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Thermodynamic potentials and extremum principles
for a Boltzmann gas

Z. BANACH and S.PIEKARSKI (WARSZAWA)

IN THIS PAPER, a thermodynamic interpretation of the kinetic theory and Boltzmann’s equation is
explicitly obtained; the nonequilibrium thermodynamic space consists of the nonnegative distribu-
tion functions. Beginning from a molecular expression for entropy in the form of Boltzmann’s H
functional, the systematic construction of thermodynamic potentials is demonstrated for gaseous
systems beyond local equilibrium (“not infinitesimally near to equilibrium”). Since the nonequi-
librium thermodynamic space provides natural comparison states for the principles of maximum
entropy or minimum encrgy, a simple critcrion for the choice of gas-state variables can be given
which shows that the maximization of the Legendre transforms of entropy is logically equivalent to
the minimization of the Legendre transforms of encrgy. This criterion is sought after in such a way
that the concepts of temperature and pressure need no reformulation out of equilibrium. After
these preparations, the technique of functional differentiation is used to derive the gencralized
Gibbs equation (relation) for Boltzmann’s entropy. Finally, the paper presents an analysis of how
the functional representation of this equation relates to the method of moments,

1. Introduction

IN GiBBSIAN THERMOSTATICS [1 - 3], one postulates that all macroscopic properties
of a thermodynamic system are contained in a fundamental equation representing
either the entropy or the energy as a function of additive conserved quantities.
Thus in both the entropy and energy representations the extensive parameters
play the roles of mathematically independent variables, whereas the intensive par-
ameters are introduced in a systematic manner as derivatives of the fundamental
equation. The energy-language fundamental equation can be taken as the ba-
sic relation on which the Legendre transformation is performed. Such Legendre
transforms of the energy are usually called thermodynamic potentials. Another
set of thermodynamic functions (Massieu’s functions) can be obtained by per-
forming the Legendre transformations on the entropy rather than on the energy.
In the entropy representation the entropy is maximum for constant energy, and
from this it follows that each Legendre transform of the entropy is maximum for
constant values of the transformed (intensive) variables. Similarly, in the energy
representation the energy is minimum for constant entropy, and from this it fol-
lows that each Legendre transform of the energy is minimum for constant values
of the transformed (intensive) variables.

However, it has been known for a long time that the consistent development of
these ideas is contingent on the solution of a methodological problem of Gibbsian
thermostatics illustrated by the following paradox: how are we to give a precise
meaning to the statement that entropy is maximum for constant energy, whereas
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entropy is defined only for systems in equilibrium? Many authors have grappled
with this dilemma until a partial solution was found in terms of the composite
system. The basic purpose of this paper is to present a simple alternative solution.
Based on the kinetic theory of rarefied gases, we approach the question by means
of a molecular expression for entropy in the form of Boltzmann’s /1 functional.
As we shall soon see, the introduction of nonequilibrium distribution functions
enables us to define comparison states for the extremum principles and thus to
solve the aforementioned paradox.

Our method is, in fact, quite straightforward. We provide a thermodynamic
interpretation of the kinetic theory in which the nonequilibrium states of the
gas are described by means of the nonnegative distribution functions f. This
description can be used in various ways to introduce also other variables. For
example, an interesting alternative is to use the specific volume v, the internal
energy density ¢, and an appropriately defined phase-space function &, and then
to express Boltzmann’s entropy £ (per unit mass) in terms of (v, e, ) rather than
f. These two descriptions appear on an equal footing, and we can choose either
one to suit the problem at hand.

If we choose (v, ¢, ), we will be able to exhibit the decomposition of Boltz-
mann’s entropy A into two physically different parts:

(1.1) h(v,e,G) = hp(v, ) + A(G).

The first part, denoted for brevity by Az, represents the thermostatic entropy
(which is a function of v and ¢), while the second part, denoted by A, gives
the functional contribution to & independent of (v,<) and vanishing at equilib-
rium; A depends only on & The resulting expression (1.1) for A is such that the
derivatives of h with respect to v and ¢ are the same functions as in equilibrium,
and Gibbsian thermostatics is not to be viewed simply as a first approximation
to the full description of the system, but, instead, as an exact theory valid for a
suitably chosen parametrization of the space of nonequilibrium states. The moti-
vation for the introduction of Eq. (1.1) may be understood in terms of our desire
to insure that the entropy maximum principle will go over into an energy min-
imum principle on inversion of & = h(v,e, () with respect to : ¢ = (v, h, ().
The extremum principles in the Legendre transformed representations are then
proved to be logically equivalent to the maximization of the entropy or to the
minimization of the energy.

Mathematically, the nonequilibrium method presented in this paper is parallel
to the equilibrium method of CALLEN [2], but has the following feature distin-
guishing it from that encountered in thermostatics: when the system is removed
from equilibrium, the theory of Legendre transforms and thermodynamic poten-
tials depends very much on the choice of variables in terms of which it has to
characterize the state of a system. Clearly, if one is interested only in the discus-
sion of the equilibrium case, one knows full well what the “right” variables are
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and these sorts of complications may be avoided altogether. For the general case,
however, the optimum definition of state variables is not a trivial problem. As a
matter of fact, one will be unable to obtain any successful theory of thermody-
namic potentials unless one formulates some adequate criterion for the choice of
state variables. In our approach we introduce this criterion in such a way that the
concepts of temperature and pressure need no reformulation out of equilibrium
and the extremum principles are valid for the Legendre transforms of entropy
and energy.

