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Thermodynamic potentials and extremum principles 
ｾｯ ｲ＠ a Boltzmann gas 

Z. BANACH and S. PIEKARSKI (WARSZAWA) 

lN nus I'APER, a thermodynamic interpretation of the kinetic theory and Boltzmann's equa tion is 
explici tl y obtained; the nonequilibrium thermodynamic space consists of the nonnegat ive distrib u-
tion functio ns. Beginning from a molecular expression for entropy in the form o f Boltzmann's H 
functional, the systematic construction of thermodynamic potcntials is demonstrated for gaseous 
systems beyond local equilibrium (" not intini tesim31ly near to equi l ibrium"). Since the no ncqui-
li brium thermodynamic space provides natural comparison states for the principles of maximum 
entropy o r minimum ene rgy, a simple criterion for the choice of gas-state variables can be given 
which shows tha t the maximiza1ion of the Legendrc transforms of entropy is logicall y equivalent to 
the mini mization of the Lcgendre ｴｲ ｡ｮｾ ｦ ｯｲｲｮｳ＠ of ene rgy. This criterion is sought after in such a way 
that the concepts of temperature and pressure need no reformulation out o f cquilib rium. Af ter 
these prepa rations, the technique of functional differentiatio n is used to de rive the generali zed 
Gihbs equation (relation) for Boltzmann's entropy. Finally, the paper presents an analysis o f how 
the functional representation of this equa tion re lates to the method of moments. 

1. Introduction 

IN GIBBSIAN THERMOSTATtCS [1 - 3], one postulates that all macroscopic properti es 
of a thermodynamic system are contained in a fundamental equation representing 
either the entropy or the energy as a function of additive conserved quantities. 
Thus in both the entropy and energy representations the extensive parameters 
play the roles of mathematically independent variables, whereas the intensive par-
ameters are introduced in a systematic manner as derivatives of the fundamental 
equation. The energy-language fundamental equation can be taken as the ba-
sic relation on which the Legendre transformation is performed. Such Legendre 
transforms of the energy are usually called thermodynamic potentials. Another 
set of thermodynamic functions (Massieu's functions) can be obtained by per-
forming the Legendre transformati ons on the entropy rather than on the energy. 
In the entropy representation the entropy is maximum for constant energy, and 
from this it follows that each Legendre transform of the entropy is maximum for 
constant values of the transformed (intensive) variables. Simil arly, in the energy 
representation the energy is ｭｩｮｩｭｾｭ＠ for constant entropy, and from this it fol-
lows that each Legendre transform of the energy is minimum for constant values 
of the transformed (intensive) variables. 

However, it has been known for a long time that the consistent development of 
these ideas is contingent on the solution of a methodological problem of Gibbsian 
thermostatics illu strated by the followin g paradox: how are we to give a precise 
meaning to the statement that entropy is maximum for constant energy, whereas 
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entropy is defined only for systems in equilibrium? Many authors have grappled 
with this dil emma until a partial solution was found in terms of the composite 
system. The basic purpose of this paper is to present a simple alternative solution. 
Based on the kinetic theory of rarefied gases, we approach the questio n by means 
of a molecular expression for entropy in the form of Boltzmann's 1! functional. 
As we shall soon see, the introductio n o f nonequilibrium distribution functions 
enables us to define comparison states fo r the extremum principles and thus to 
solve the aforementioned paradox. 

O ur method is, in fact, quite straightforward. We provide a thermodynamic 
interpretation of the kinetic theory in which the nonequilibrium states of the 
gas are described by means of the nonnegative distribution functions f. This 
description can be used in various ways to introduce also other variables. For 
example, an interesting alternative is to use the specific volume v, the internal 
energy density t: , and an appropriately defined phase-space function G, and then 
to express Boltzmann's entropy h (per unit mass) in terms of ( v, t:, G) rather than 
f. These two descriptions appear o n an equal footing, and we can choose either 
one to suit the problem at hand. 

If we choose (v, t:, G), we wil l be able to exhibit the decompositi o n of Doltz-
mann's entropy h into two physicall y diffe rent parts: 

(1.1) h(v, c:,G) = hE(v,c: ) + ..J(G). 

The first part, denoted for brevity by he;, represents the thermostatic entropy 
(which is a function of v and .:), whil e the second part, denoted by .J, gives 
the functional contribution to h independent of ( v, c;) and vanishing at equili b-
rium; Ll depends only o n G. The resul ti ng expression (1.1) for h is such that the 
derivatives of h with respect to v and t: are the same functions as in equili brium, 
and Gibbsian thermostatics is not to be viewed simply as a first approximation 
to the full description of the system, but, instead, as an exact theory valid for a 
suitably chosen parametrization of the space of nonequilibrium states. The moti-
vation for the introduction of Eq. (1 .1) may be understood in terms of our desire 
to insure that the entropy maximum principle wi ll go over into an energy min-
imum principle on inversion of h = h(v, t:, G) with respect to c: t: = t: (v, h,G). 
The extremum principles in the Legendre transformed representations are then 
proved to be logically equivalent to the maximization of the entropy or to the 
minimization of the energy. 

Mathematically, the nonequili brium method presented in this paper is parallel 
to the equilibrium method of CALLEN [2], but has the following feature distin-
guishing it from that encountered in thermostatics: when the system is removed 
from equilibrium, the theory of Legendre transforms and thermodynamic poten-
tials depends very much on the choice of variables in terms of which it has to 
characterize the state of a system. Clearly, if one is interested only in the discus-
sion of the equili brium case, o ne knows f ull well what the " right" variables are 
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and these sorts of complications may be avoided altogether. For the general case, 
however, the optimum definition of state variables is not a trivial problem. As a 
matter of fact, one will be unable to obtain any successful theory of thermody-
namic potentials unless one formulates some adequate criterion for the choice of 
state variables. In our approach we introduce this criterion in such a way that the 
concepts of temperature and pressure need no reformulation out of equilibrium 
and the extremum principles are valid for the Legendre transforms of entropy 
and energy. 

