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Stability of Couette flow in the wide gap 
of two circular concentric cylinders 
with rotating inner cylinder and finite growth rate 

H.S. TAKHAR (MANCHESTER), M.A. ALl (BAHRAIN) 

and V.M. SOUNDALGEKAR (THANE) 

A FINITE-DIFFERENCE sournoN for the stability of fl ow of a viscous fluid in an annular wide-gap 
space is carried out by taking into account the effects of finite growth rate of the ampl ification 
factor 17. The numerical values of the minimum Taylor number Tarn and the critical Thylor number 
The for different values of 1J and for 17 ｾＰ＠ and 17 = 0, respectively, arc derived and tabulated. l11e 
effects of 17 and 17 on the radial component of disturbance and on the cell patterns are shown. It 
is observed that for increasing 17(> 0), the cell patterns arc reduced in size, while for decreasing 
17( < 0) they arc enlarged. 

1. Introduction 

STABILITY OF AXISYMMETRIC FLOW of a viscous incompressible fluid between two 
concentric rotating cylinders has been investigated by TAYLOR [6], CHANDRASEK-
HAR (1 ), HARRIS and REro (2), W ALOWIT, TSAO and D1 PRIMA [7), SOUNDALGEKAR 
et al. [4], who used difTerent methods and difTerent boundary conditions. The 
usual mathematical procedure of the stability analysis is to assume that small 
disturbances are superimposed on the steady motion. These disturbances are 
assumed to be periodic in the z-direction and proportional to e171

, where a is 
the amplification parameter or growth rate factor. Then the parameter which 
governs the stability of the motion is the exponential time factor a, the motion 
being stable or unstable according to whether the real part of a is less than or 
greater than zero, and when a = 0, it is known as the marginal state. Almost all 
the papers in this fie ld applying the li near stabili ty analysis dealt with a = 0, i.e. 
the marginal state of stabilit y. RoBERTS [3] was the first to study the effects of 
non-zero values of the growth rate on the Taylor number in the wide-gap Couette 
fl ow, and computed the smallest characteristic values of the Taylor number for a 
given wave number a and the growth rate factor a, by employing the numerical 
method given by Harris and Reid. However, the efTects of a on the radial velocity 
perturbation and on the cell pattern have not been studied or shown graphicall y. 
Hence it is now proposed to solve the eigen-value problem of ROBERTS [3] by 
using a finite-difierence technique and to derive the minimum values of the Taylor 
number, Tarn, for difi erent values of ±a of the radial velocity perturbations and 
the cell-patterns. In the next section, a short account of the finite-difTerence 
method is given and numerical values of Tam are tabulated for different values of 
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±a and wave number a. In order to verify our results, we have also computed the 
numerical values of Tac, the critical Taylor number fo r a = 0 and crit ical wave 
number ac. 

2. Solution to the axisymmeh·ic pr·oblem a t finit e growth r·ate 

The axisymmetri c lin ear stabili ty of Couette flow at finite growth rate, wher. the 
outer cylinder is at rest and the two cylinders are separated by a wide gap, ca1 be 
shown to be governed by the following system of sixth order (e.g. SOUNDALGEKAR 

et al. [5]) . 

(2.1) 

(2.2) 

(2.3) 

(DD*- a2 - a)v = 1L, 

u = v =Du= 0 at x = 0, 1. 

Here u, v are the radial and azimuthal components of the disturbances, a ｩ ｾ＠ the 
axial wave number, a is the growth rate and Ta is the T<tylor number. The) are 
defined as follows: 

(2.4) 
d 

D = -
dx' 

x = 
cl 

D* = !!_ + 1 - 17 • 
dx ｾ＠

ｾ＠ = 1] + (1 -1J).l: , 

!J(.r) = 1 - x, 

Ta = 41?d4 ( f2 t) 2 
1 - 772 // , 

where R1 and R2 are the radii of the inner and outer cyl inders, respectively, and 
.01 is the rate of rotation of the inner cylinder. Our Ta is equivalent to 2Tan 
where Thn is the Taylor number defined by Roberts or Chandrasekhar, as 

'PJn = 21?d4 (EJ.) 2 
1 - '1/2 V 

3. Method of solution 

I3y solving the above eigenvalue problem defin ed by Eqs. (2.1)-(2.3), W { de-
termine the small est characteristic value of the Titylor number, denoted by fam, 
for given wave number a and a . To solve Eqs. (2.1)-(2.2) by the finite-difTer!nce 
technique, we first expand these as follows: 

(3.1) [n4 + 2kD3
- (31.:2 + 2a2 +a) D2 + (31.:3 - 2al.:- al.:) D 

+(2a2k2
- 3!.:4 + a4 + a(k2 + a2

)] u = -a2 
• Ta · g (r )v, 

(3.2) [n2 + kD - (k2 + a2 + a)] V = u, 1.: = 
1 
ｾ＠

1
7 . 
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We write the d erivatives in terms o f central di fTerences and rearrange the terms. 
Then E qs. (3.1) and (3.2) reduce to 