If the space of nonequilibrium states carries a structure of a finite-dimensional
manifold, the entropy maximum principle allows one to draw upon results from
the critical point theory, as formulated by Morse [4]. Using this theory, it is
possible to find a coordinate system for the manifold of nonequilibrium states
such that the specific entropy can exactly be written as a sum of two physically
different terms [5—7]: the first term represents the thermostatic entropy (which is
a function of conserved variables), while the second term is given by a quadratic
form depending only on nonequilibrium variables. Due to the existence of this
particularly simple representation of the specific entropy, one easily arrives at
the natural definitions of temperature, pressure, and thermodynamic potentials
for systems “not infinitesimally near to equilibrium.” However, there does not as
yet exist a kinetic-theory framework in which these and similar problems may be
addressed in a very satisfactory way. Thus, the underlying philosophy here is not
to formulate a completely systematic extension of the aforementioned results to
the general infinite-dimensional case, or even to propose some modification of
Morse’s lemma. Rather, the objective is to exploit the specific properties of a clas-
sical rarefied gas of massive particles and to obtain the required coordinatization
of the space of nonequilibrium states by direct guessing.

Another remark is also in order. For fixed values of v and ¢, h(v, ¢, ¢) denotes
a functional, that is, a function whose argument is (. Consequently, any deriva-
tion of the Gibbs relation for & is necessarily based on the technique of functional
differentiation. Tt can be most simply conceived of as a straightforward general-
ization of the concept of partial derivative. The foregoing functional justification
of the existence of thermodynamic potentials for gaseous systems beyond local
equilibrium is different from the method of moments [8]. Formally, this method
gives the same Gibbs relation for the Boltzmann entropy density & as in the tech-
nique of functional differentiation; but its precise definition and mathematical
status are complex, and lose direct physical meaning because the Hermite expan-
sions of G and In(1 + G) are applied at the outset of the analysis. Furthermore,
there are difficulties in proving the existence and convergence of various series in-
volved. Nevertheless, to understand the conceptual problems associated with this
method, we decide to present an explanation of how the moment representation
of entropy relates to our formalism.

The layout of this paper is as follows. In Secs.2 and 3, we describe the prop-
erties of nonequilibrium thermodynamic potentials. In Secs.4 and 5, the status
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of the method of moments is examined vis-a-vis the technique of functional dif-
ferentiation. Section 6 is for discussion and conclusion. Some auxiliary material
is included as Appendices A and B.

2. The relation between Boltzmann’s entropy and mass density
2.1. Preliminaries

The kinetic theory describes the state of a gas by the distribution function
f(z,c,t) defined, according to Boltzmann, in such a way that f(z,c,t) dVc is the
number density of molecules at the point z and at the time ¢ that have velocities
in the “volume” element d"e¢ around e; N is the dimension of the vector space
to which ¢ belongs. The distribution function obeys the kinetic equation of the
form

{2.1) Of+cd.f = J(f),

where J(f) is the collision term.
In the kinetic theory of rarefied gases, local entropy S (per unit volume) is
sometimes required, and it is locally defined by the functional expression

2.2) S(J) = —kB/fln(fo)ch,
where
(2.3) C:= @rhim™ )W

and where m is the molecular mass and kg and 27/ are constants of Boltzmann
and Planck, respectively. Differentiating 5 with respect to time and using Eq. (2.1)
yield the entropy balance equation

(2.4) o= _l(,-).(,)) +o
0
in which
h:=5/o,
0= TII/f(l‘\.C.
b = —!;B/Ffln(([:f) Ve,
(2.5) '
o= —(/.,-B/g)/./(f)ln((:f) Ve,
C:=c¢—u,
u = (m/g)]cfd’vc.
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Here and henceforth, @ := 0, and an overdot indicates the substantial time
derivative defined by A= 0A + w0 A. Interpreting Eqgs. (2.5), & is the specific
entropy, o is the mass density, ¢ is the entropy flux, ¢ is the ncnnegative entropy
production, € is the peculiar velocity, and u is the macroscopic velocity.

2.2. The direct Legendre transform of Boltzmann’s entropy

In order to compare and contrast the predictions of various theories of ther-
modynamic potentials, we begin our discussion by introducing the standard Leg-
endre transform of Boltzmann’s entropy. Given a clear statement as to what this
transform is, one should be in a much better position to understand what the al-
ternative method of Sec. 3 really entails. Since Boltzmann’s entropy is a functional
of f, the variation of S(f) can be written as

(2.6) 65 = j,\af(ch,
where
(2.7) c) 1= 65/6f(c) = —kg [1 + In(Cf)] .

In Eq.(2.7) the dependence of A on & and ¢ is not shown explicitly in order to
make the resulting formulas shorter. The relation (2.7) can be solved uniquely
for f in the form

(2.8) f= %exp (—l - i) .

ks
We define the Legendre transform of S(f) as
(2.9) FQ) = S(f) - /,\f(th.

In view of the kinetic-theory definition (2.2) of 5, we then find from Egs. (2.5),,
(2.7), and (2.9) that F' is proportional to the mass density p:

(2.10) F = (kg/m)o.