If the space of nonequilibrium states carries a structure of a finite-dimensional 
manifold, the entropy maximum principle allows one to draw upon results from 
the critical point theory, as formulated by MORSE [4]. Using this theory, it is 
possible to find a coordinate system for the manifold of nonequilibrium states 
such that the specific entropy can exactly be written as a sum of two physically 
difTerent terms [5-7]: the first term represents the thermostatic entropy (which is 
a function of conserved variables), while the second term is given by a quadratic 
form depending only on nonequilibrium variables. Due to the existence of this 
particularly simple representation of the specific entropy, one easily arrives at 
the natural definitions of temperature, pressure, and thermodynamic potentials 
for systems "not infinitesimally near to equilibrium." However, there does not as 
yet exist a kinetic-theory framework in which these and similar problems may be 
addressed in a very satisfactory way. Thus, the underlying philosophy here is not 
to formulate a completely systematic extension of the aforementioned results to 
the general infinite-dimensional case, or even to propose some modification of 
Morse's lemma. Rather, the objective is to exploit the specific properties of a clas-
sical rarefied gas of massive particles and to obtain the required coordinatization 
of the space of nonequilibrium states by direct guessing. 

Another remark is also in order. For fixed values of v and E, h(v,E, •) denotes 
a functional, that is, a function whose argument is C. Consequently, any deriva-
tion of the Gibbs relation for h is necessarily based on the technique of functional 
difTerentiation. It can be most simply conceived of as a straightforward general-
ization of the concept of partial derivative. The foregoing functional justifi cation 
of the existence of thermodynamic potentials for gaseous systems beyond local 
equilibrium is difTerent from the method of moments [8]. Formally, this method 
gives the same Cibbs relation for the Boltzmann entropy density has in the tech-
nique of functional difTerentiJtion; but its precise definition and mathematical 
status are complex, and lose direct physical meaning because the H ermite expan-
sions of G and ln(l + G) are appli ed at the outset of the analysis. Furthermore, 
there are diffic!.!lties in proving the existence and convergence of various series in-
volved. Nevertheless, to understand the conceptual problems associated with this 
method, we decide to present an explanation of how the moment representation 
of entropy relates to our formalism. 

The layout of this paper is as follows. In Secs. 2 and 3, we describe the prop-
erties of nonequilibrium thermodynamic ｰｯｴ･ｮｴｩＺＺｾｬｳＮ＠ In Secs. 4 and 5, the status 



http://rcin.org.pl

794 Z . IJAN AC I! AND S. PIEK AI1SK I 

of the method of moments is examined vis-a-vis the technique of functional dif-
ferentiati o n. Section 6 is fo r discussio n and conclusion. So me aux.ili ary materi al 
is included as Appendices A and B. 

2. The relation between lloltzmann's entropy and mass density 

2.1. Preliminaries 

The kinetic theory describes the state of a gas by the distribution function 
f(x, c, t) defined, according to Boltzmann, in such a way that f(x , c, t ) dN c is the 
number density of mo lecules a t the point x and at the time t that have velocities 
in the "volume" element dN c around c; N is the dimension o f the vector space 
to which c belongs. The d istri bution function obeys the kinetic equation of the 
form 

(2.1) Dt! + c • D.r:! = J(J), 

where J (f) is the colli sion term. 
In the kinetic theory of rarefi ed gases, local entropy S (per unit volume) is 

sometimes required, and it is locall y defin ed by the functional expression 

(2.2) S(J) := - ka j f ln (Cf) dN c, 

where 

(2.3) 

and where m is the molecular mass and ka and 2n-li are co nstants of Boltzmann 
and Planck, respectively. Di fferentiating S with respect to time and using Eq. (2.1) 
yield the entropy balance equation 

(2.4) 

in which 

(2.5) 

• 1 D . 
h = --c . (J>) + O" 

(! 

h := Sjg, 

(! := m j fdNc, 

iP := - ka j cf ln(Cf) dN c, 

O" := - (ka/ r! ) j J(J)l n(<C J)dNc, 

c := c - u , 

u :=(m / g) j cfdNc. 
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Here and henceforth, [) := ｛Ｉ ｾＮ＠ and an overdot indicates the substantial time 

derivative defined by A := EJ1A + ｴｴ ﾷ ｄ ｾＮ ａ Ｎ＠ Interpreting Eqs. (2.5), h is the specific 
entropy, g is the mass density, 1> is the entropy flux, a is the ncnnegative entropy 
p roduction, c is the peculiar velociry, and u is the macroscopic velocity. 

2.2. The direct Legendre transform of Boltzmann's entropy 

In order to compare and contrast the predictions of various theories of ther-
modynamic potentials, we begin our discussion by introducing the standard Leg-
endre transform of I3oltzmann's entropy. Given a clear statement as to what this 
transform is, one should be in a much better position to understand what the al-
ternative method of Sec. 3 really entails. Since I3oltzmann's entropy is a functional 
of J, the variation of S(J) can be written as 

(2.6) 

where 

(2.7) >.(c):= bSfof(c) = - 1.:8 [1 + ln(C J)] . 

In Eq. (2.7) the dependence of >. on x and l is not shown explicitly in order to 
make the resulting formulas shorter. The relation (2.7) can be solved uniquely 
for f in the form 

(2.8) f = 2_ exp (-1 - ｾＩ Ｎ＠
C ka 

We define the Legendre transform of S(J) as 

(2.9) F(>.) := S(J) - j )..j dN c. 

In view of the kinetic-theory definition (2.2) of S, we then find from Eqs. (2.5)2, 
(2.7), and (2.9) that F is proportional to the mass density o: 

(2.10) F = (ka / m)(!. 

The variation ofF(>.) as a functional of ).. is given by 

(2.11) 

where 

(2.12) J(c) = - bF/b/\(c). 
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The equivalence of F = F(.A) with S = S(J) is evident from the fact that the 
latter can be regained from the former. The relation is dual in the sense that the 
inverse and direct relations have the same form, except for a sign in the equation 
of the Legendre transformation. 

Foll owing these lines, a formal theory of nonequilibr ium potentials can easily 
be founded parall el to the theory of equilibr ium thermodynamics, but in such a 
method of dealing with S there does not appear to be a way that the "nonequi-
li brium inverse temperature" 1/T and the "thermodynamic pressure" p could be 
associated with the derivatives of h = Sj g with respect to the specific internal 
energy E (per unit mass) and the specific volume v = 1/ g: 

(2.13) 
1 oh 
T - OE ' 

oh 
pjT = ov . 

