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Singularities of aerodynamic transfer functions
calculated on the basis of an unsteady lifting surface model
in subsonic flow

M. NOWAK (WARSZAWA)

A DIRECT METHOD to calculate the Laplace transformed pressure distribution on subsonic lift-
ing surfaces is considered. The kernel function is analytically continucd in the entire p-plane (of
the non-dimensional Laplace variable), and the discretizing procedure follows the lifting lines (or
doublet-lattice) method developed for simple harmonic motion. The acrodynamic influence coef-
ficient matrix is a function of Mach number M and the complex variable p. In the first part of
the paper, some analytical properties of this matrix were investigated on the basis of numerical
calculations performed for an aspect-ratio-3 rectangular wing. The main conclusion of this paper
is that for M # 0, there exist a large (probably infinite) set of latent roots of the matrix in the
left half of the p-plane which (usually) reflect in poles of the transfer functions. For M — 1, all
latent roots tend to the origin (p = 0). For M — 0, all latent roots move to infinity and probably,
for M = 0 there are no roots in the finite part of the p-plane. The distribution of latent roots
in the p-plane does not depend on the number of acrodynamic elements introduced by the dis-
cretization (within the limits of accuracy of the calculation method). The algebraic equations are
well-conditioned in the right half of the p-planc and in a strip parallel to the imaginary axis in left
half of the p-plane. The width of this strip depends on the Mach number. In the second part of
the paper, an approximation to the acrodynamic transfer functions based on the identified singu-
larities and calculated left and right-hand latent vectors of the acrodynamic influence coefficients
matrix is developed. It avoids the ill-posed analytical continuation from the imaginary axis in the
whole p-plane. The results clarify also some uncxpected phenomena observed in Laplace-domain
calculations, and described in the literature.

1. Introduction

THE KNOWLEDGE of unsteady aerodynamic forces acting on a flexible aeroplane
undergoing small perturbations from a steady equilibrium state of trimmed, recti-
linear flight, is essential for stability analyses of the motion of the structure.
The prediction of the unsteady aerodynamic loads is complicated by the fact
that the unsteady flowfield surrounding the body is not determined solely by the
instantaneous state variables of the structure, but it depends also on the past
history of the motion of the body. The aerodynamic forces exhibit heredity due
to the influence of vorticity shed into the wake at earlier instants of time.

The input data in a lifting surface aerodynamic model is the upwash distribu-
tion w(z,y, t) on the wing surface S (Fig. 1). Assuming that all linear coordinates
(z,y, 2) are nondimensionalized by a reference length b (usual root semichord),
and introducing nondimensional time ¢

__U'trcul
(1.1) t= 2,
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where U is the flight velocity, the expression for the upwash distribution can be
put in the form

w(z,y,t) b 0Oh
: 2B e o,
(12) U de

where h(z,y,t) denotes the normal (nondimensionalized) displacements of the
wing surface.

The lifting surface integral equation relates upwash and lifting pressure coef-
ficient ¢cp(z, y, 1) (i.e. pressure difference Ap(x,y,?) between the upper and lower
surface, nondimensionalized by the dynamic pressure ol/?/2) on the wing. The
original form of the lifting surface equation, given in 1940 by KUssNER [1] applies
to harmonic motion, when

w(z,y,t) = @(z,y,ik)e™  and e (z,y,1) = E(x, y, ik)e,

The lifting surface equation relates in this case the amplitudes of upwash and
pressure coefficient

2 " 1
(1.3) “’(’:Ui”) T f K (M, 20, yo, ik)e, (€, 1, ik) d€ dy,
S
where z¢9 = z — &, yo = y — n, M stands for the Mach number and
wb
(1.4) k=

is the nondimensional frequency coefficient (called also reduced frequency).
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The kernel of this equation is singular and the solution is sought in the class
of functions vanishing on the trailing edge — this is a necessary condition for the
uniqueness of the solution, and physically it expresses the Kutta condition.

There were developed many different methods for discretization of the lift-
ing surface equation in the frequency domain. One of the most useful is the
doublet-lattice technique of ALBano and RoppEN [2]. The calculations in this
paper were made mainly by the lifting-lines method [3, 4], with algorithms very
similar to the doublet-lattice method, but usually with better convergence prop-
erties (with respect to the number of introduced aerodynamic elements).

For many years, the unsteady aerodynamic theories and its applications have
focused primarily on the frequency domain, since the knowledge of aerodynamic
forces at harmonic disturbances is sufficient for the determination of flutter
boundaries. The advent of active control technology for flexible aircraft has re-
newed interest in unsteady aerodynamic forces given in the time and Laplace
domains.