The variation of F'(\) as a functional of A is given by

2.11) §F = —/fé‘)\ch,
where
(2.12) f(c) = —8F/8)(c).
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The equivalence of F' = I'(A\) with 5 = S([) is evident from the fact that the
latter can be regained from the former. The relation is dual in the sense that the
inverse and direct relations have the same form, except for a sign in the equation
of the Legendre transformation.

Following these lines, a formal theory of nonequilibrium potentials can easily
be founded parallel to the theory of equilibrium thermodynamics, but in such a
method of dealing with 5 there does not appear to be a way that the “nonequi-
librium inverse temperature” 1/7" and the “thermodynamic pressure” p could be
associated with the derivatives of h = 5/p with respect to the specific internal
energy ¢ (per unit mass) and the specific volume v = 1/p:

1 de dv

Thus another way of dealing with Boltzmann’s entropy must be proposed, and in
Sec.3 a calculation is made to prove that the generalized Gibbs formulas (2.13)
are valid only for a suitably chosen parametrization of the space of nonequilibrium
states.

The problem has to do with the freedom of choosing independent variables
in terms of which we could describe the nonequilibrium state of a Boltzmann
gas. If, instead of considering the “fundamental equation” S = S(f) with f as
independent “variable,” we had replaced f by (v,e,) and then considered v,
¢, and G as new independent variables('), we could have defined another set
of thermodynamic potentials by performing the Legendre transformations on
h = h(v,e,G) rather than on S = S(f). The corollary of this observation is
as follows: the kinetic theory in itself does not provide a precise definition of
what one means by the Legendre transform of Boltzmann’s entropy, and some
additional specifications are still necessary to make this definition precise. They
are formulated in the text below.

(2.13)

3. Further Legendre transformations
3.1. A Maxwellian molecular density

To carry on the intended analysis of the aforementioned questions, it is use‘ul
to define a few mathematical quantities. First, we define the specific interral
energy ¢ and the reduced peculiar velocity » by

(3.1) £ = (:71/29)/|E|2dec
and
(3.2) K i= at,

(') See Scc.3.1 for the definition of v, € and G.
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where
(3.3) a = (N/2:)V2,

Inspection shows that « is dimensionless. With the specific internal energy and
the reduced peculiar velocity so defined, we now construct fyr as follows:

(3.4) Sar(e,m, ) 1= [oe, 0)/mlaz, 0]Y 205),

where p is the mass density of Eq.(2.5); and 2(x) is given by
- 1 3 M2 . 2

(3.5) G = (2—”) - (‘i'“‘ )

Such an f) is called a Maxwellian molecular density.
As a measure of the deviation of f from fy; we suggest

1
1By

The natural, independent variables of this function are z, , and ¢; thus ¢ =
G(z,k,t). The same remark concerns fy;. However, for simplicity, the dependence
of far and G on x and t will not be shown explicitly. Hence we have for f

(3.7) Sz e, t) = far(n)[1 + G(r)].

Also, in virtue of the definitions of (o, u,¢), we immediately see that

(36) G := (f— f‘\]).

(3.8) f G =10,
where
(3.8) Ge=1, & [|&

To summarize, even though fy; does not satisfy the Boltzmann equation (2.1),
we can always write f in the form (3.7) and thus uniquely represent f in terms
of p, u, £, and (. This representation and the relations (3.8) are exact and are
eutomatically assured if the distribution function f obeys the following conditions:

(3.9) fici”f,zf\'c 2, w=..%

The use of these conditions introduces a natural class of distribution functions
which are considered to prove the existence of the equations of balance of o, u
and e.
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3.2. A canonical form of Boltzmann’s entropy

If we substitute the decomposition (3.7) into Eq.(2.2), then by Eqgs. (3.4) and
(3.8) we obtain for h = 5/p

(3.10) h(v,e,G) = hp(v,e) + A(G),

where v = 1/p and

hg(v,¢€) :

N\ N/2
iv—(k,g/m) — (kg/m)In [C—l— ( A ) } ;
2 muv \4re

(3.11)
A(G) -

g(kB/m)/Q(l +G)In(l + G)dVx.

The separation of & in Eq. (3.10) into 1 and A has a clear physical significance:
hg represents the thermostatic entropy (which is a function of v and &), while
A gives the functional contribution to h independent of (v,¢) and vanishing at
equilibrium. This result shows that the change of dynamical variables, namely,
the transition from f to (v,s,(), enables one to obtain a particularly useful
parametrization of the space of nonequilibrium states. Indeed, on applying such
a parametrization, one can easily prove that di/dv and 9h/0e are the same func-
tions of v and ¢ as in equilibrium. Precisely speaking, the infinitesimal variation
oh and the substantial time derivative of /& assume the form

| N
o = (p/T)o0 + be + j(—) 6G dV,
(3.12) ]
h = (p/T)o + TE + /(-) G dVk,

where (/ (z,6,t) := (O + u=0,)G (2,1, 1), 6G is the infinitesimal variation of ¢
consistent with the constraints (3.8) and the obvious inequality &' > —1(?), and

dh

p/T := Pl Ohg/dv = kg(o/m),
1 Oh e = L i
(3.13) T = 9 = Ohg/0s = Nkg/2me,

O(k) 1= 6h/8G (k) = 6A/6G (k) = —(kg/m)2[1 + In(1 + G)].