Thus another way of dealing with Boltzmann's entropy must be proposed, and in 
Sec. 3 a calculation is made to prove that the generalized Gibbs formulas (2.13) 
are valid only for a suitably chosen parametri zation of the space of nonequilibrium 
states. 

The problem has to do with the freedom of choosing independent variab:es 
in terms of which we could describe the nonequilibrium state of a Boltzmann 
gas. If, instead of considering the "fundamental equation'' S = S(J) with f as 
independent "variable," we had replaced f by ( v, .:: , C) and then considered v, 
E, and G as new independent variablese ), we could have defined another set 
of thermodynamic potentials by performing the Legendre transformations Jn 
h = h(v, E, C) rather than on S = S(J). The corollary of this obsetvation is 
as fo ll ows: the kinetic theory in itself does not provide a precise definition of 
what one means by the Legendre transform of Boltzmann's entropy, and some 
additional specifications are still necessary to make this definition precise. ｔｾ ･ｹ＠

are formulated in the text below. 

3. Further Legendre transformations 

3.1. A Maxwellian molecular density 

To carry on the intended analysis of the aforementioned questions, it is use:ul 
to define a few mathematical quantiti es. First, we define the specific interral 
energy E and the reduced peculiar velocity "' by 

(3.1) 

and 

(3.2) "' := a:c, 

(') See Sec. 3.1 fo r the defin ition of v, ｾ＠ and G. 
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where 

(3.3) o := (N / 2E)112
. 

Inspection shows that n, is dimensionless. With the specifi c internal energy and 
the reduced peculiar velocity so defin ed, we now construct !M as foll ows: 

(3.4) ! M(x, K-, l) := [g(x, l )/ m][o(x, l )]N Q(,_), 

where f2 is the mass density of Eq. (2.5)2 and D(n_) is given by 

(3.5) 

Such an f M is call ed a Maxwelli an molecular density. 
As a measure of the deviation off from !M we suggest 

(3.6) 
1 

G : = - (J - J," ) . 
fM 

The natural, independent variables of this function are x, 1;., and t; thus G = 
G(x, n_, t). The same remark concerns fA 1• ｈ ｯｩｖ･ｶ･ ｴ ｾ＠ for simplici ty, the dependence 
off M and G on x and l will not be shoiVn explicitly. Hence we have fo r f 

(3.7) 

Also, in virtue of the defi nitions of (g, u, £ ), we immediately see that 

(3.8) 

where 

(3.8') 

To summarize, even though fM does not sati sfy the I3oltzmann equation (2.1 ), 
we can always write f in the form (3.7) and thus uniquely represent f in terms 
of f2, u, £ , and G . This representation and the relati ons (3.8) are exact and are 
automatically assured if the distri bution function f obeys the following conditi ons: 

(3.9) n = 0, ... , 3. 

The use of these conditions introduces a natural class of distri bution functions 
which are considered to prove the existence of the equations of balance of f2 , u 
and c. 
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3.2. A canonical form of Doltzmann's entropy 

If we substitute the decompositi on (3.7) into Eq. (2.2), then by Eqs. (3.4) and 
(3.8) we obtain for h = SI o 

(3.10) h(v,E,C' ) = hE(v,£) + Ll(C), 

where v = 1/ (} and 

(3.11) 

N [ 1 ( N )N/2] hE(v,£) := - (ka/m) - (ka/m) In C- - , 
2 mv 47r£ 

Ll(C) := -(ka/m) j Jt(1 + G) ln(1 + G) dN K.. 

The separation of h in Eq. (3.10) into hE and l1 has a clear physical signific ance: 
hE represents the thermostatic entropy (which is a function of v and c: ), while 
.::1 gives the functional contribution to h independent of (v, c) and vanishing at 
equilibrium. This result shows that the change of dynamical variables, namely, 
the transiti on from f to (v,E,C'), enables one to obtain a particularly useful 
parametrizati on of the space of nonequili brium states. Indeed, on applying such 
a parametrizati on, one can easil y prove that fJ hj fJv and fJhj Dc: are the same func-
tions of v and c: as in equilibrium. Precisely speaking, the in fin itesimal variation 
6h and the substantial time derivative of h assume the form 

(3.12) 
6h = (pjT)6v + ｾ Ｌ Ｖﾣ＠ + j fJ 6G clN K., 

. 
where G (x, K., t ) := (Dt + ｵ ﾷ ｄＮｾＺ Ｉ ｃＧ Ｈ Ｚ ｾＺＬ＠ ｾ ｾＮ＠ l), 6G is the infi nitesimal variati on of G 
consistent with the constraints (3.8) and the obvious inequality G > - 1 e), and 

[)h 
pfT := fJv = fJhE/fJv = ka(gf m), 

(3.13) 
1 fJh T := fJc = fJhEf&c: = Nkaf2m£, 

fJ(K) := 6hj6C'(K.) = Ｖ ｾ ｦＶｃＧ Ｈ ｋＮ Ｉ＠ = - (ka fm)Jt [1 + ln(1 + C)]. 

We shall refer to Eqs. (3.12) as the generali zed Gibbs relations (equations). 
From Eqs. (3.10) and (3.12)1 it foll ows that we can determine hand 6h without 

knowing the particular kinetic process occurring, and without regard to the time 

{') It is not diffi cult to prove the existence of such variations SC of C. In this context, we wish to note that 
OC is a function Of X, K, and t. 
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rune the place. In other words, the values o f the specifi c entropy and its variation 
atre ascertained from the information which is stati c and universal. This informa-
tior. consists in the form of the dependence of h upon v, £ , and G. Clearly, the 
r elc.tion (3.12)2 is a direct consequence of Eq. (3.12)1• However, this relation is 
not "static" and " universal," because it ho lds only for those distri bution functions 
whi::h are solutions of Boltzmann's equation. 

