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Stability of Couette flow in the wide gap
of two circular concentric cylinders
with rotating inner cylinder and finite growth rate

H.S. TAKHAR (MANCHESTER), M.A. ALl (BAHRAIN)
and V.M. SOUNDALGEKAR (THANE)

A FINITE-DIFFERENCE SOLUTION for the stability of flow of a viscous fluid in an annular wide-gap
space is carricd out by taking into account the cffccts of finite growth rate of the amplification
factor #. The numerical values of the minimum Tayler number Tay, and the critical Taylor number
Ta. for different values of n and for 020 and ¢ = 0, respectively, are derived and tabulated. The
effects of n and o on the radial component of disturbance and on the cell patterns are shown. It
is observed that for increasing o(> 0), the cell patterns are reduced in size, while for decreasing
o(< 0) they are enlarged.

1. Introduction

STABILITY OF AXISYMMETRIC FLOW of a viscous incompressible fluid between two
concentric rotating cylinders has been investigated by TAYLOR [6], CHANDRASEK-
HAR [1], Harris and REID [2], WaLowIT, Tsa0 and D1 PRIMA [7], SOUNDALGEKAR
et al. [4], who used different methods and different boundary conditions. The
usual mathematical procedure of the stability analysis is to assume that small
disturbances are superimposed on the steady motion. These disturbances are
assumed to be periodic in the z-direction and proportional to €”*, where o is
the amplification parameter or growth rate factor. Then the parameter which
governs the stability of the motion is the exponential time factor o, the motion
being stable or unstable according to whether the real part of ¢ is less than or
greater than zero, and when o = 0, it is known as the marginal state. Almost all
the papers in this field applying the linear stability analysis dealt with o = 0, i.e.
the marginal state of stability. RoBerts [3] was the first to study the effects of
non-zero values of the growth rate on the Taylor number in the wide-gap Couette
flow, and computed the smallest characteristic values of the Taylor number for a
given wave number a and the growth rate factor o, by employing the numerical
method given by Harris and Reid. However, the effects of ¢ on the radial velocity
perturbation and on the cell pattern have not been studied or shown graphically.
Hence it is now proposed to solve the eigen-value problem of RoBErTs [3] by
using a finite-difference technique and to derive the minimum values of the Taylor
number, Ta,,, for different values of +o of the radial velocity perturbations and
the cell-patterns. In the next section, a short account of the finite-difference
method is given and numerical values of Ta,, are tabulated for different values of

http://rcin.org.pl



836 H.S. TAknAr, M.A. ALl AND V.M. SOUNDALGEKAR

+o and wave number «. In order to verify our results, we have also computed the
numerical values of Ta,, the critical Taylor number for ¢ = 0 and critical wave
number a..

2. Solution to the axisymmetric problem at finite growth rate

The axisymmetric linear stability of Couette flow at finite growth rate, wher the
outer cylinder is at rest and the two cylinders are separated by a wide gap, caa be
shown to be governed by the following system of sixth order (e.g. SOUNDALGEKAR
et al. [5]).

(2.1) (DD* = a* = a)(DD* — a¥)u = —a’Ta - g(z)v,
(2.2) (DD* - a* = o)v = u,
(2.3) u=v=Du=0 at = =01

Here u, v are the radial and azimuthal components of the disturbances, «a is the
axial wave number, o is the growth rate and Ta is the Taylor number. They are
defined as follows:

e R
d=R2-—Rl, .’l,'=1 p I, {/(<I')=1—.’l',
d L_d 1-7 B
(2.4) Bi= e ¥ = T + c a = M\,
d2dt [ 02\?
n = R/R,, E=n+ (1 -y, Ti = 2 (7) ,

where Ry and I?; are the radii of the inner and outer cylinders, respectively, and
2y is the rate of rotation of the inner cylinder. Our Ta is equivalent to 2Tag
where Tap is the Taylor number defined by Roberts or Chandrasekhar, as

22d% 1 021\?
Tap = — ] .
'R 1- 7]2 ( v )

3. Method of solution

By solving the above eigenvalue problem defined by Eqs. (2.1)-(2.3), we de-
termine the smallest characteristic value of the Taylor number, denoted by Ta,,,
for given wave number a and o. To solve Egs. (2.1)—(2.2) by the finite-differ:nce
technique, we first expand these as follows:

@3.1)  [D*+2kD3 - (37 + 247 + o) D? + (3K - 2ak — k) D
+a*k? =3k + o + o (1 + n?‘)] u= —a*Ta-g)v,

