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Magnetohydrodynamic boundary layer flow and heat transfer
on a continuous moving wavy surface

M. A. HOSSAIN (DHAKA) and 1. POP (CLU))

THE pPROBLEM of the boundary layer flow and heat transfer on a continuous moving wavy surface
in a quiescent electrically conducting fluid with a constant transverse magnetic ficld is formulated.
The resulting parabolic differential equations are solved numerically using the Keller-box scheme.
Detailed results for the velocity and temperature fields are presented, and also the results for the
skin-friction coefficient and the local Nusselt number. These results are given for different values
of the amplitude of the wavy surface and magnetic paramcter when the Prandtl number equals
0.7. It is shown that the flow and heat transfer characteristics are substantially altered by both the
magnetic parameter and the amplitude of the wavy surface.

1. Introduction

THE INTERACTION between an electrically conducting fluid and an applied mag-
netic field is an important practical problem which has been studied very often
in relation to the magnetohydrodynamic (MHD) power generator and bound-
ary layer flow control. Hydrodynamic behaviour of boundary layers along a flat
plate in the presence of a constant transverse magnetic field was first analysed by
Rossow [1], who assumed that magnetic Reynolds number was so small that the
induced magnetic field could be ignored. This problem has been further investi-
gated by many researchers, including LEwis [2], KaTaGIRI [3], LiRoN and WILHELM
[4], CHUANG [5], INGHAM [6], PATHAK and CHOUDHARY [7], SOUNDALGEKAR et al.
[8], WATANABE [9], and WataNaBE and Por [10], among others.

The purpose of this paper is to study the MHD boundary layer flow and heat
transfer over a continuous moving wavy surface in an electrically conducting fluid
at rest, in the presence of a constant transverse magnetic field. The transformed
nonsimilar boundary layer equations were solved numerically using the Keller-box
method [11] for some values of the amplitude of the wavy surface «, and magnetic
parameter M with the Prandtl number Pr equal 0.7. We have studied the effect
of the parameters a« and A on the velocity and temperature fields, as well as
on the skin-friction coefficient and the local Nusselt number. We expect that the
physical insight gained in this paper will enable the understanding of the complex
situations where boundary layer approximation is not made.

It is worth pointing out that the MHD flow and heat transfer over a wavy
surface is of importance in several heat transfer collectors where the presence of
roughness elements disturbs the flow past surfaces and alters the heat transfer
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rate. On the other hand, a continuously moving surface in an electrically con-
ducting fluid permeated by a uniform transverse magnetic field has many practi-
cal applications in manufacturing metallurgical processes involving the cooling of
continuous strips or filaments by drawing them through a quiescent fluid. Men-
tion may be made of drawing, annealing and tinning of coper wires. In all these
cases the properties of the final product depend to a great extent on the rate
of cooling. By drawing such strips in an electrically conducting fluid subject to a
magnetic field, the rate of cooling can be controlled and final products of desired
characteristics might be achieved. Another interesting application of hydromag-
netics to metallurgy lies in the purification of molten metals from non-metallic
inclusions by the application of a magnetic field.

2. Basic equations

Consider a wavy surface at wall temperature T, moving tangentially from left
to right with a constant velocity U through a stagnant electrically conducting fluid
of temperature 7., where T, > T.,. The wavy surface is electrically insulated
and a constant magnetic field By normal to the surface is imposed. The geometry
and the coordinate system, which is fixed in space, are illustrated in Fig.1. The
wavy surface is described by

(2.1) 7 = 5(7) = asin(z7/1),

where @ is the amplitude of the wavy surface and [ is the characteristic length scale
associated with the waves. In the present analysis the magnetic Reynolds number
is assumed to be small and therefore, the induced magnetic field will be very small
and can be neglected compared to the applied field. Under this approximation,
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F1G. 1. Physical model and coordinate system.

the basic equations governing the steady flow of a viscous incompressible and
electrically conducting fluid in presence of a uniform transverse magnetic field
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are
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where @ and 7 are the components of velocity along the Z- and ¥y-directions,
respectively, 7" is the temperature, p is the pressure, p, v and oy are the density,
kinematic viscosity and electric conductivity of the fluid, and V? is the Laplacian
expressed in Cartesian coordinates.

The appropriate boundary conditions for the above equations are

7=5(@): uty-otz=0, UWz+vty=U, T=T, al 7>0,
(23) T=00: U=0=0, P=pe, T =Tx, all T20,
T=0: P=pw, T =Ty, al F#0,
where tz and t5 are the components of the unit vector tangent to the wavy surface
along (7, 7)-directions.