:n the theory of Boltzmann, the temperature T is regarded as but another 
n an e fo r the expected kinetic energy of relative motion; thus 

(3.:4) T = 2mc . 
Nka 

M creover, if we let p = (2/N)Qc denote the mean pressure, then from E q. (3.14) 
it follows that the "ideal gas law" holds fo r every condition of the gas: 

(3.:5) p = (a / m)kaT. 

Amther way to define T and p is through Eqs. (3.13)1 and (3.13)2 ; both methods 
leal to the same result . 

We are now in a positi o n to d iscuss certain problems regarding the structure of 
a n ;!xpression fo r the entropy fl ux cJ>. Examination of Eqs. (2.5)3 and (3.7) makes 
it r!adily apparent that rJ> can exactly be written as 

(3.:6) rJ> = (q/T) - (kB(!/mf'i) j ,_.f?(1 +C) ln(1 +C) dN K, 

wh!re a is defined by Eq. (3.3) and q is the heat fl ux: 

(3." 7) q ;= ; j icfcf dN c. 

Our analysis here shows how the quantity qjT enters the general expression for rJ> 
nat.Jrally . By Eq. (3.16) we see, however, that not only net heating flux gives ri se 
to b. The above calculations also show that if we are to defi ne the entropy fl ux rJ> 
on the basis of kinetic theory, then it is necessary to identify the "nonequi librium 
tenperature" T with 2n1-E) N ka . Of course, fo r gas flows sufficiently near to local 
eqt ilibrium in the sense that f difTers lit t le from the corresponding fu, we can 
l intarize the integral part o f Eq. (3.16) with respect to C and so conclude from 
the constraints (3.8) that rJ> approxi mately equals qjT. No such approximatio ns 
are possible, however, in the nonli near case. 

One fin a l word concerning the results just obtained. Given the natural condi-
tion (3.9) of Sec. 3.1, we have shown that use of the decomposition f = F!ll (1 + G) 
in Eqs. (2.5)1 and (2.5)3 yields the specific entropy h in Eq. (3.1 0) and the entropy 
flu: rJ> in Eq. (3.16) in terms of v, E, and C. Consequently, within the framework 
set up here, the fo rmula (3.16) emerges in confi rmatio n to the thermodynamic 
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principles, and an extended Gibbs-relation-like one-fo rm (3.12)2 is consistent with 
the entropy law as characterized by E q. (2.4). The obvious reason for this con-
sistency is the fact that Eqs. (3.10), (3.12), and (3.16) are identities. Of course, 
we can also test our results directly by substituting these identities and an appro-
priate expression for the entropy production CJ into Eq. (2.4). The details of this 
somewhat elaborate programme will not be presented, however, because a hint 
of what to expect may be obtained from considerations of Sec. 5. 

3.3. The extremum principles 

We easil y conclude from Eqs. (3.8), (3.10), (3.11), and the inequality 

(3.18) (1 + G) ln(1 + G) - G 2: 0 

that of all states (v,c:,G) with given values of v and c:, the equil ibrium state 
(v,c:,O) has the greatest specific entropy h (the entropy mcuimum principle): 

(3.19) h(v, E, ｇ Ｉ ｾ＠ hE(v, c:). 

H ere h equals hE if and only if C = 0. 
As a further systemati c step, it is plausible to express c: in terms of v, h, and 

G. In fact, by solving Eq. (3.10) fo r the specific internal energy c: we find that 

(3.20) N ( C ) 
2
/N { 2m. } 

c:(v, h, G) = 411" mv exp N ka [h- Ll(C)] - 1 . 

Then, beginning from Ll ｾ＠ 0, we see that among all states (v, h, G) having the 
same values of v and h, the equil ibrium state ( v, h, 0) gives c: its smallest value 
(the energy minimum principle). Moreover, we have 

(3.21) 

H ence 

(3.22) 

0[ 
]J = - Du ' 

[ = -p v + T h - T e G' dN "'· . J . 
Clearly, this result is consistent with E q. (3.12)2. 

The specific free energy 

(3.23) cp(v, T, G) := c:(T ) - Th(v, c:(T ), C ) 

[ 
1 ( m ) N/2] = (kaT /m) In C mv 21rkaT - T Ll(G) 
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is that partial Legendre transform of c: which replaces the entropy h by 
temperature T as independent variable. The substantial ti me derivative cp IS 

(3.24) <? = - p v - h T - T G C d "' · • J • N 

801 

the 

In additi on, from Eq. (3.23) it foll ows that the equilibrium state (v, T, 0) minimizes 
the specifi c free energy <.p, not absolutely, but over the space of states ( v, T , C) 
with given values of v and T (the free-energy minimum prin ciple). 

Now, we defi ne the specific enthalpy li and the G ibbs function Q as H := 
c: + vp and Q := c:- T h + vp, respectively. The specifi c enthalpy 1I is that partial 
L egendre transform of c: which replaces the specifi c volume v by the pressure pas 
independent variable. The Gibbs function Q in turn is the Legendre transform of 
c: which simultaneously replaces the specifi c entropy h by the temperature T and 
the specifi c volume v by the pressure p as independent variables. The physical 
meaning of these nonequilibrium thermodynamic po tentials is apparent from the 
dillerential expressio ns obtained on using Eq. (3.22): 

(3.25) 

(3.26) 

k = v jJ + T ｩｾ＠ - T j e c dN "'' 

Q = v j1 - h 1, - T j e c dN "'· 

Moreover, from 

(3.27) 
(N + 2) (27r ) 2/ (N +2) 

H = II (p, h, C)= 
4 

- Cp 
1r 1n 

x exp { (N ｾ ﾷ ｾｾ Ｉｬ ＮＺ｡＠ [h - .d(C')] - N : 2} 

one can prove that amo ng all states (p, h, C ) having the same values of J1 and h, 
the equilibrium sta te (p, h , 0) gives II its small est value (the entha!py minimum 
principle). Similarly, using 

(3.28) Q = Q(p , T, G') = (kaT / m) 

+ (kaT / m) In [ C(p/ kaT ) Ｈ Ｒ Ｗｲｾ ｡ ｔ Ｉ＠ N/

2

] - T .d(G), 

one concludes that the equilibrium state (JJ , T, 0) minimizes the Gibbs function 
Q, not absolutely, but over the space of states (p, T , G') with given values of p and 
T (the Cibbs-function minimum principle). 