We shall refer to Eqs. (3.12) as the generalized Gibbs relations (equations).
From Eqgs. (3.10) and (3.12), it follows that we can determine & and 6/ without
knowing the particular kinetic process occurring, and without regard to the time

(?) It is not difficult to prove the existence of such variations §G of G. In this context, we wish to note that
§G is a function of z, x, and t.
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anc the place. In other words, the values of the specific entropy and its variation
are ascertained from the information which is static and universal. This informa-
tior consists in the form of the dependence of & upon v, ¢, and G. Clearly, the
reletion (3.12); is a direct consequence of Eq.(3.12);. However, this relation is
not “static” and “universal,” because it holds only for those distribution functions
whih are solutions of Boltzmann’s equation.

n the theory of Boltzmann, the temperature 7 is regarded as but another
nane for the expected kinetic energy of relative motion; thus

(3.4) T==

Mcreover, if we let p = (2/N )pec denote the mean pressure, then from Eq. (3.14)
it follows that the “ideal gas law” holds for every condition of the gas:

(3.25) p = (o/m)kpT.

Amther way to define T° and p is through Egs. (3.13); and (3.13),; both methods
lead to the same result.

We are now in a position to discuss certain problems regarding the structure of
an :xpression for the entropy flux ¢. Examination of Egs. (2.5)3 and (3.7) makes
it rzadily apparent that ¢ can exactly be written as

(3.°6) &= (q/T) — (l.'By/mn)/nQ(l + G)In(1 + G)dVk,
where « is defined by Eq.(3.3) and ¢ is the heat flux:

G.7) gi= 2/|z|2ff,1-\"{-.

Our analysis here shows how the quantity ¢/7" enters the general expression for ¢
naturally. By Eq. (3.16) we see, however, that not only net heating flux gives rise
to 6. The above calculations also show that if we are to define the entropy flux ¢
on the basis of kinetic theory, then it is necessary to identify the “nonequilibrium
tenperature” 7" with 2me /N k. Of course, for gas flows sufficiently near to local
equilibrium in the sense that f differs little from the corresponding far, we can
lincarize the integral part of Eq.(3.16) with respect to & and so conclude from
the constraints (3.8) that ¢ approximately equals ¢/7. No such approximations
are possible, however, in the nonlinear case.

One final word concerning the results just obtained. Given the natural condi-
tio1 (3.9) of Sec. 3.1, we have shown that use of the decomposition f = Fy(1+G)
in £gs. (2.5); and (2.5); yields the specific entropy £ in Eq. (3.10) and the entropy
flu: @ in Eq.(3.16) in terms of v, ¢, and (. Consequently, within the framework
set up here, the formula (3.16) emerges in confirmation to the thermodynamic
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principles, and an extended Gibbs-relation-like one-form (3.12); is consistent with
the entropy law as characterized by Eq. (2.4). The obvious reason for this con-
sistency is the fact that Eqs. (3.10), (3.12), and (3.16) are identities. Of course,
we can also test our results directly by substituting these identities and an appro-
priate expression for the entropy production ¢ into Eq. (2.4). The details of this
somewhat elaborate programme will not be presented, however, because a hint
of what to expect may be obtained from considerations of Sec.S5.

3.3. The extremum principles
We easily conclude from Egs. (3.8), (3.10), (3.11), and the inequality
(3.18) A+G)In(1+G6G)-G >0

that of all states (v,e,G) with given values of v and ¢, the equilibrium state
(v,¢e,0) has the greatest specific entropy & (the entropy maximum principle):

(3.19) h(v,e,G) < hg(v,e).

Here h equals hg if and only if G = 0.
As a further systematic step, it is plausible to express ¢ in terms of v, h, and
G\ In fact, by solving Eq. (3.10) for the specific internal energy ¢ we find that

N f C\N 2m
; h,G)= — | — h—AG)]-1;.
620)  cwh& =4 (55)  ew{ g lh-2G0-1}
Then, beginning from A < 0, we see that among all states (v, h, ') having the
same values of v and h, the equilibrium state (v, h,0) gives ¢ its smallest value
(the energy minimum principle). Moreover, we have

p = —()—E T= &
(3.21) fl)l) ) oh’
O(k) = —7[55/56'(.‘;)].
Hence
(3.22) E=—pb+Th- T/(*)G dN k.

Clearly, this result is consistent with Eq. (3.12),.
The specific free energy

(3.23) o, T,G) = e(T) — Th(v, (1), G)
1 m N2
= (kgT/m)In lC-—— ( ) ] - TAG)

mv \2rkgT
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is that partial Legendre transform of ¢ which replaces the entropy h by the
temperature 7' as independent variable. The substantial time derivative ¢ is

(3.24) o =—pb—hT — ']’f@é’ dVk.

In addition, from Eq. (3.23) it follows that the equilibrium state (v, T, 0) minimizes
the specific free energy ¢, not absolutely, but over the space of states (v, T,G)
with given values of v and T (the free-energy minimum principle).

Now, we define the specific enthalpy / and the Gibbs function Q as H :=
e+ vpand Q := ¢ —Th + vp, respectively. The specific enthalpy / is that partial
Legendre transform of ¢ which replaces the specific volume v by the pressure p as
independent variable. The Gibbs function @ in turn is the Legendre transform of
e which simultaneously replaces the specific entropy & by the temperature 7" and
the specific volume v by the pressure p as independent variables. The physical
meaning of these nonequilibrium thermodynamic potentials is apparent from the
differential expressions obtained on using Eq. (3.22):

(3.25) i =vf)+T/'z-T]G)é'dN»:,
(3.26) Q =vp-hT - T/@(.; dV.