Equations (2.2) may now be nondimensionalized by using the following vari-
ables

z=%/l, y=7g/l, uw=u/U, v=7/U,
(B - poo)/U?% 0= (T —Tx)/AT, a=a/l, S(z)=S5@E)/I,

where AT = T, — T. Using these variables and introducing the nondimensional
stream function 7 defined as

24

P

(2.5) U= —~ v = ——

Eq. (2.5) can then be written as

o0 B 00y _p 100y 0
dy dzdy  Ox dy* ~  Or Re
v 9 oY 9%y dp 1 _, /00
2 —_— — - = —— —\
(26) 9y 022 0r 020y~ Oy TRe" ( )
2008 009 _ 11 o
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Also, the boundary conditions (2.3) become

"J+0¢’ o, 2 _5 00

y = §(x)= 5z dz Tdy =0
. 3¢ _ oy _ B
27) y—oo: 3y 01:_0 p=0, 0=0,
o =0 p=0, =0, all y#0;

here o is defined according to

(2.8) o= (1+ 52)”2

=0, 0=1,

all z >0,

all z >0,

with S, = dS/dz. Here Re = Ul/v is the Reynolds number and M = o¢B3l/oU
is the magnetic field parameter. We notice that (t¢,,t,) = (1/0, 5./0) were used
in (2.7). It should be noted that the value ¢ = 1, i.e. @ = 0, corresponds to the
case of a flat surface. In this case we take for [ a characteristic length L along

the flat surface.

The effect of the wavy undulations can be transferred from the boundary
conditions (2.7) to the governing equations by means of the transformation given

by (see REEs and Por [12, 13]),

(2.9)

=z, y=1y—S().

Applying (2.9) to Eqgs. (2.6) and dropping the hat we get the following equations:

%_022*5_%@—_@_9 Ip _1_[ )_Mi"_
dy 0z0y  dx Oy* da ‘J'(')y Re ¥ dy’
N N T S A
dy 0z2  Jdx Oxdy Jzr Oy Jy dxdy A\ 0y
(2.10) dp 1
= oy W R—eLzl/),
ouon owor 11,
dy dz c);vay_PrRe:}“
and the boundary conditions (2.7) become
)
y:O; =0, g—;:l/ f=1 ali z >0
(2.11) Yy — 00 %=?—f§=0, p=0, 6=0, all 2>0
z=0: p=0, =0, al y#0
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where L, L, and L3 are the operators defined by
2.0 J ')_5',_()_ - 5“_0_‘
dy3 ()J().L oz (‘)J dy?

L, = —S.0? 2 & +(1+352) - 35 i
. y? o y “ 9yt
(2.12) (-)2 02 o 33
- o + 30 ¥z 5 oy — 1:a..:,.r. ’
35 dxdy el ay? 5 dy s 023
92 o2 . 0? .0

a7 * 02 " < pany ~ Sy

Next, we introduce the boundary layer variables
(213) F=2z, j=vRey, ¥ =VRey, p=p, 6=09.

Substituting (2.13) into (2.10) and formally letting Re — oo, we obtain, after
dropping the tilde,
& B2 , 92, 39

0—¢.afl’—?—¢(3'f=—@+R‘/2b 09 o gd® P _ ylP

dy dxdy  dx dy da dy dy? dy’

ap O* A 0*) (aw) 2039 1/20p

2.14 |l =—=— - — -S| + L 4
et (03: 9y 0y 3a0y) o= \ay) T TR gy

ay 98 9y 98 _ 1 2020

dy dxz  Jdzx Jy ()1/

Equation (2.14); indicates that the pressure gradient in the y-direction must
be of O(Re~/?). This implies that the lowest order pressure gradient in the
z-direction can be determined from the inviscid flow solution. In the present
problem, the inviscid flow field is at rest and hence dp/dz = 0. Now, elemination
of dp/dy between (2.14); and (2.14); results in the following boundary layer
equations for the problem under consideration:

W Py Py on (o_¢)2 _ 20 Moy
dy dzdy  dx 9yt o \Jy dy3 ot ay’
0600 0000 _ 1 0%

dy dx  dx Jy pr’ ayr’
subject to the corresponding boundary conditions

(2.15)

y=0: ¢=0, —(())(:‘—l/rr g=1, all z>0,
dy o
— 4 —_—= — = = c €T 2
(2.16) Yy — 00 9y = 02 0, =0, all >0,

z=0: 6=0, al y#0.
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To solve Eqgs.(2.15) along with the boundary conditions (2.16), we introduce
the following group of transformations:

(2.17) ¥ =o€ fE,m), 0=g(&n),
where
(2.18) N = %5—‘/2, £ =z

Equations (2.15) then become

" 1 1" ¢ " 2 M /o /0.'” //Bf
gy R0 = (15 - "5

1 " 1 l j df
pd +§fg + ffJ —E(f 9€ 05)

subject to the boundary conditions
f(&,0 =0,  f(0) =10  g(£0)=1,
f'(§,00) = h(§,¢) =0,  g(§ ) =0,
where primes denote partial differentiation with respect to 5. We notice that
Egs. (2.19) reduce to those derived by REes and Por [14] when there is no applied
magnetic field (M = 0) in the flow field.