The to tal Legendre transform of c: is defin ed by 

(3.29) £(p,T ,G) := T h-vp - T j GCdNK. - £ 

= - (kaT/ m)ln [te(p/kaT) Ｈ Ｒ Ｑｲｾｾｔ Ｉ ｎ Ｏ ｚｬ＠ + T J G dNK. 
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A glance at Eq. (3.13)3 shows that the equilibrium value e E of e is e E = 
-(ka /m)J2. Also, with Eq. (3.8) for 9 = 1 and the inequalit y ln(1 + C)- G :s; 0, 
we find that 

(3.30) 

Hence 

(3.31) [(p , T, ｇＩ ｾ＠ [(p, T , G E), 

the equality holding if and only if G = G E · The substantial time derivative of [ 
assumes the form 

(3.32) (£)" = -vp + hT - j C(TG)" dN"'· 

Another set of functions (Massieu's functions) can be defined by perform-
ing the Legendre transformations on h( v, c;, C) rather than on £( v, h , C). As the 
theory of these functions is very much analogous to that al ready made familiar, 
we wi ll not discuss this theory further here; specifi call y, we wil l not derive the 
maximum principles for the Massieu functionse). 

4. The method of moments 

Th study the consequences of using the method of moments, we introduce the 
Hilbert space 1i in which the scalar product (w1, w2) is defin ed by 

(4.1) (wt,w2) := j ft(/-\)w t("J•;2(r;,)dN''- · 

. 
We can determine the exact moment representati ons of h and h if we assume . 
that 1 + G, ln(l + C), and G are elements of H . Then by use of the complete set 
of tensor Hermite polynomials n n("'), n = 0, 1, ... , oo, it is possible to represent 

1 + G, ln(1 + G), and C by the expansions [9] 

(4.2) 

00 1 
1 + G = y := "\""' - &n . n n, 

.i....J n ! 
n=O 

00 

ln(1 + C) = L _,y n • n n' 
n=O 

c· = ｾ＠ I_ b n • n n 
.i....J I ' 
n=2 n. 

(')Of course, we can a lso derive the minimum principles, this being purely a matter of conventio n in the 
choice of the sign of the function. 
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where bn and xn are the expansion coefllcients and the symbol · denotes the 
inner product of the tensors involved. C learly, because of the constraints (3.8), 
we have 

(4.3) b0 = 1 
' 

t} = 0, Tr b2 = 0 
' 

where Tr is the trace operator. T he above seri es converge in the sense of the 
norm in 71.. However, to express xn in terms o f b't, we must fir st assume that 
the series Y converges both pointwise fo r each "' and in the sense of H. and then 
substitute Eq. (4.2)1 into 

(4.4) Xn = _!_ j nBn1n(1 + C)dNn.. 
n! 

Here we remark that if the above conditions are not satisfied, then the moment . 
representations of h and h described below are not expected to exist . This gives us 
necessary information about what is and is no t possible. In the recent analysis [10] 
presented by E u [see, e.g., his equatio ns (2.30) and (2.33)], an explicit assumption 
was made that the expansion Y in Eq. (4.2)1 converges to 1 + C in the sense 
of means and tha t this rather weak conditio n is sufllc ient to see the method of 
moments in action (i .e., to express xn in terms of b" ). The pointwise convergence 
of Y just deduced clearly suggests it to the contrary. 

From Eqs. (3.1 0) - (3.13) and ( 4.2) plus the orthogonality properties o f H er-

mite polynomials [9], the moment representati ons o f h and h are as foll ows: 

<Xl 

(4.5) h = hE- (1.-a/m) L X 11
• b'\ 

n=O 

(4.6) it = (y/T) 'u + ;,E- (ha/m)f .-:..-n . b11
• 

n = 2 

Consistency(4) between Eqs. ( 4.5) and ( 4.6) follows directly from the consider-
ations of Appendix n [cf. Eqs. (B.2)6 and (B.3)6]· We can simil arl y analyze the 
kinetic-theory expression fo r the entropy f1 ux if>. In fact, putting the expansions 
(4.2)1 and (4.2)2 into Eq. (3.16), we fin d tha t [cf. also Eq. (B.7) in Appendix B] 

<Xl 

(4.7) p = (q/T) - (ksgfmo: ) L (xn. bn+l + nxn. bn- l) ' 
n=l 

where the heat f1ux q is related to Tr b3 by 

(4.8) Tr b3 = - - q. 
2 (N)J/2 
{! 2E 

(•) The series in Eqs. (4.5)- (4.7) converge absolutely if l + C, 1<(\ + C), C , and ln(l +C) arc elements 
of H . 
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However, we have to worry about the convergence of the series in Eq. (4.7); 
this may require consideration of the situation in which also ｾ＾ＺＨ Ｑ＠ + C) is an element 
of 7{. From the viewpoint of the present paper, the method of moments is a 
formal and sophisticated way o f deriving the generalized Gibbs relati on (3.12)2 
for the specific Doltzmann entropy h. In Secs. 2 and 3, we have seen that there 
are simpler and more natural ways of deriving this relation. One obvious reason 
for this is that, with the technique of functional differentiation, we can draw 
definite and exact conclusions about the existence of Eqs. (3.12) without making 
any explicit or implicit reference to 'H . This is crucial because representative 
and physically important cases are known [1 1] in which solutions of the kinetic 
equation do not exist in the Hilbert space chosen: G rf. 'H. This fact detracts much 
from the usefulness of Hermite expansions (and of various ad hoc truncation and 
projection procedures) at the level of the nonlinear Doltzmann or Doltzmann-like 
equations. 

We recall that the nonnegative entropy ｰｲｾ､ｵ｣ｴｩｯｮ＠ a is given by Eq. (2.5)4 and 
conclude from Eqs. (3.7) and ( 4.2)2 that 

00 

(4.9) a= - ( /..:a f m ) L x n . P'\ 
n=O 

where 

(4.10) p n := (mjg) J fl 11J(f)dN c 

and where 

( 4.11) pO = 0 
1 

pi= 0 
1 Tr P2 = 0. 

The exact and/or tractable moment representations of p n are not expected to 
exist, except in the case of Ma,xwelli an mo lecules. 