The displacements of the structure are usually described by means of a finite
set of generalized coordinates ¢;(t), ¢2(t), ..., ¢.(t) defined on the basis of a set
of assumed modes

T
(1.5) W,y ) = 3 hale, ) - 5 (0),

k=1
where the functions hy(x,y) (k = 1,2,...,n) correspond in the most cases to
natural vibration modes of the structure. The upwash distribution on the lifting
surface may be expressed in terms of the generalized coordinates and generalized
velocities

T, y,1 " Oh(x, 2 ‘
(1.6) 200 o 5 ED 1y + 3 o) ).
i k=1

k=1

The generalized aerodynamic forces (related to the dynamic pressure and b%)
are defined by integrals taken over the surface

(1.7) fr(t) = ]f hi(z, y)ep (e, y, 1) dS for k=1,2,...;%
.

The problem consist in determination of the generalized force vector { f(1)}
(with n elements (1.7)) for a given motion, described by the function {q(7)}
for —oo < 7 < t. Independently of the details of the aerodynamic model, the
aerodynamic operator which relates {¢(¢)} to {f(¢)} possesses always some ba-
sic properties, such as single-valuedness, linearity, time-invariance and continuity.
According to a theorem of SCHWARTZ [6], these four properties can be replaced
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by the entirely equivalent condition that states that this operator has a (distribu-
tional) convolution representation.

(1.8) {70} = [AM, O] * {g(D)},

where [A(M, )] is the unit impulse response matrix function (called also heredi-
tary matrix [5]), the (j, k) element of which is the generalized indicial response in
the j-th mode due to the pressure ¢,(z,y,t) generated by the motion in the k-th
mode with gx(¢) = 6(t). The elements of this matrix depend also on the Mach
number M. The aerodynamic forces can depend only on the history and not on
the future of the motion. That means that the aerodynamic system is causal, and
therefore
[AM, )] =0 for t<O.

Direct calculation of the elements of [A()M,t)] for arbitrary time may be
difficult and in practice, these functions are usually determined only by means of
the inversion of Fourier or Laplace transform. Taking the Laplace transformation
of the convolution (1.8) it follows that

(1.9) {F»} = [A01p)] Ge)} ,

where p is the Laplace variable, and the circumflex accents (7) denote transforms
1.10) {J®} = O}, {aw) = L} and [AQLp)] = LIAOLD].

The aerodynamic transfer functions matrix [‘/T(M, p)] is a Laplace transform of a
real distribution and is real whenever p is real. Hence

(1.11) [/T(M,]))]' = [,:\\(Al,p')] i

where the star (*) denotes complex conjugate values.

The convolution (1.8) and the Laplace transformation should be interpreted
on the basis of the theory of distributions [6]. The aerodynamic transfer func-
tions grow with increasing |p| like O(|p|) in the case of compressible flow, and
like O(|p|?) in the incompressible case. Additionally, the distributional Laplace
transform does not contain explicitly the initial values and this simplifies the
analysis.

If the Laplace variable is pure imaginary p = ik, then (1.9) determines the
steady-state frequency response function, which relates the amplitudes of gener-
alized coordinates to the amplitudes of generalized forces in harmonic motion.

(112) {Famw} = [AQriv] (),
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where k is the frequency coefficient defined in (1.4), and
(A, i)] = lim, [A, p)]

is the matrix of harmonic transfer functions.

The elements of the matrix [A(M, :k)] can be calculated numerically for given
values M and k on the basis of the lifting surface equation (1.3), and the relations
(1.6) and (1.7).

The aerodynamic transfer matrix [A(M, p)] is the final product of aerodynamic
calculations and it is usually determined by means of the analytic continuation of
the elements of matrix [A(A/, :k)] from the i imagumry axis into the whole complex
plane. Two types of approximation have been used in practice for this purpose.

1. The first approach begins with calculating the values of harmonic transfer
functions over a specified range of the frequency coefficients k = ky, ko, ..., k.
Next, the harmonic transfer functions are approximated by rational function which
fit best the calculated values. The last step is the analytic continuation of the
resulting rational functions into the whole p-plane.

2. In the second (direct) approach, the kernel function of the lifting surface
equation (1.3) is extended from the imaginary axis to the entire complex plane
K(M,zg,yo,tk) — K(M,zg,,p) by means of an exact analytic continuation.
The elements of the aerodynamic transfer functions are calculated directly for
a given value of the Laplace variable p on the basis of this generalized lifting
surface equation.

Both approaches have their own advantages and disadvantages. The elements
of [A(M, p)] are holomorphic functions with branch points p = 0 and p = —c0
(for M < 1) which are neglected in the approximation by rational functions. When
the transfer functions are approximated by polynomials or rational functions, it
is possible to cast the aeroelastic (and aeroservoelastic) equations of motion in
a linear time-invariant state-space form (instead of integro - diflerential form),
although the size of the state vector increases due to the approximation. Currently
there are three basic formulations used in approximating the aerodynamic transfer
functions by means of rational functions: least-squares [7], modified matrix-Padé
[8] and minimum-state [9]. The common disadvantage of these methods is the
necessity of numerical realisation of an ill-posed analytic continuation.