Moreover, from

N 2/(N+2)
327)  H=Hphc)=D 12 (2—”@)

47 m

2m ) N
R 0| -
. e"p{(w + 2y LT A= 2}

one can prove that among all states (p, k, () having the same values of p and h,
the equilibrium state (p, h,0) gives /1 its smallest value (the enthalpy minimum
principle). Similarly, using

(3.28) Q=QpT,G)= (kT/m)

m  \N/?
+(kgT/m)In [C(p/kBT) (ZWL'BT) ] - TA(G),

one concludes that the equilibrium state (p,7',0) minimizes the Gibbs function
Q, not absolutely, but over the space of states (p, 7', ) with given values of p and
T (the Gibbs-function minimum principle).

The total Legendre transform of ¢ is defined by

(3.29) Ep, T,0):=Th—vp-— T/QG dVk— &

N/2
= —(kgT/m)In [C(p/kBT) (?’Z‘—T) l * Tf@dN;;.
‘B



802 7. BANACH AND S. PIEKARSKI

A glance at Eq.(3.13)3 shows that the equilibrium value O of @ is O =
—(kg/m)£2. Also, with Eq. (3.8) for G = 1 and the inequality In(1 + &) — G <0,
we find that

(3.30) / © - 0p)dVk > 0.
Hence
(3.31) £, T,0) > £, T, 05),

the equality holding if and only if @ = @f. The substantial time derivative of £
assumes the form

(3.32) €)Y = —vp +BT - ] G(TOY V.

Another set of functions (Massieu’s functions) can be defined by perform-
ing the Legendre transformations on h(v, e, ) rather than on (v, h, ). As the
theory of these functions is very much analogous to that already made familiar,
we will not discuss this theory further here; specifically, we will not derive the
maximum principles for the Massieu functions(®).

4. The method of moments

To study the consequences of using the method of moments, we introduce the
Hilbert space H in which the scalar product (w;,ws) is defined by

(4.1) (wy,wy) = /Q(r{)wl(fc)wg(lé)(lei.

We can determine the exact moment representations of & and h if we assume

that 1 + G, In(1 + ), and G are elements of 7. Then by use of the complete set
of tensor Hermite polynomials B"(x), n = 0,1,...,00, it is possible to represent

1+ G,In(1 + G), and G by the expansions [9]

e I

1+G =1 =Zﬁb - B",
n=0
(4.2) In(1+G) =3 X".5"
n=0
. — 1 .
(11 - _'bTL = B”,
n=2 .

(®) Of course, we can also derive the minimum principles, this being purely a matter of convention in the
choice of the sign of the function.
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where 6™ and X" are the expansion coefficients and the symbol - denotes the
inner product of the tensors involved. Clearly, because of the constraints (3.8),
we have

(4.3) =1 &=0 TH*=0,

where Tr is the trace operator. The above series converge in the sense of the
norm in H. However, to express X" in terms of ", we must first assume that
the series Y converges both pointwise for each « and in the sense of H and then
substitute Eq. (4.2); into

o 1 el n N .
(4.4) X" =— [ 02B8"In(1+G)d7 k.

n.

Here we remark that if the above conditions are not satisfied, then the moment
representations of h and b described below are not expected to exist. This gives us
necessary information about what is and is not possible. In the recent analysis [10]
presented by Eu [see, e.g., his equations (2.30) and (2.33)], an explicit assumption
was made that the expansion Y in Eq.(4.2); converges to 1 + (' in the sense
of means and that this rather weak condition is sufficient to see the method of
moments in action (i.e., to express X" in terms of b™). The pointwise convergence
of Y just deduced clearly suggests it to the contrary.

From Egs. (3.10)-(3.13) and (4.2) plus the orthogonality properties of Her-

mite polynomials [9], the moment representations of & and £ are as follows:

(4.5) h = hg—(kp/m) Z X",
n=0
(4.6) o= (»/T)v + lé - (’\'H/’“)Z X" hn,
1 n=2

Consistency(*) between Egs. (4.5) and (4.6) follows directly from the consider-
ations of Appendix B [cf. Egs. (B.2)s and (B.3)s]. We can similarly analyze the
kinetic-theory expression for the entropy flux @. In fact, putting the expansions
(4.2); and (4.2), into Eq. (3.16), we find that [cf. also Eq. (B.7) in Appendix B]

4.7) ® = (q/T)— (kpo/ma) (X" X b"“‘) .
n=1
where the heat flux ¢ is related to Trb? by
2 (N\*?
. 0= (= :
(4.8) Tr Q(k) g

(*) The series in Egs. (4.5)-(4.7) converge absolutely if 1 + G, x(1 + G), G, and In(1 + @) arc clements
of H.
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However, we have to worry about the convergence of the series in Eq. (4.7);
this may require consideration of the situation in which also #(1+¢') is an element
of H. From the viewpoint of the present paper, the method of moments is a
formal and sophisticated way of deriving the generalized Gibbs relation (3.12),
for the specific Boltzmann entropy A. In Secs.2 and 3, we have seen that there
are simpler and more natural ways of deriving this relation. One obvious reason
for this is that, with the technique of functional differentiation, we can draw
definite and exact conclusions about the existence of Eqs. (3.12) without making
any explicit or implicit reference to H. This is crucial because representative
and physically important cases are known [11] in which solutions of the kinetic
equation do not exist in the Hilbert space chosen: GG ¢ H. This fact detracts much
from the usefulness of Hermite expansions (and of various ad hoc truncation and
projection procedures) at the level of the nonlinear Boltzmann or Boltzmann-like
equations.