In Sec.5 we shall verify that if we use the formulas (4.5), (4.7), and (4.9) in 
the balance equation (2.4) for h, then this ba lance equatio n will be auto matically 
satisfied, at least formally. Before doing so, however, it is necessary to derive the 
evolution equations for (!, 1L, c, and un. 

The equations of balance of(!, ·u, and E are easil y obtained from the I3o ltzmann 
equation under the natural assumption that f fa ll s off suffi ciently rapidly fo r large 
values of c: 

. 
-(!(D · u), (! = 

(4.12) 
. Ｍｾ ｛ ｡ Ｎ＠ (pi+ w)]1 tL = 

(! 

. 1 1 
E = --(8 · q) - -(pi + w) · L. 

/} /} 



http://rcin.org.pl

TH8 RMOOYNAM IC POTENTIAL S AND EXTREI\1 l\ 1 PRINCIPLES FOR A il OLTZJ\IANN GAS 805 

The abbreviated symbol I stands for the unit tensor o f a Euclidean vector space 
lE (dim lE = N ), L is the spatial gradient of u (L := Du), and w is the stress 
deviato r defin ed by 

(4.13) w := m j (c®c- ｾｬ｣ｦ ｊ Ｉ＠ f dNc. 

This st ress deviator is proportio nal to !}: 

(4.14) 
2 N 

b = -w. 
2g£ 

By use of the notation introduced in Appendix A we obtain from 

( 4.15) bn = :"/, J Dn J dN C 

and the Boltzmann equation (under usual assumptions) the foll owing result: 

(4.16) 

where 

(4.16') 

b n = zn + p n , 

zn := -± (a · bn+ l + no V bn-1) - ｾｧ＠ (o' . l)n+I + ng' V bn-1) 

-no( it V bn-l)- n [L U bn + (n- 1)L V b"-2) 

- ｾ＠ [Cn + 1)£1 
· 1/Jn+ l + n(n- 1)£' V '1/J"- 1) - ｾ ［＠ '1/;n, 

g' := 8(}, £ ' := D£, 

'1/Jn := bn + (n- 1)! V b11
-

2, 

b- 3 := 0, b-2 := 0, b- 1 := 0, 

n = 0, 1, ... ,oo. 

This is the desired system of equations fo r the coefficients b" in the expansion 
(4.2)1 of 1 + G. Inspectio n shows that Eqs. (4.16) are automati cally sati sfi ed if n 

equals 0 or 1, because of Eqs. ( 4.12); moreover, (Tr b2)" = Tr L 2 = tr Z2 = tr p2 = 
0. Another remark is also in order. To obtain a manageable system o f "extended" 
difTerential equatio ns, the infini te set o f mo ments has to be truncated and some 
procedures fo r expressing pn in terms of b71 must be proposed. However, to the 
best of our knowledge, it stil l remains an open question whether such a truncution 
procedure is consistent with kineti c theory. 

The manner in which these calculations form the fi rst step in the formal deriva-

tio n of h = -Q- 1(8 · P) + a fro m Eqs. (4.5), (4.7), and (4.9), will become clear 
in the text below. 
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5. Consistency between the generalized Cibbs relation and the entropy law 

First of all , there is no question that Eqs. (3.12) and ( 4.6) are consistent with 
the entropy law (2.4) because these equations are identities. Nevertheless, since 
this point has been a subject of debate [12-14] in the past, here the internal 
consistency of the formalism will be demonstrated from still another viewpoint. 
To achieve the objective in mind, we fir st substitute Eqs. ( 4.7) and ( 4.9) into the 
entropy law (2.4) and then establi sh the foll owing identity by using Eqs. (3.3), 
(4.8), (4.12), (4.14), (4.16), and the definitions of various quantities involved: 

(5.1) h = (yjT) v + ｾ＠ £ - (ka/m) f .X 11 
• b n + (kB/moT) eh, 

n =2 

where 

00 

eh := L [r ea · 19n) + oT(.Y 11
• z n) + (u" . X11

) ], 

n=l 

(5.2) 
19n := Qa- 1 [xn . bn+ l + n).·n. bn-1] ' 

x2 := oT L , x3 := Ｑ ｾ＠ r/T(I v E') , 

xn := 0 for 11 t= 2,3. 

The expansion in Eq. (5.2)1 starts from n = 1, because {) 0 = 0 and vn 'I= 0 when 
n > 0. Combining Eqs. (4.6) and (5.1), we obtain 

(5.3) e, = 0. 

We call this equation the consistency condition because its role in essence is that of 
a guarantor of the generali zed Gibbs relation ( 4.6) for entropy change. In order 
to demonstrate the internal consistency of the fo rmalism, it is thus stimulating to 
show that Eq. (5.3) holds for all conditions of the I3oltzmann gas. 

Now, we shall prove that eh can indeed be set equal to zero without encoun-
tering any internal contradiction. This proof generalizes to N -dimensional systems 
the conclusionCS) formulated directly before Eq. (4.18) in [1 2]. A straightforward 
application of Eqs. (3.3), (4.16), (5.2), (13.2)1, and (13.3)1 yields 

(5.4) 1 • ) £ a (' ) 1 -eh = -a( u · V1 - -V2 - - c · V3 - L ·'D4 + -Vs, 
oT 2E N a 

( ' )The notation in [1 21 sli ghtly differs from ours as foll ows: ours =;. his; N =;. I ; ka =;. I; m =;. I; 

c =} >.; c =}X; a=} '\7; (; =} e; A =} d,JI; 1/J" =} cre-11/1"- 1; X 0 
=} r - 1(1-'- T v); X" =} - T - 1X" for 

n "f' 0; {)n =;. -T- 1(X" • 1/J" ); x2 =;. 0; x3 =;. -x3. Similar comparisons of our consisll:ncy condition Ch = 0 
(speciali7..cd to the case N = 1) with the ｣ｯ ｲｲ ｾｯ ｮ ､ｩｮｧ＠ ･ｱ ｵ ［Ｎｾｴｩｯ ｮ＠ (25) of I 14 J are not possible, however, because 
in this equation the meaning of the symbol 2....., is not clt:arly cxpbined. 