The direct analytic continuation of functions which appear in the expression
for harmonic aerodynamic forces gave rise in the past to arguments on the valid-
ity of the results in the left-hand half-plane of the Laplace variable and was
rejected in a series of articles [10, 11, 12, 13]. This problem was later resolved by
MILNE [14], EDWARDS [15] and others, but nowadays some doubts arose about the
possibility of a practical utilisation of this approach [16]. It was stated, that the
application of numerical solution techniques to the integral equation in the left
half of the p-plane may result in a highly ill-conditioned set of linear equations
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[17]. An unexpected phenomenon was observed in [18]. Some of the generalized
forces for strongly decaying motions in high subsonic flow reveal a looping be-
haviour in the complex plane. Testing a new method for solving the lifting surface
equation, UEDA [19] stated that “it looks probable that an aerodynamic singularity
exists in the left half of the p plane when the flow becomes high subsonic”.

Another interesting approach to the approximation of transfer functions was
given by STARK [20]. He proposed an expression for the lift deficiency function in
the time domain and assumed that this function is independent of the deflection
mode of the wing. Laplace transform of his deficiency function possesses branch
points p = 0 and p = —oo, which are the only singularities of the transfer
functions in the entire p plane. This approach leads to a good approximation in
the incompressible case, but for non-zero Mach numbers the results were less
satisfactory.

The knowledge of analytic properties of acrodynamic transfer functions in the
p plane is until now only fragmentary. It is known that the matrix [A(M, p)] can-
not have any poles in the right half of the p plane, since the transient aerodynamic
response is always stable. It is also known, that for a subsonic flow, the aerody-
namic transfer functions have logarithmic branch points p = 0 and p = —oo,
as a result of the unlimited length of the wake. It is usually expected, that the
aerodynamic transfer functions have no poles also in the left half of the p plane
[5]- This is true for the exact solution of two-dimensional airfoil in incompressible
flow but was newer proved for the compressible case. The problem is addition-
ally complicated by the fact, that the solution of the singular integral equation is
ill-posed, but the numerical methods used in the chordwise integration introduce
a self-regularization and, after discretization, the resulting set of algebraic linear
equations is usually well-conditioned. In the two-dimensional case (of an airfoil)
the proof of this statement was given by Liranov [21].

The aim of this paper is to investigate the numerical problems which occur
in solving the lifting surface equation in the Laplace domain and the analytical
properties of the transfer functions in the left half of the p plane (for decaying
motion). Particular attention will be paid to the conditioning of the linear alge-
braic equations obtained by the discretization of the lifting surface equation, and
to the identification of singularities of the transfer functions.

2. Lifting surface equation in the Laplace domain

The lifting surface equation in the Laplace domain is the result of an analytic
continuation of the kernel of (1.3). Formally, the variable ik should be replaced
by the Laplace variable

w(z,y,p 1 . "
(2.1) % == / K (M, x0, yo, p)cp(E, 1, p) dEdn.

S
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The singular kernel (in the case of a flat surface) may be expressed in the form
[4, 18]

1 T .
@) KMeowp) = (14 ) e - Forw] e,
where

vo=2-6

Yo=Y—1,

-~

[wals

R = \/.z:% + 32,2,

B =v1—~-M2Z,

MR - 2
’32,. .

The function F'(z,u) is defined by means of following integrals

(2.3) F(z,u) = i [ U (1)
2e** + 2 f 1+ ——W e Mdy —inzdly (2)

L for Re(z) < 0.

The second expression (for Re (=) < 0) may be obtained from the first integral
in (2.3), by an appropriate contour deformation.

Only a few papers (e.g. [18, 19, 22]) are known which are devoted to the
numerical problems which occur in lifting surface calculations in the Laplace
domain.

For small values of |pru| it is convenient to split I'(pr, u) into two parts [18]

(2.4) F(z,u) = IN(2) — Ih(z,u),

where

u =

235 Fi(z) =2 le =l Y e =1 z—E:Hz—Yz,
25 A 0]( m) )= 142 = Z2(L() - Yi(2))

and the integral [5(z,u) defines an entire analytic function of the z variable,
which may be expanded into a convergent series

u , N - 1 .
(2.6) F(z,u) = 2] (1 - —\/%—,]—2—) ey =y mgk(U)SHI,

0 k=0
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with a recursive relationship for the coeflicients

gik(u) = (u (m— u) = %) (—u)t-! -

k-1

gr—2(u) for £k>2

and initial terms
go(u) = 1- (Vl + u? - u) ;
gi(u) = In (V] + u? - u) + u (\/1 + u? - u) .

The Hankel function H{l)(:), Struve function /{;(z) and Bessel function of the
second kind Y)(z) may be calculated with high accuracy on the basis of the series
given e.g. in [23]. The accuracy of the series (2.6) is limited by the numerical
instability due to the round-off error in actual computation. For calculations per-
formed with double precision, this limit depends on the values of parameters
and sufficient accuracy can be achieved only if |pru| < 6. For larger values of
parameters it is necessary to provide other approximations.