We recall that the nonnegative entropy production o is given by Eq. (2.5); and
conclude from Eqs. (3.7) and (4.2); that

4.9) o= —(kg/m) Z X". P,
n=0
where
(4.10) P = (rn/g)/B”J(f)(l“\"c
and where
(4.11) PP=0, P'=0, TP=d.

The exact and/or tractable moment representations of P’ are not expected to
exist, except in the case of Maxwellian molecules.

In Sec.5 we shall verify that if we use the formulas (4.5), (4.7), and (4.9) in
the balance equation (2.4) for £, then this balance equation will be automatically
satisfied, at least formally. Before doing so, however, it is necessary to derive the
evolution equations for g, u, ¢, and b™.

The equations of balance of o, u, and ¢ are easily obtained from the Boltzmann
equation under the natural assumption that f falls off sufficiently rapidly for large
values of ¢:

o = —o(0-u),
. 1, -
(4.12) W= —E[()-(p[ +w),

e

= —1((')-(1) - l(,')l +w). L.
0 0
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The abbreviated symbol I stands for the unit tensor of a Euclidean vector space
E (dimE = N), L is the spatial gradient of u (L := 0u), and w is the stress
deviator defined by

1
(4.13) wi= mf (z@ c— sz,r) fdNe.
This stress deviator is proportional to 0%
N
2 _
(4.14) b = 206w.

By use of the notation introduced in Appendix A we obtain from

(4.15) =" f B fdNe
and the Boltzmann equation (under usual assumptions) the following result:
(4.16) b = Z™ + P,
where
A —i— (0-(;"“ +nd v l/”'l) - (T]L; (g'-b”” + ngo'v b"“l)

—na(i vty = n[LUb + (n - 1)LV 6"

——% [(n + 1)< ¥l 4 n(n —1)'v ,d,rz—l] - gd,ﬂ‘,
(4.16") o' := 9o, g 1= de,
Y= b+ (n— 1) v b2,
b3:=0, b%:=0, bli=0,

n=10,1, ...; 00.

This is the desired system of equations for the coefficients 4" in the expansion
(4.2); of 1 + G. Inspection shows that Eqs. (4.16) are automatically satisfied if n
equals 0 or 1, because of Egs. (4.12); moreover, (Tr12)" = Trb? = tr 22 = tr P? =
0. Another remark is also in order. To obtain a manageable system of “extended”
differential equations, the infinite set of moments has to be truncated and some
procedures for expressing " in terms of 4" must be proposed. However, to the
best of our knowledge, it still remains an open question whether such a truncution
procedure is consistent with kinetic theory.

The manner in which these calculations form the first step in the formal deriva-

tion of h = —0~ 10+ @) + o from Egs. (4.5), (4.7), and (4.9), will become clear
in the text below.
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5. Consistency between the generalized Gibbs relation and the entropy law

First of all, there is no question that Eqs. (3.12) and (4.6) are consistent with
the entropy law (2.4) because these equations are identities. Nevertheless, since
this point has been a subject of debate [12-14] in the past, here the internal
consistency of the formalism will be demonstrated from still another viewpoint.
To achieve the objective in mind, we first substitute Eqgs. (4.7) and (4.9) into the
entropy law (2.4) and then establish the following identity by using Egs. (3.3),
(4.8), (4.12), (4.14), (4.16), and the definitions of various quantities involved:

61 h=@/T)b+ s - (/cB/miX"- b7 + (kn/meT)Ch,
where
O o= f: (1@ 0.) + oT(X" 2 27) + (- X))
n=1
9, 1= pa~! [\ AL S b"—‘],
(5.2)

¥ = oTL, = %QT(/ Ve,
N
X" =0 for n # 2,3.

The expansion in Eq. (5.2); starts from n = 1, because J3 = 0 and ¥,, # 0 when
n > 0. Combining Eqs. (4.6) and (5.1), we obtain

(5.3) Cy = 0.

We call this equation the consistency condition because its role in essence is that of
a guarantor of the generalized Gibbs relation (4.6) for entropy change. In order
to demonstrate the internal consistency of the formalism, it is thus stimulating to
show that Eq. (5.3) holds for all conditions of the Boltzmann gas.

Now, we shall prove that (', can indeed be set equal to zero without encoun-
tering any internal contradiction. This proof generalizes to N-dimensional systems
the conclusion(®) formulated directly before Eq. (4.18) in [12]. A straightforward
application of Egs. (3.3), (4.16), (5.2), (B.2),, and (B.3); yields

1 . g . @, . ] 1.
(54) Q—Tch=—a(u~pl)—zpz—-ﬁ fa -D3)— L-D4+ED5,

(®) The notation in [12] slightly differs from ours as follows: ours = his; N = 1, kg = 1, m = 1
cINTDI NI Viem e A = ded; Y = ap~ Y X0 = T u - Py X7 =% ~T—1X" for
n# 00, = T (X" 4" x2 =0 x? = =3, Similar comparisons of our consistency condition C, =0
(specialized to the case N = 1) with the corresponding equation (25) of [14] are not possible, however, because
in this equation the meaning of the symbol is not clearly explained.

n
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where the objects Dy, ..., Ds are defined by Eqgs. (B.2). However, from the consid-
erations of Appendix B it follows that D, = 0 when & = 1,...,5. This completes
the proof of Eq.(5.3). The validity of ', = 0 and hence of Eq.(4.6) is also
obvious on the intuitive ground.