(3.2) {Dz +hD — (K + d* + (T)] v = u, k= : ; i,
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We write the derivatives in terms of central differences and rearrange the terms.
Then Eqgs. (3.1) and (3.2) reduce to

(33) m;U; 9 + maU; 1 + mzU; + maU;_1 + msU;_o = —/14a2Td . _(j(ﬂ':)' Vi,

(3.4) CiVig1 + CoVi + C3Vioy = R2U;,
where
my = 1+ hEk,
my = —4 — 2hk — h2(3k% + 2d® + o) + %1&(3;.-3 ~2a*k — ok,
m3 = 6 + 202(3k% + 2a% + o) + K122 - 3k* + ot + ak? + 0d?),
(3.5) m4=~4+mm—h%yﬁ+2£+o)—%mcm—sz—an,
ms = 1 — hk,
=1+ %hk,
Cy = =2 - R}k + a* + o),
Cy= 1= %hk.

The suffix ¢ stands for the pivotal point under consideration. The step length
h = 1/N, where N is the number of intervals into which the range [0,1] is
divided. The boundary conditions (2.3) imply that

Ug=WV=Unv=Vy= 0,

(3.6)
Uy = Uy, Uni1=Un-ae

Equations (3.3) and (3.4) with conditions (3.6) can be written in matrix notation
as

Alﬁ = Ta BIV,
(3.7)

AV =T,

where A,, A; and B, are the coeflicient matrices of order n x n, and n = N — 1.
Equations (3.7) can be combined into an eigenvalue equation of the form

(3.8) (€ —TaD)V = 0.

The eigenvalues are computed by using the QR algorithm for ¢ = 0, £0.5, £1,
+1.5, £2.0 and are listed in Table 1 for n = 0.85, 0.5, 0.1 which corresponds to
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the wide gap case. For ¢ = 0, the marginal state, the eigenvalues Ta. are known
as critical values of the Taylor number which corresponds to lowest values of the
wave number a and are denoted by a., the critical wave number.

We observe from Table 1 that for the marginal state of stability (¢ = 0), the
critical values of the Taylor number and wave number increase by increasing the
width of the gap between two concentric cylinders. However, when the amplifica-
tion factor (> 0) is increasing, there is also an increase in the minimum values
of Taylor number, and opposite is the case when the amplification factor o(< 0)
is decreasing; then the minimum values of Ta viz. Ta,, also decrease.

Table 1. Values of a., Ta. (¢ = 0) and a,, Ta,, (¢ # 0).

n Qe Ta, Tac(n)
0.85 3.130 3802 3805
0.5 3.162 6194 6199
n/o -2.0 -1.0 -0.5 -0.1 0.5 1.0 1:5 2.0

0.85 Gm 3.00 3.068 3.100 3.124 3.159 3.188 3.215 3.241
Tam 3233 3515 3658 3773 3947 4097 4243 4393

0.5 am 3.033 3.100 3.132 3.156 3.191 3.219 3.247 3273
Tam 5289 5737 5964 6148 6425 6659 6895 7134

0.1 am 3217 3.280 3.310 3.333 3.367 3.395 3.422 3.449
Ta,, 56216 60318 62394 64065 66592 68716 70855 73011

0.81

U(x)

0.6+

0.4

0.2

0.0
0.0 0.2 0.4

FiG. 1. Radial velocity U(z).
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The radial component of velocity disturbance U(z) is shown in Fig.1 for n =
0.5, 0.1 and for ¢ = 0, £2.0. It is observed that U(z) increases near the inner
cylinder and decreases near the outer cylinder when o = 2.0 as compared to that
at the onset of instability (¢ = 0.0), and opposite is the case when o = —2.0. The
cell patterns are shown for n = 0.5 and 0.1 for ¢ = 0, £2.0 in Figs.2-7. It is
observed from these figures that the cells get reduced in size for ¢ = 2.0 and get
enlarged in size for ¢ = —2.0 as compared to those at the onset of instability.
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FiG. 3. Cell pattern instability for » = 0.5 and o = 2.0.



0.518

0.45 1

0.3 -
0.15 - ’

Z

0.0 -

-0.15

-0.5

~0.45 -

e =

-0.518 r T T T
0.2 0.4 06 X 08 1.0
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Fia. 6. Cell patterns for 4 = 0.1 and o = 2.0.
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FiG. 7. Cell pattern for n = 0.1 and 0 = 2.0
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