For very large values of |pr| satisfactory results may be obtained from the
asymptotic expansion derived by means of integrating by parts the integrals
in (2.3)

2.7) F(z,u) = (1 — Filu)— Zf”")(u)_lk) g
k=1 -

0 for Re(z) >0,
irzlI"(z)  for Re(z) <0,

where - " i ST
u) = f(u) = —m——, D) = u?
S5(u) = f(u) ) S () I+
and
. 1 : :
J#) = - [@k + 1yus® ) + (e + )0k = 1) /4 D(w)] .

The asymptotic series (2.7) is usually divergent and only a limited number of
terms can be employed in the calculations.
Very useful in practice is an exponential approximation for the integrands of
(2.3)
. 12
]l = —/— = n.ex,—-zkbr,
Sl Z:l i exp( om)
proposed by Desmarais. The values of coeflicients by and ay are given in [18].
The resulting rational approximation of /'(pr, u) may be used in the range 7 /4 <
larg (p)| < 37/4 and —o0 < u < 0.
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3. Discretization of the lifting surface equation

It is possible, independently of the used discretization procedure, to distinguish
three steps of calculations of the values of transfer functions for a structure with
n degrees of freedom (for a given Mach number A/ and value of the Laplace
variable p):

a. Calculation of the substantial derivative to obtain a N-dimensional approxi-
mation of the upwash distribution

G3.1) (@)} = ([P + p[D2]7)};

Nxl1 Nxn Nxn Nx1

b. Solution of a linear system of algebraic equations

(3.2) {©(p)} = [(M,p)l{e, ()}
= Nx1 NxN  Nxl
¢. Determination of the transforms of the generalized coordinates
(3.3) {f(l’)} = [S] {&:(n)}-
Nx1 nxN Nxl1

N is the size of the aerodynamic influence coefficients matrix which approximates
the integral operator. The vectors {@(p)} and {¢,(p)} describe the upwash and
pressure distributions on the wing surface. In practice, typical values are: n =
20+30and N ~ some hundreds (but always N > n). The differentiation matrices
[D1], [D2] are determined by the formula (1.6), and the integration matrix [5]
by the definition of the generalized forces (1.7). These constant matrices depend
only on the used discretization method. Matrix [A'(M, p)] depends also on the
Mach number and on the assumed value of p. The evaluation of this matrix is
the most time-consuming part of the computation.
Equations (3.2), (3.3) and (3.4) may be put together in the form

{7} = 151 kL))" ([21] + p [P}

nxl1 nxN NxN N xn Nxn Nx1

Hence, the aerodynamic transfer functions matrix is given by the formula

(3.4) {,T(M,p)} = [S] [K(M,p)] " ([D,]+p[02]).

nxn nx N NxN Nxn Nxn

If the discretization procedure in the Laplace domain is the same as in the
frequency domain (when p = k), then the matrix (3.4) is the result of an exact
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analytical continuation of the harmonic transfer matrix [A(/, ik)]. On the other
hand, if the calculations for a harmonic motion are based on the discretized
equation (1.3), then the values of analytic functions determined in the entire
complex plane p are in fact calculated on the imaginary axis. Therefore, the
knowledge of analytic properties of the transfer functions may be useful also in
the case, when the calculations are restricted to the imaginary axis only.

In the case of subsonic flow (M < 1), the elements of [A'(M,p)] have a
branch-point in the origin (p = 0) and from the expression for the kernel function,
it follows that

[K(M,p)] = [N(M,0)] + 0@ In(p))  for p— 0.

The transfer functions are holomorphic functions in the complex plane cut along
the negative real axis. R

Poles of the transfer matrix [A(A/, p)] may exist only in those points of the p
plane, where the matrix [A" (M, p)] is singular

(3.5) det ([W(M,p)]) = 0.

The number of latent roots of the equation (3.5) may be large or infinite, because
the elements of the matrix [A" (M, p)] are transcendental functions of p.

4. Condition number and latent roots of the acrodynamic influence coefficients
matrix

Most of the calculations in the following analysis were performed for a rect-
angular wing with an aspect ratio A = 3 in symmetric motion. This wing was
also investigated in [20] and [22]. For the discretization, the lifting lines method
[4] was used, but some of the calculations were repeated with the doublet-lattice
method [2] (with the same or almost the same results).

The sensitivity of the solution of (3.2) to the perturbation of the data

14¢, @)l 3@
lle. @l le@)l

may be measured by the condition number of [A'(M, p)] defined as the product
of two matrix norms

< cond [N (M, p)]

@.1)  cond[K(M,p)] = [|[K (M, p)]|| - ”[1\'(;\1,,))]-1{‘ (1 < cond < ).