11 
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where the objects 'D1, ... , V 5 are defined by Eqs. (13.2). H owever, from the consid-
erations of Appendix 13 it fo ll ows that ｖｾ［＠ = 0 when k = 1, ... , 5. This completes 
the proof of Eq. (5.3). The validity of eh = 0 and hence of Eq. (4.6) is also 
obvious on the intuitive ground. 

Thus contrary to the suggestio n made in the lit erature [1 4], there does appear 
to be a way that the terms in Eq. (5.2)1 cancel each other so neatly that eh = 0 
when Eqs. (4.2) and (4.4) hold; in other words, when the complete set is taken for 
En(,..). This implies the second conclusio n: the re is no kinetic-theory fo undation 
for including the compensation function (o r the calortropy) in the thermodynamic 
description of 13oltzmann's gas, as it is done in the so-call ed revised version of the 
modified moment method [13] or in its possible further corrections (see especially 
the discussion on p. 7177 after Eq. (3.30) in [J O]). Such is indeed the case because 
the generalized Gibbs relation (4.6) holds for the entropy density h itself, and not 
for the compensation function which appears to be extraneous and redundant. 
The same obsetvation concerns the notion of calortropy. To be mo re precise, 
substitution of the formula (4.2)2 into Eq. (3.1) in [10] yields the conclusion that 
the calortropy does no t differ fro m 13o ltzmann's entropy. 

The gist of the point made by the present analysis is that the information con-
tained in the generalized Cibbs relation formally does not contract as the level of 
description is passed from the phase-space le1'el (3.12) to that at the moment level 
[cf. Eq. ( 4.6)], since the passage essentially ini'Oll ·es a complete set of Hermite poly-
nomials. Moreover, after expressing x n in terms of /./' , as is formally always 
possible [cf., e.g., our analysis directly after Eq. (4.3)], the 13oltzmann entropy h 
becomes a state functio n in a space spanned by the "thermodynamic" vari ables 

6 := {v,£,un In= 2,3, ... , oo}, and thus one can think of has being an exact 
differential in Q}. On the basis o f such results, it is possible to infer that, as was 
already found in earlie r work (1 2], a thermodynamic interpretation of kinetic the-
ory may be e rected on 13oltzmann's entropy alone, i.e., without the necessity [1 0, 
13] of referring to the "concepts" of compensatio n function and calortropy. How-
ever, the method of moments is surely not very useful in practice. This method 
obscures the real situatio n: it suggests that there is something very special about 
the way the theory of thermodynamic potentials is related to Hermite expansions, 
whereas in reality this is no t so. A deductive mathemati cal way for exhibiting the 
generalized Gibbs relation has been proposed in Sec. 3 and is clearly linked to 
the technique of functional diff erentiatio n. 

6. Discussion and conclusion 

We have found a set of thermodynamic potentials for the descripti on of a 
13oltzmann gas. We have obtained the extremum principles fo r these potentials, 
and examined their physical meaning in the simplest case (a one-component gas). 
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The basis for the ini tial analysis was Boltzmann's entropy which is a fu nctio nal 
o f the single parti cle d istribution function, not of the fi elds. This entropy was 
then div ided into two parts, that associated with the local distribution (and hence 
yielding a standard function of conserved variables) plus the remainder. Using 
the technique o f functional d ifTerentiati on, we have proved that if the indepen-
dent gas-state variables are ( v, c: , G'), the q uanti t ies N ks f 2mc: and 2(!c j N , which 
everybody would wri te down as the only natural concepts in the sit uation o f a 
classical rarefi ed gas, exactly correspond to the "nonequili brium inverse tempera-
ture" 1 /T and the " thermodynamic pressure" p as defined by investigating the 
partial derivatives of Boltzmann's entropy h( v, c, C ) with respect to v and c: . 

Comparison with the usual approach shows that we can obtain the same resul ts 
as usual but in a much more transparent way, because in the standard approach 
(the method of moments) the existence o f thermodynamic potentials depends on 
the convergence o f the fo ll owing series: 

00 

(6.1) 3(x, t) := L X 11(x, I) . u11(x, 1), 
n=O 

where (x, t ) is an a rbitrary space-ti me point. O n the other hand, in o rder to 
use the method of moments to draw valuable conclusions about the " thermody-
namic branch" [12] of solutions o f Bo ltzmann's equation, it would be necessary 
to have not only the convergence o f 3 for arbitrary space-time points but also 
some info rmation about uniformity (in space-time) of convergence; the existence 
theorems for Boltzmann's equation give no indication tha t there wil l be any such 
unifo rmi ty. Furthermo re, the d ivergence of Y [cf. Eq. (4.2)1] in certain important 
cases makes uniformity of co nvergence problemati cal. For a d iscussion of these 
divergences, see, fo r example, [1 1 ]. 

The situati on is di fTerent, however, wi th the fo rmalism o f Sec. 3, fo r it s equa-
tions give rise to the exact theory o f thermodynamic po tentials independent o f 
any ad hoc assumptions and artifi cial constructi ons. To summarize, the technique 
of functiona l difTerentiati on is an adequate tool to study the mathematical and 
physical status of the generali zed G ibbs relation at the level of Boltzmann's equa-
tion. The point of this discussion is tha t instead of concentrati ng on the formal 

H ermite expansion (4.6) o f h, with the ambiguiti es that implies, we can deal 
directly with Eqs. (3.12). 

At fir st sight, it seems that whil e the questions/problems posed here apply for 
general systems, their answers/resolutions must be limi ted to classical rarefi ed 
gases. But this is not the case. In fact, we have already verified that our ideas are 
quite universal and can be extended in a number o f directio ns, o ne o f them be ing 
the analysis of mixtures and quantum Bose-Einstein or Fermi - Dirac nonequi-
librium ideal gases. However, since these extensions are not altogether trivial or 
immediate, they will be treated in a separa te paper. 
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Appendix A. Some useful abbreviations 

To make the resulti ng formulas shorter, in this paper we have introduced 
essentially the same notation as in [15 - 17). Let lE be a Euclidean vecto r space 
(dim E = N ). Choose an orthonormal basis {e1, ... ,eN} in lE and set er1 ••• ra := 
e q 0 ... 0 era· 

1. The action of the symmetri zer !I o n a tensor .Ala of degree a: is given by 

N 

(A.1) JI Al a := L ａ ｦＨ ｾﾷ Ｑ＠ .. . ra)er1 . . . r 0 , 

r t ... r 0 =l 

where the coeffi cients ｍ ｾ＠ ... ra are components o f .Ala with respect to { er1 ... ra} 
and parentheses enclosing a set o f a: indices represent symmetrization o f these 
indices, i.e., the sum over n! permutations o f the indices, divided by a:! 

