us assume that z;(¢) = 0. The trajectory
leaves Ny (in appropriate direction), unless z7(¢) = 0. Then, however, we would
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have also [—Fj, + Au; — u2)(—=1)~'](¢) = 0, so this point would be a singular
point. 4

Proof of Lemma 11. First, let us note that 9 N (1) consists of the following
sets:

{z: = 0} N N1(n), {z: = L} n Ny(n),
{u; = U_;(A\,n)} N Ni(n), {u; = Usi(A,n)} N Ni(n),

i € {1,2}. The second pair of sets cannot comprise points lying on bounded
trajectories. The first one intersecting N (6, 1)) gives us eight sets, namely:

{z: =0, wy = U_1(\,n) = 84y, 0< z; < L},
{2i=0, upg—U_2(A\,n) = 6A_,(y), 0< z; < L}
{z:=0, w = Un(\,n) = 84y, 0< 7, < L},
{zi =0, up — Usa(A,y) = 6442(n), 0< 2 < L},

where ¢ € {1,2} and j is the index complementary to i and v € {—, +}. Below,
we will show that a trajectory touching one of the above sets cannot belong to
S(N2(8,7n)), i.e. it leaves N(6,7) when continued in appropriate direction. Let
us consider particular cases.

L. u1(()— U4y = =64 for some ¢ € (—oc,0c). If z;(¢) = 0, then we arrive at
the case analyzed in Lemma 8. So, let us suppose that z;(¢) > 0 and z(¢) = 0.
We can distinguish the three possibilities:

a. H2(¢) < 0, 25(¢) = —H2(¢) > 0. Then, for decreasing “times” the trajectory
leaves N(4,n) (as u; decreases) and Ny(y) (as z; becomes negative).

b. Ha(¢) > 0, 5(¢) = —H2(¢) < 0, so uy achieves a maximum. Consider
increasing “times”. Then z; becomes negative and never achieves the value 0
again while staying in N (é,7). For, suppose to the contrary, that there exists
¢1 € (¢, o¢], such that z3(¢;) = 0 and z,(§) < 0 for £ € (¢,¢1). Then 25(¢) > 0.
But, simultaneously z5(¢;) = —H2(¢1) < 0, as the curve H, = 0 lies above the
starting point P, (see Fig.2) and it has positive slope in N (é, 7). The trajectory
can reach the curve H, = 0 only outside N (6, ). But leaving N (8, 17) would imply
leaving also N(n), as z2(£) < 0 for & < (.

¢. H2(¢) = 0. Then 25(C) = —H2,1(¢)=1 < 0. Thus, for increasing “times” this
case is the same as case b.

2. w1 () — Uy = 64, for some { € (—o0,oc). If 21(¢) = 0, then we arrive at
the case considered in Lemma 8. So, let us suppose that 21(¢) > 0 and z2(¢) = 0.
As before, some particular cases are to be distinguished:

a. H2(¢) > 0, z5(¢) = —H2(¢) < 0. Then for increasing “times” z; becomes
negative and the trajectory “immediately” leaves N (6,7) (u; grows) and N(n)
(22 decreases).
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b. Ha(¢) < 0, 25(¢) = —H2(¢) > 0, so uy achieves a minimum. Consider

decreasing “times”. Then z; becomes negative and never achieves the value 0
again while staying in N(é,7). For, suppose to the contrary, that there exists
(1 € [—o0, (), such that z3(¢;) = 0 and z;(€) < 0 for £ € (¢1,¢). Then 25(¢;) < 0.
But, simultaneously 25(¢;) = —H2(¢1) > 0, as the curve Hy = 0 lies below the
starting point P, (see Fig.2) and it has positive slope in N (6, 7). The trajectory
can reach the curve H, = 0 only outside N (4, 7). But leaving N (6, 1) would imply
leaving also Ny(7), as z2(£€) < 0 for & < (.

c. H2(¢) = 0, 25(¢) = —Hz,121 < 0. Thus for increasing “times” this case is
the same as case a.

3. The remaining cases are considered similarly.

Now, the intersection of the sets: {u; = U_;(\, )} N N1(n), {u; = Usi(A,m)}N
Ni(n) with 0N (6, n) gives us the following sets:

{ur = U_1(\n) = 841, up =U_2(\, ), 0< 2 < L, k =1,2},
{uz = U_2(\,n) = 844, uy =U_1(\,n), 0< 2z < L, k=1,2},
{uy = Usi(\n) = =641, upg = Usa(N\,), 0< 2. < L, k=1,2},
{ug = Usa(\,n) = =6A 42, up = Us1(\,7), 0< 2. < L, k =1,2}.

Let us take, for example, the first set. Let us look at the projection of the
trajectory onto the (u, uz)-space. This projection starts at the point

X, = (U—l(’\v 77) * 64\1» U-Z()‘a 7’)) = (Ul(fs), u2(53))'

As Hi(&5) > 0, then, 21(€) > 0 for all £ < &, sufficiently close to &. (If 21(&,) = 0,
then z{(&) < 0.) So that the backward trajectory could stay in the set N_(é,7)U
Ni(n), for sufficiently small ¢ < £ we should have 2{(£) < 0 ie. z(6*) = 0 and
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z1(€*) = —H,(¢*) > 0 for some &* < &,. Such a situation could happen only
below the curve H; = 0 (or just on it). However, the trajectory arriving at the
curve H; = 0 must come below the curve H, = 0, first. But, below that curve we
would have z; > 0, due to the fact that z; = 0 implies 5 = —H, < 0 (we consider
the backward trajectory). Consequently, the projection of the backward trajectory
must cross the boundary of N_(¢, ) at the point not belonging to dN(5). Thus
this trajectory does not stay in N(6, ) (see Fig.1).

The proof that the trajectory (in appropriate time direction) starting at a point
belonging to the other three of the sets written down below does not stay in the
set Np(8,7), is carried out almost verbatim in the same way as above. So, the
proof of Lemma 11 is completed. 4
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