Logarithm to the base 10 of the condition number can be used to estimate
the number of significant digits of the result which can be lost, independently
of the accuracy of the method used to solve the linear equations. Hence, if the
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calculations are performed with double precision, then the matrix is numerical
singular when log, (cond[I\'(M, ]))]) > 16.

The conditions numbers of the matrix [A"()/, p)] were calculated for different
Mach numbers and for a large set of p-values by means of the SVD algorithms
[24] for complex matrices.

Figure 2 shows the results of calculations made for Mach number M = (.8
in a large region —1.75 < Re(p) < 0, 0 < Im (p) < 3.5 of the complex p-plane.
The size of the aerodynamic model was N = 10 x 20 = 200 elements (10 lifting
lines and 20 strips uniformly distributed on the half-span of the wing). It is seen,
that the matrix in this region is well-conditioned, although for Re (p) < —1.0 the
condition number grows very fast. There are also many local “spikes” which may
indicate, that in its neighbourhood exist singular points of the matrix [/ (M, p)].

Figure 3 shows the same results in the form of a contour map. The latent roots
were also calculated on the basis of Eq. (3.5) by means of the Muller method [25].
The results of these calculations are posted on the contour map in the form of
black dots. In each of this calculated points log,,(cond [A' (A1, p)]) > 16, hence
the matrix is numerically singular. The initial values for the Muller iteration pro-
cedure were determined on the basis of the shape of contour lines. The condition
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number grows rapidly only in the vicinity of each root. In a very small region
(|Ap| < 107%), the determinant of the matrix decreases usually by a factor about
10~19, although its value may be still very large. This is shown in the Fig. 4, where
the contour lines correspond to constant values of log,, | det[ A (M, p)]|.

The singular points exist for each Mach number in the range 0 < M < 1.
The root distributions at Mach numbers A = 0.5, 0.7, 0.9 and 0.95 are shown
in Fig.5. It is seen that, as the Mach number increases, the width of the strip
in the left half of the p plane where the matrix [A (M, p)] is well-conditioned,
decreases. At the same time, all latent roots move in the direction to the origin.
This phenomenon is shown in Fig.6 where the loci of about 20 selected roots
are depicted. The outer ends of these curves correspond to the Mach number
M = 0.5, and the inner ends to M = 0.9.

On the basis of Fig.5 and Fig. 6 it is possible to formulate a hypothesis that
for M — 0, all roots move to infinity and in the incompressible case M = 0,
there are no roots in the finite part of the plane |p| < co. On the other side, for
M — 1, all roots move to the origin and may significantly influence the behaviour
of transfer functions at high subsonic Mach numbers.
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Root loci
M=05+09

f t t t 0.0

It has been found in the example of a rectangular wing, but also for other
surface configurations, that the calculated roots of Eq.(3.5) were always simple
roots only.

5. The influence of the discretization on the distribution of latent roots

It is not clear if the roots have a physical meaning and are related to the lifting
surface equation or if they occur only in numerical calculations and are related
to the discretized problem.

Figure 7 shows the influence of the size (N = 48--437) of the matrix [/ (M, p)]
on the distribution of latent roots in the p plane. The calculations were made
by means of the lifting lines method, for a rectangular wing, at Mach number
M = 0.8. It is seen that the differences may be related to the accuracy which
may be achieved with the different models. For large values of the frequency
coefficient, the pressure distribution is oscillating along the chord (Kutta waves)
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and a large number of aerodynamic elements is required at the discretization. It
follows, that the number and distribution of latent roots do not depend on the
size of matrix [N (A1, p)] within the limits of accuracy of the used method.

The most time-consuming part of the procedure to calculate latent roots is the
search for a good initial approximation. The results presented in Fig. 7 suggest a
practical approach, which may be applied for an arbitrary large N. The process
should be divided into a sequence of steps, in which the number of aerodynamic
elements increases Ny < N < ... < N. The results obtained in each step are
used as the initial values for the next step. The choice of the initial approximations
for the first step may be not strenuous if Ny is small enough.

6. Approximation to the transfer matrix in the vicinity of its poles

The resolvent [26] of the matrix [A°(M, p)] for a given p has the form

- N o fu Vo (N T
o (oo - 3 LEHEEE,

J=1
where the scalar parameter A is distinct from the eigenvalues A;(p), j = 1,2,..., N
of [ (M, p)], while {u;(p)} and {v;(p)} are the right and left eigenvectors asso-
ciated with A;(p), and normalised in such a way, that {v;(»)}7 {w,;(p)} = 1. The
relation (6.1) is true also for A = 0, because the matrix [A" (M, 0)] is not singular.
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The derivative of an eigenvalue of ['(M, p)] is given by the expression
(62) TN0) = {5 (5oUROL) ()
i dpj)-v]) apr,p u;(p)g-

If the value p = py is a latent root of (3.5), then at least one of the eigenvalues
Aj(pk), 7 = 1,2,..., N is equal to zero and in the vicinity of pi

«(p — pr)-

P=Pk

(6.3) Ai(p) = )\ i)

On the basis of (6.1), (6.2) and (6.3) it is possible to obtain an approximation
to the matrix inverse [K'(M,p)]~! in the proximity of the root p = p;

_ {wH{o}?
P Dk

(6.4) [K(M,p)]? + [2(p)],

where [#(p)] is a regular function in the vicinity of p, while the latent vectors
{ux} and {vx} are non-trivial solutions of the sets of homogeneous equations

(6.5) {0} T[K(M,p)] =0  and  [K(M,pp){ur} =0,

normalised in such a way, that

(6.6) {(A}I [I\(M )] {up} = 1.