Thus contrary to the suggestion made in the literature [14], there does appear
to be a way that the terms in Eq. (5.2); cancel each other so neatly that C, = 0
when Egs. (4.2) and (4.4) hold; in other words, when the complete set is taken for
B™(x). This implies the second conclusion: there is no kinetic-theory foundation
for including the compensation function (or the calortropy) in the thermodynamic
description of Boltzmann’s gas, as it is done in the so-called revised version of the
modified moment method [13] or in its possible further corrections (see especially
the discussion on p. 7177 after Eq. (3.30) in [10]). Such is indeed the case because
the generalized Gibbs relation (4.6) holds for the entropy density A itself, and not
for the compensation function which appears to be extraneous and redundant.
The same observation concerns the notion of calortropy. To be more precise,
substitution of the formula (4.2), into Eq. (3.1) in [10] yields the conclusion that
the calortropy does not differ from Boltzmann’s entropy.

The gist of the point made by the present analysis is that the information con-
tained in the generalized Gibbs relation formally does not contract as the level of
description is passed from the phase-space level (3.12) to that at the moment level
[cf. Eq. (4.6)], since the passage essentially involves a complete set of Hermite poly-
nomials. Moreover, after expressing X" in terms of 0", as is formally always
possible [cf,, e.g., our analysis directly after Eq. (4.3)], the Boltzmann entropy A
becomes a state function in a space spanned by the “thermodynamic” variables
& := {v,e,b" |n = 2,3,...,00}, and thus one can think of i as being an exact
differential in ®. On the basis of such results, it is possible to infer that, as was
already found in earlier work [12], a thermodynamic interpretation of kinetic the-
ory may be erected on Boltzmann’s entropy alone, i.e., without the necessity [10,
13] of referring to the “concepts” of compensation function and calortropy. How-
ever, the method of moments is surely not very useful in practice. This method
obscures the real situation: it suggests that there is something very special about
the way the theory of thermodynamic potentials is related to Hermite expansions,
whereas in reality this is not so. A deductive mathematical way for exhibiting the
generalized Gibbs relation has been proposed in Sec.3 and is clearly linked to
the technique of functional differentiation.

6. Discussion and conclusion

We have found a set of thermodynamic potentials for the description of a
Boltzmann gas. We have obtained the extremum principles for these potentials,
and examined their physical meaning in the simplest case (a one-component gas).

http://rcin.org.pl
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The basis for the initial analysis was Boltzmann’s entropy which is a functional
of the single particle distribution function, not of the fields. This entropy was
then divided into two parts, that associated with the local distribution (and hence
yielding a standard function of conserved variables) plus the remainder. Using
the technique of functional differentiation, we have proved that if the indepen-
dent gas-state variables are (v, ¢, ), the quantities Nkg/2imne and 20¢/N, which
everybody would write down as the only natural concepts in the situation of a
classical rarefied gas, exactly correspond to the “nonequilibrium inverse tempera-
ture” 1/7 and the “thermodynamic pressure” p as defined by investigating the
partial derivatives of Boltzmann’s entropy h(v, ¢, () with respect to v and «.

Comparison with the usual approach shows that we can obtain the same results
as usual but in a much more transparent way, because in the standard approach
(the method of moments) the existence of thermodynamic potentials depends on
the convergence of the following series:

(6.1) Yz, 1) = Z X"z, 1) - b (x, ),

n=0

where (z,t) is an arbitrary space-time point. On the other hand, in order to
use the method of moments to draw valuable conclusions about the “thermody-
namic branch” [12] of solutions of Boltzmann’s equation, it would be necessary
to have not only the convergence of § for arbitrary space-time points but also
some information about uniformity (in space-time) of convergence; the existence
theorems for Boltzmann’s equation give no indication that there will be any such
uniformity. Furthermore, the divergence of Y [cf. Eq. (4.2),] in certain important
cases makes uniformity of convergence problematical. For a discussion of these
divergences, see, for example, [11].

The situation is different, however, with the formalism of Sec. 3, for its equa-
tions give rise to the exact theory of thermodynamic potentials independent of
any ad hoc assumptions and artificial constructions. To summarize, the technique
of functional differentiation is an adequate tool to study the mathematical and
physical status of the generalized Gibbs relation at the level of Boltzmann’s equa-
tion. The point of this discussion is that instead of concentrating on the formal

Hermite expansion (4.6) of i, with the ambiguities that implies, we can deal
directly with Eqgs. (3.12).