The physical quantities of interest are the skin-friction coefficient and the local
Nusselt number defined as

(2.20)

T?U T ﬁru

Nu, = —de
oU2’ % = TAT

where the skin-friction 7, and the heat flux 7, at the wall are given by

(2.21) C; =

du Jv
. Tw = F ) q, = —k - VT.
- fw = (dJ Uf)g:ﬂ e !
Here u and k are the viscosity and thermal conductivity of the fluid, and
Sz 1
(2.23) n= (—;, ;)

is the unit vector normal to the wavy surface. Using (2.4), (2.9), (2.13) and (2.17),
we get the skin-friction coefficient and the local Nusselt number from the follow-
ing expressions:

1
(2.24) CyRe}? = ~f(6,0),  Nuy/Re}/? = —¢/(€,0),

where Re, = UZ/v is the local Reynolds number.
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3. Results and discussion

An implicit finite-difference method together with the Keller-box elimination
technique [11] have been used to solve the parabolic differential equations (2.19)
along with the boundary condition (2.20). Since a good description of this method
is available in [15-17], it will not be repeated here. The accuracy of the predicted
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F1c. 2. a) Velocity profiles against 5 for different M with ¢« = 0.1; b) temperature profiles
against 7 for different M with ¢ = 0.1 and Pr = 0.7.
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results has been established by comparison with known results for the skin-friction
coefficient and the local Nusselt number of a continuously moving flat plate (a =
0) in a viscous electrically non-conducting fluid with A/ = 0. Thus, Reges and Pop
[14] found CyRel/? = —0.4438 and Nu,/Rel/? = —0.3492 for Pr = 0.7, while
the present calculations give C;Rel/? = —0.4439 and Nu,./Rel/? = —0.3509. It is

seen that these results are in excellent agreement and therefore we are confident
that our present solution is very accurate.
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Fic. 3. a) Vclocity profiles against » for different « with A/ = 0.5; b) temperature profiles
against 5 for different a with A7 = 0.5 and Pr = 0.7.
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Representative velocity and temperature profiles are shown in Figs.2 and 3
exhibiting the effects of the wave amplitude « and of the magnetic field parameter
M. Results are given for Pr = 0.7 only. Then, since behaviour of these profiles
at crest and trough positions is very similar, the case of £ = 0.5 (crest) and
& = 1.5 (trough) are only presented in this paper. Figures 2 and 3 show clearly
that both the velocity and temperature profiles increase with the increase of M.
However, Fig.2 indicates that for ¢« = 0.1 and M = 0 (non-magnetic field) at
both the through and crest positions, the velocity and temperature profiles are
almost identical due to which the differences between the thick and thin curves
are not observable. But, at a larger value of a (0.5, say), there is a considerable
difference at these two positions (trough and crest) in the velocity and tempera-
ture profiles for M = 0. On the other hand, the velocity profiles decrease, while
the temperature profiles increase owing to the increase of the amplitude of the
wavy surface.
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Fia. 4. a) Skin-friction cocfficient for different a with A/ = 0.5; b) local Nussclt number
for different @ with A = 0.5 and Pr = 0.7.
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In Figs.4 and 5 the variation with ¢, M and & of the skin-friction coefficient
and the local Nusselt number is illustrated. It is observed that these quantities
vary periodically in the direction of £ when a # 0 (wavy surface), while they
vary smoothly for a = 0 (flat plate). Further, Fig.4 a shows that the skin-friction
coefficient is less than or equal to that corresponding to a flat surface (¢ = 0);
this is due to the effect of centrifugal forces, the third term of Eq. (2.19);.

a) 3.0 IY; T T T

: 0.0

2.0

<R

00 | 1 e

0.0 2.0 4.0 6.0 8.0

e 0.0
&t )28
o: 0.5
o: 0.7
0.0 B Tl g | |
0.0 2.0 4.0 6.0 8.0

FiaG. S. a) Skin-friction coefficient for different A/ with « = 0.1; b) local Nusselt number
for different M with « = 0.1 and Pr = 0.7.
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