:I) %,

It follows from (6.4) that the latent roots of (3.5) usually reflect in poles of
the transfer functions (3.4). However, there are two obvious exceptions to this
rule.

If {s;}T is the i-th row of the integration matrix [5] which was defined in
(3.3) and {s;}7{ux} = 0, then the latent root px is not a pole of the functions
(elements) in the i-th row of the transfer matrix [A(M, p)]. Similarly, if {dy;} and
{d2,} are the j-th columns of the differentiation matrices [D,] and [D;] and at
the same time {vL}T{dU} = 0 and {vx}7{d2;} = 0, then the latent root p; is not
a pole of the functions in the j-th column of the transfer matrix.

The right latent vector which is a solution of the second homogeneous equa-
tion (6.5) determines a pressure distribution. In Fig.8 and Fig.9 two examples of
such pressure distributions are shown which are associated with two latent roots.
It has been numerically proved, that the shapes of these functions do not depend
on the number of aerodynamic elements used to the discretization of the integral
equation.



p =-0.460 + 0.557 i

Fia. 8.

p =-0.687 + 1.251i

Fi6. 9.

[859]
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7. Approximation to the transfer functions based on their singularities

The knowledge of the singularities: branch points (p = 0 and p = —o0) and
poles (latent roots of (3.5)) makes possible an approximate reconstruction of
the transfer functions in the entire complex p plane, without any use of analytic
continuation (from the imaginary axis).

The solution of the equation may be put in the form

(7.1) (&)} = [Ac®)] {20} ,

where [ﬁie(p)] denotes the matrix [£ (M, p)]~ L.

To simplify the notation, in (7.1) and later in this section, the dependence of
the matrices which define the aerodynamic system on the Mach number was not
marked explicitly.

It should be emphasised that the relation (7.1) concerns the aerodynamic
model only and does not depend on the definition of generalized coordinates
used to describe the motion of the structure.

The inverse Laplace transform £~! applied to (7.1) gives the relation between
upwash and pressure distributions in the time domain in the form of a convolution

(72) {ep(0)} = [Ae()] * {w(D)},

where the elements of [Ae(t)] are the responses {c, (1)} which result from a unit
impulse 6(¢) in the elements of the discretized upwash distribution {w(¢)}. In
practice, it is usually more convenient to use inditial functions [//(¢)], which are
responses to a unit step change in the (discretized) upwash distribution. From
(7.2) it follows that

(7.3) {ep (O} = (O] + { @ (D},

where { w (1)} is the derivative with respect to time ¢ of the upwash vector {w(t)}.
The inditial functions [//(1)] are related to the hereditary functions [Ae(t)],

19 [Ae)] = ]1—) [Ac)]  and ()] = £ [H()] = [Ae@]+1. O,

where 1,(2) is the unit step function (Heaviside function).
From the final value theorem [6] it follows

(7.5) [1(20)] = lim [17()] = lim [fu (,,)] = [.&(0)] = [K(M,0)] ",
—00 p—
This limit corresponds to the steady solution (for constant boundary conditions

on the surface). In compressible flow (M # 0), there exists also the limit given
by the initial value theorem

(7.6) [D]= lim [71()] = lim [Ae)] = [Ae(0)] ,
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which can be calculated directly on the basis of the piston theory [27]

_ _ 4 w(r,y,0+)
(7.7) cp(z,y,0+) = T U
(discretization of this relation in the method of the lifting lines is given in the
Appendix).

In the incompressible flow (A = 0) the limiting values (7.6) do not exist, but

; : 1~
(7.8) [Ma] = lim ()] #1.()) = lim (; [0 )
is the apparent mass matrix, which can be determined on the basis of a simplified
model (without wake).
Taking into account the properties of the elements of the matrix [A'(M, p)], it
is possible to obtain (e.g. [5, 8, 14]) an asymptotic representation

(7.9) [jc(p)] - [Ae©)] = 0G*mp)  for p—o0.
It follows, that in the time domain

(7.10) [H()] - [H(x)] =0@t? for t— .
The general form of the inditial matrix may be put in the form

(7.11) L (D] = [ ()] = [C(D] + [Ma]é(),

where the function [C'(¢)] is usually called the deficiency function, and its asymp-
totic behaviour is determined by (7.10). The constant matrix [/ (oc)] determines
the steady-state limit and may be calculated on the basis of (7.5). The apparent
mass matrix [A 4] is involved only for incompressible flow.