(3.3) m ;Ui+2 + mzUi+ l + m3U; + 1n4Ui- l + msUi-2 = - h
4

a
2
Td • g (x )· V;, 

(3.4) c1 v;.+l + c2 v;. + C3 vi -1 = h2Ui , 

where 

(3.5) 

m 1 = 1 + hk, 

1 
mz = - 4 - 2hk - h2(3k2 + 2a2 + a) + 2h3(3k3

- 2a2k - ak), 

m3 = 6 + 2h2(3k2 + 2a2 + a )+ h4(2a2k2 - 3k4 + a4 + a k2 + a a2
) , 

1 
m4 = -4 + 2hk- h2(3k2 + 2a2 +a ) - 2_h3(3k3 - 2a2k - ak), 

m 5 = 1 - hk, 

1 c1 = 1 + -hk 2 , 

Cz = -2- h2 (k2 + a2 + a ), 

1 c3 = 1 - 2hk. 

The sufT1X i stands fo r the pivotal point under consideration. The step length 
h = 1/N, where N is the number of interv als into which the range [0, 1] is 
divided. The boundary conditions (2.3) imply that 

(3.6) 

Equations (3.3) and (3.4) wi th conditio ns (3.6) can be wri tten in matrix no ta tion 
as 

(3.7) 
A 1 U = Ta D 1 \1, 

A2V = Ti, 

where A 1, A2 and B 1 are the coefll cient matrices of order n x n, and n = N - 1. 
Equatio ns (3.7) can be combined into an eigenvalue equation of the fo rm 

(3.8) ( C - Ta I) V = 0. 

The e igenvalues are computed by using the QR algorithm fo r a = 0, ± 0 .5, ± 1, 
± 1.5, ± 2.0 and are li sted in Table 1 fo r 17 = 0.85, 0.5, 0.1 which corresponds to 
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the wide gap case. For a = 0, the marginal state, the e igenvalues Tac are known 
as critical values of the Taylor number which corresponds to lowest values of the 
wave number a and are denoted by ac, the critical wave number. 

We observe from Table 1 that for the marginal state of stability (a = 0), the 
critical values of the Taylo r number and wave number increase by increasing the 
width of the gap between two concentric cylinders. However, when the amplifi ca-
tion factor a (> 0) is increasing, there is also an increase in the minimum values 
of Taylor number, and opposite is the case when the amplifi cation factor a(< 0) 
is decreasing; then the minimum values of Ta viz. Tam also decrease. 

Table 1. Values of ac, Tac (a = 0) and am, Ta,,, (a =I 0). 

0.85 

0.5 

0.1 

TJ ac Tac Tac(Jl) 
0.85 3.130 3802 3805 

0.5 3.162 6194 6199 

TJ/a -2.0 -1.0 -0.5 -0.1 0.5 1.0 1.5 2.0 

CL m 3.00 3.068 3.100 3.124 3.159 3.188 3.215 3.241 

Tam 3233 3515 3658 3773 3947 4097 4243 4393 

am 3.033 3.100 3.132 3.156 3.191 3.219 3.247 3.273 

Tam 5289 5737 5964 6148 6425 6659 6895 7134 

CL m 3.217 3.280 3.310 3.333 3.367 3.395 3.422 3.449 

Tam 56216 60318 62394 64065 66592 68716 70855 73011 

1.0 

0 .8 

U(x) 
'7 = 0 .5 

'r-----1-\----- '7 = 0 .1 
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- - a = - 2.0 
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X 

FIG. 1. Radial ve locity U(x). 
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The radial component of velocity disturbance U(x ) is shown in Fig. l for TJ = 
0.5, 0.1 and for a = 0, ±2.0. It is observed that U(x) increases near the inner 
cylinder and decreases near the outer cylinder when a = 2.0 as compared to that 
at the onset of instability (a = 0.0), and opposite is the case when a = - 2.0. The 
cell patterns are shown for TJ = 0.5 and 0.1 for a = 0, ± 2.0 in Figs. 2-7. It is 
observed from these figures that the cells get reduced in size for a = 2.0 and get 
enlarged in size for a = -2.0 as compared to those at the onset of instability. 

0.497 
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0.3 

0.15 

z 
0.0 

- 0 .15 

-0.3 

-0.497 
0.2 0 .4 0.6 X 0.8 1.0 

FIG. 2. Cell patterns at the onset of instabil ity for 17 = 0.5 and a= 0.0, 1/J = U(x)cosaZ . 
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F IG. 3. Cell pattern instability for 17 = 0.5 and a = 2.0. 
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F IG. 4. Cell pattern instabili ty for 17 = 0.5 and a = -2.0. 
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F IG. 5. Cell patterns at the onset of instabi li ty fo r 17 = 0.1 and a = 0.0, '1/; = U (x ) cm aZ. 
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F IG . 6. Cell patterns for 11 = 0.1 and a = 2.0. 
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FrG. 7. Cell pattern for 77 = 0.1 and a = -2.0 
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