At first sight, it seems that while the questions/problems posed here apply for
general systems, their answers/resolutions must be limited to classical rarefied
gases. But this is not the case. In fact, we have already verified that our ideas are
quite universal and can be extended in a number of directions, one of them being
the analysis of mixtures and quantum Bose - Einstein or Fermi- Dirac nonequi-
librium ideal gases. However, since these extensions are not altogether trivial or
immediate, they will be treated in a separate paper.
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Appendix A. Some useful abbreviations

To make the resulting formulas shorter, in this paper we have introduced
essentially the same notation as in [15-17]. Let E be a Euclidean vector space
(dim[E = N). Choose an orthonormal basis {ey,...,enx} in E and set ¢, ., :=
erl ®.'.®8TQ'

1. The action of the symmetrizer /I on a tensor M“ of degree « is given by

N
(A1) OIM = Y MG, ,enras

i Ta=1l

where the coefficients M7, ~are components of M® with respect to {e,, r,}

and parentheses enclosing a set of o indices represent symmetrization of these
indices, i.e., the sum over a! permutations of the indices, divided by a!

2. Suppose that M and M7 are the tensors of degrees « and 3, respectively.
Then the equality
(A.2) MoV MP = I11(M* @ MP)

defines the symmetric tensor product of M< and A7,

3. The action of U on M? and M7 is characterized by

: MOCUMP:=1T Tt (M*® MP
tA3) aTH 2 (1.ur+1)( - )’

where Tr (1 .41y is the trace operator with respect to the pair (1,a + 1).

4. Let us suppose that v := min(a, 3). Then in contracting M with M# the
v-fold contraction is denoted by .. The tensor M« M# of degree a + 8 — 2v
is usually termed the inner tensor product of A/® and MP. However, if M@ and
MP? are not totally symmetric tensors, then some convention as to which of the
2v indices are to be contracted, must be followed when doing the contraction. In
this context, see the precise definition of A//* « A/? in Appendix A of [17].

5. Suppose that M and M " are the tensors of degree a. Then the action of
O on M and M" is described by

Ay M= Y [(e %) (e T er 0.

r,s=1
6. The effect of 0 on a tensor field M is given by
N
(AS) OM®* = Z e, ® (':),-Afa

r=1

with 9, := 9/da".

http://rcin.org.pl
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7. The action of @+ on a tensor field A7 is defined by
A.6 d«M*:= T QMY
(A6) LT @A)

X

8. The effect of 9V on a tensor field M« is characterized by

(A7) Vv M* := II(OM®).

Appendix B. Auxiliary formal properties of 0" and X"

The effect of @ on a function A(x) or a tensor field M"(x) of degree n is
given by

N
A o= Z (5,;1) B
(B.1) :l
OM™ := > e, © 9, M",
r=1

where 0, := 9/0k".
The objects Dy, k = 1,...,6, are defined by

Dy = i nX™.pnl

n=1
o0

Dy = Z nX™ ",
n=2

—Tr b3 + Z [(71 + 1).\'”.' _¢rl+] + “(” . 1)‘\'71‘ wn—l _ X pntl :

Djy =
n=1
(B.2) -
Dy = —b* + Z n [b”DX" +(n—1)X". b”_ZJ,

n=1

Dsi= 3 [@X") b1 +n(@- X") 0"
n=1

o0

Dg:= Y X™.b",

n=0

where, of course, 9 = d,.
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It is only a matter of labor to prove that

m = v
Dy = aNp /f()[ln(l +G))dVk =0,
m =] ) -
Dz = QNQ /I{H‘()[In(l + G)]}(l\f{ = 0’
Dy = [ ¥ 42 Jsf 4 5001 + Gl =0,
a’ o
(B.3) . i i
Dy = (YNQ/f{I—H®H+H®()[ln(1 +G)]}([* k=0,
. m - ) -
Ds = m/f{n-()[ln(l + ]} dVk =0,

- "N =
Ds = ox f[in(t+ 6] @k =0,

where [In(1 + )]’ is the substantial time derivative of In(1 + &). In these equa-
tions, f and ' are functions of z, «, and t.

The proof that the series Dy, & = 1,...,6, can indeed be represented by the
above vanishing integrals, is based on Egs.(2.5)s, (3.2), (4.2)2, (4.15), and the
following identities [15, 16] for Hermite polynomials B"™(x) [9]:

N
k® B™"(k) = B"* (k) + n Z € ® [e,. v B"_l(rc)],
=l

(B.4) aB™ = n im. ® (fr V B”'l),
r=1

n(n+ 1) [M™ (v B*Y] = 20 (M B+ n(n = 1) [(Te M7y - 5771

where M™ is an arbitrary symmetric tensor of degree n.

The series in Egs. (B.2) exist and are absolutely convergent if 1+ G, [In(1+G)],
dln(1+G), k®dIn(1+ G), k@I In(1 + &), and £ @ k@ J In(1 + &) are elements
of H. Clearly, as usual, we must also assume that we can exchange the integral
over ¢ or x with the derivative d,; these assumptions are necessary in order to
derive the evolution equations (4.16) for 0", If these postulates are not satisfied,
the method of moments fails to exist.

Using the identity

(B.5) QL;Qf = 001+ G)

and integrating by parts, we easily conclude from the constraints (3.8) that the
integrals in Egs. (B.3) vanish; thus

(B.6) D=0

when &£ = 1, ...,6. This observation completes the proof of Eq. (5.3).
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A one-dimensional version of these calculations is represented by Eqs. (4.14)
in [12]; see also the comments at the bottom of p.359 in that paper. All the
essential ingredients for the proof of the consistency condition (5.3) were thus given
seven years ago.

From D; = 0 it follows that Eq. (4.7) simplifies to

(B.7) & = (q/T)— (kpo/ma)y_ X" o™,

n=1
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