This paper is focused on the poles of the transfer functions and their influence
on the aerodynamic forces. It was shown that the latent roots of (3.5) appear
only when M > 0, and therefore, the following analysis will be restricted to the
compressible flow when [M 4] = 0 and the relations (7.6) and (7.7) may be used.

It is convenient to make a decomposition

(7.12) [Tc(p)] = [/Alr:‘l(p)] + [:Tr:z(p)] .

where the first term represents the influence of poles, and on the basis of (6.4)
it may be put in the form

i [[IC(P)] - Z ({“k}{“k}’r + {ui.}{'vf.}]‘) )
k

I P = Pi
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where the summation concerns all the (calculated) roots, which exist always as
conjugate pairs. It may be assumed, that the second term [/Tr,fz(p)] does not
possess any poles and represents the influence of the branch-points p = 0 and
p = o0.

Similar decomposition of the indicial matrix has the form

(7.14) [1()] = (L)) + [a(0),
where on the basis of (7.13) it follows that

(7.15) [0 O0)] = lim [11:(1)] = lim [Aei(p)] =0,
(7.16) (0] = Jim [H,(0)] = lim [Ae1)] = [Ae1 0)]

and for t — o

(7.17) [H1(2)] = [Hi(o<)] = O(e™) where a = mfxx(Re (rx)) < 0.

Hence, the asymptotic behaviour of [/7(1)] is determined by [/[5(t)] — [12(x). =

o@t2).
From (7.6) and (7.15) follows also the limiting value
(7.18) Jim [115(0)] = lim [27(0)] = [D)

The deficiency function matrix may be also represented in the form of a sum
of two components

(7.19) [Ch(1)] = [H (o] = [H1(1)]
and
(7.20) [C2(1)] = [H2(o0] = [H2(1)]-

The first component is determined by (7.13), but for the second component, caly
the limiting value is known

(7.21) [C2(0)] = [Ha(o0)] - [D] = [K(M,0)] " - [ﬁcl(O)] - [D]
and the asymptotic behaviour
(7.22) [C2)] =072  for t— co.

Finally, the problem of approximating the response matrix with the use of
identified singularities is reduced to the determination of deficiency functiyns
which fulfils the conditions (7.21) and (7.22).
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For this purpose it is possible to use a method proposed by Stark [20] in a
similar problem. If the deficiency matrix function can be approximated by a scalar
function

(7.23)  [Ca(0)] = [C2(0)] - 9(1),  where g(0) =1,
and g(t) = 0@™?) for t— oo,

then
(7.24) [H (D] = [H:1(O] + [H2(0)] - [C2(0)] - g(1).
Taking the Laplace transform of (7.24) and multiplying the result by p we obtain
(7.25)  [KOM,p)]™" = [Ae(p)]

~ [Aa(@)] = [Ae(O)] + [KOL,0)]™" - [C20)] - pi(p),
where the matrix [C5(0)] is given by (7.21), and §(p) = Ly(1).

Stark proposed [20, 28] some forms of the function g¢(t). The best results
were obtained with the set

a + 1

(7.26) gm(t)——'( = )m (m=1,2,3,..),

where a is a positive real number which can be chosen in numerical experiments.
Laplace transforms of functions (7.26) may be expressed by the exponential in-
tegral functions. The conditions (7.23) fulfil the function g,(?).

8. Conclusions

The numerically calculated aerodynamic forces in the frequency domain are
always the values of analytic functions determined in the entire complex plane of
the Laplace variable. These functions have poles in the left half of the complex
plane, which determine the limits for the approximation by means of rational
functions (with analytic continuation from the imaginary axis into the complex
plane) and which may significantly influence the aerodynamic forces in the time
domain.

1. In the case when the discretizing procedure of the lifting surface equation
follows the lifting lines or doublet-lattice methods, the resulting algebraic equa-
tions are well-conditioned in the right half of the p-plane and in a strip parallel to
the imaginary axis in the left half of the p-plane. The width of this strip decreases
with increasing Mach number, but is wide enough for almost all applications.
Only for high subsonic flow the problem of conditioning may be severe.
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2. In the compressible case (M # 0), there exist a large (probably infinite) set
of latent roots of the aerodynamic coeflicients matrix in the left half of the p-plane
which reflects (usually) in poles of the transfer functions. The distribution of
these latent roots in the p-plane does not depend on the number of aerodynamic
elements introduced in the discretization procedure (only small differences were
observed which may be related to the accuracy of the results).

3. Also the pressure distributions which correspond to latent vectors of the
aerodynamic influence coefficients matrix do not depend on the number of aero-
dynamic elements introduced in the discretization procedure.