2. Suppose that M a and AJf3 are the tenso rs o f degrees a: and (3, respectively. 
Then the equality 

(A.2) 

defin es the symmetric tensor product of M a and AJ f3 . 

3. The action of u on Ala and !1J f3 is characterized by 

(A.3) Ala u AJ f3 := if Tr ( Ala® AJf3 ) , 
( l ,o:+ 1) 

where Tr (! ,a+ I) is the trace operator wit h respec t to the pair (1 , a: + 1 ). 

4. L et us suppose that v := min(a:, /3). Then in contracting u a with AJf3 the 
v-fo ld contraction is deno ted by · . The tensor Ala • AJf3 of degree a: + f3 - 2v 
is usually termed the inner tensor product o f Ala and !tJ f3 . H owever, if M a and 
M f3 are not to tally symmetric tensors, then some convention as to which of the 
2v indices are to be contracted, must be fo ll owed when do ing the contraction. In 
this context, see the precise definit ion of Ala · AJf3 in A ppendix A of [17). 

5. Suppose that M a and Afa are the tensors o f degree a:. Then the action of 
o on M a and Ala is described by 

N 

(A.4) MaoAJC't := L [(er . u a) . (es . u a) l er® Es . 

r,s= l 

6. The effect of {) on a tensor fi eld Ma is given by 

N 

(A.S) {)AJCl: := L er 0 {),.Ala 
r= l 
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7. The action of {) · on a tensor fi eld 1\l o: is defi ned by 

(A.6) a · MO' : = Tr ( D/o.!o: ) . 
(l ,o+ 1) 

8. The effect of Dv on a tensor fi eld AJ CY is characterized by 

(A.7) {) V M 0 := ll( DAJO). 

Appendix B. Auxiliary formal properties of un and xn 

The effect of 7J on a function ＡＱ Ｈ ｾ＾Ｚ Ｉ＠ or a tensor fi eld M n("' ) of degree n is 
given by 

N 

DA := L (8,.,1) e,., 

(B.l) 
r = l 

N 

DM n :=L e,.@ u,. !Ir , 
r = l 

where Br := D/D,.,r. 
The objects V k. k = 1, ... , 6, are defined by 

(B.2) 

00 

Vt := L nxn.{;n-I, 
n=l 

v2 := L nx n. 'l/Jn, 
n =2 

00 

v3 := - Tr /;3 + L [en + 1).Y" · ·lj;n+ l + n(n - 1)_\" n, 'lj;n-1- x n. /;n+1] , 

n=l 

00 

v4 := - b2 + L n [bnoxn + (n- 1)X n . /;11
-

2
], 

n=l 

00 

Vs := L [ca)(n). un+ l + n(D. xn). u"- 1] , 

n=l 

00 

v6 := L ,\' n .!Jn, 
n =O 

where, of course, {) = Dx. 
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(B.3) 

Vs= 

ar;; f2 j f {I- ｾ＠ 0 ｾ＠ + ｾ＠ 0 O[ln(1 + C)]} dN ｾ＠ = 0, 

r;; j f ｻｾ＠ · D[ln(1 + C)]} dN ｾ＠ = 0, 
a f2 

ar;; f2 j f [ ln(1 + G)]' dN n, = 0, 

where [l n(1 + G)]" is the substantial time derivative of ln(1 + G). In these equa-
tions, f and G are functions of :r , ｾＮ＠ and / .. 

The proof that the series Vt., k = 1, ... , 6, can indeed be represented by the 
above vanishing integrals, is based on Eqs. (2.5)5, (3.2), ( 4.2)2, ( 4.15), and the 
follow ing identities [15, 16] for H ermite polynomiais Ｎｄ ＱＱ Ｈ ｾ Ｉ＠ [9]: 

N 

ｾ＠ 0 ｂ ＱＱ Ｈ ｾ Ｉ＠ = ｮ ｮ Ｋ｜ｾＩ＠ + n L e,. 0 [e,. V nn-l( n,)] , 
,-= 1 

N 

(B.4) Ofln = n L er 0 (e,. V nn-1) , 

r = l 

n(n + l)[M n . (I V n n-1)] = 2n (Mn. nn-l) + n(n- 1) [CTr A/ 11
) . nn-l] ) 

where Mn is an arbitrary symmetri c tensor of degree n. 
The series in Eqs. (B.2) exist and are absolutely convergent if 1 +G, [ln(l + G)]" , 

0 ln(1 +C), K 0 0 ln(l + C), n, 0 EJ ln(l + C), and K 0 '" 0 0 ln(l + C) are elements 
of H. Clearly, as usual, we must also assume that we can exchange the integral 
over c or n, with the derivative ox; these assumptions are necessary in order to 
derive the evolution equations (4.16) for &71

• If these postulates are no t sati sfi ed, 
the method o f moments fail s to exist. 

Using the identi ty 

(B.5) 
m 

---r:J ! = S2(1 + G) 
a (! 

and integrating by parts, we easily conclude from the constraints (3.8) that the 
integrals in E qs. (B.3) vanish; ｴｨｾ ｳ＠

(B.6) 

when k = 1, ... , 6. This observation completes the proof of Eq. (5.3). 



http://rcin.org.pl

812 z. BANACII AND S. PJEKARSKI 

A one-dimensional version of these calculations is represented by Eqs. (4.14) 
in [12]; see also the comments at the bottom of p. 359 in that paper. All the 
essential ingredients for the proof of the consistency condition (5.3) were thus given 
seven years ago. 

From 1J1 = 0 it follows that Eq. (4.7) simplifi es to 

00 

(B.7) cp = (q/ T ) - (kagf nw) L x n . bn+ 1. 

n=1 
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