4. For decreasing Mach number A/ — 0, all latent roots move away from
the origin to infinity and probably, for A/ = 0 there are no roots in the finite
part of the p-plane. It seems to agree with the results of the STarRk method [20]
which takes into account only one singularity — the branch-point in the origin.
The remarkable accuracy of this method in the incompressible case and less
satisfactory results for M > 0 may be caused by the influence of the poles of
transfer functions.

5. In subsonic flow for A/ — 1, all latent roots tend to the origin (p = 0).
The proximity of many poles may cause significant difficulties in the calculation
of transfer functions in the range of high subsonic flow.

6. The decomposition of the deficiency function into a part which expresses
the influence of latent roots (7.19) and a part influenced by the branch point
(7.20) enables the extraction of the part which is responsible for the starting
pulse. This agrees with the results of Epwarps [15] who stated, that the step
response function obtained by integrating along the branch cut does not contain
the starting pulse.

7. The looping behaviour of some of the generalized forces for strongly decay-
ing motion observed in [18] may be explained as the result of influence of poles
of the transfer functions. It may be regarded as an indirect confirmation of the
existence of latent roots in the kernel-function results.

The calculations and all considerations presented in this paper concern the
aerodynamic model and the results are independent of the choice of generalized
coordinates used to describe the motion of the structure.

The approximation to the aerodynamic transfer functions based on the iden-
tified singularities and the calculated left and right-hand latent vectors of the
influence coefficients matrix avoids the ill-posed analytical continuation from the
imaginary axis into the whole p-plane. It may be applied also in regions which
contain poles of the transfer functions.

Appendix. Discretization of the piston theory in the lifting lines method

In the lifting lines method of discretization (similarly to many other methods),
the pressure distribution on a profile (cross-section of the wing) is approximated
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by means of a truncated series of functions with appropriate singularities on
the leading and trailing edges. The pressure distribution in the piston theory
follows the upwash distribution and is a regular, continuos function. Therefore it
is not possible to cast the piston theory in the lifting lines discretization scheme
exactly. Nevertheless, the approximation can assure the exact values of moments
of aerodynamic forces in the case if the upwash distribution is a polynomial of
degree less than the number of lifting lines on the cross-section.

The procedure of calculating the (approximate) pressure distribution on the
profile ¢,(x) on the basis of a known upwash distribution w(z)/U in the lifting
lines method [4] consists of the following steps

w(z)
U

The vectors {f} and {w}, as well as {¢,} and {«} describe in the cross-section
the approximate distributions of the upwash and pressure coefficient, respectively.
The sizes of these vectors are equal to the number of lifting lines (denoted later
by m). The vectors {w} and {¢,} for all cross-sections of the wing create the
vectors in (3.2) and N =3 m.

The pressure distribution on a cross-section is, in the lifting lines method,
approximated by a truncated series of Jacobi polynomials

(A.1) = {f} = {w} = {¢,} = {a} = ¢,(z).

., om—1

1 /1-2a ,
(AZ) (.'p(.'l') = b_l m LZ::O !U;]k(.l’),

where 20; is the local chord, the coordinate x is normalised to the interval
—1 <z <1 and Py(2) are polynomials which fulfil the orthogonality condition

1
1-2z2
(A3) ] Vs B@) P @) do = .
-1

The vector {a} of the coefficients «;. is determined for a given pressure dis-
tribution by the expression

1
(A4) {a} = %/{1’@)} cp(x) de.
4

The elements of the vector {P(x)} are the polynomials Pi(z). The quantities
calculated in the lifting lines method from the set of algebraic equations are the
strengths of lifting lines (pressure doublets). They are related to the ;. coefficients
directly

(A.5) {ep) = [WI[PT {a},
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where [W] is a diagonal matrix with weight coefficients of the Gauss-Jacobi
quadrature, and the elements of the matrix [#] are the values of the polynomials
Pi(z) in the nodes of this quadrature.

The upwash distribution is approximated by means of the polynomials Qx(z) =
Pi(-z)

w(z) 15

(A6) g g Z JiQu@) = ~ Q@ (1),
where the coefficients fi are determined by the expression
(A7) ()= L Q@) B2

They are next transformed to the form

(A.8) {w} = —[1’] {1} =PIV

The discretized model of the piston theory may be constructed on the basis of
the following scheme

(A.9) {w} = {f} = L(—) = gg{x) = {e} = {65},

with the use of the relations (A.S), (A.6), (7.7), (A4) and (A.S).

1

A e _/{1’(.r)}{()(.;,-)}TdI [PI[WV]{w},

=1

(A.10) {eo} = -

where
1l (_1)k+r1 = (_l)n—k

1 - for n#k
k+mn+1 n—k 4
Al fP.- () =
(A.11) i (2)Qn(2) da g
-1 T for n==%k

The matrix [D] defined in (7.6) has, in the case of lifting lines method, a quasi-
diagonal form and each diagonal block corresponds to a cross-section of the wing
and has the form determined by (A.10).
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