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The stationary Stokes flow through a spherical region
with large variations of density and viscosity coefficient

Z. PLOCHOCKI, B. KAZMIERCZAK
and Z. PERADZYNSKI (WARSZAWA)

WE ARE INTERESTED in flows of a fluid whose density changes abruptly after entering a certain
region in R3. Flows of this kind may be uscful in modclling such phenomena as propagating
flames. Assuming that the region is a ball we find a closed-form solution for the flow homogencous
at infinity in the Stokes approximation. It is compared with the analytical solution in the Euler
approximation. Such solutions can also be used as a test for numerical algorithms solving the flow
equations.

1. Introduction

For GaAs sysTEMs with strong local heat sources (e.g. flames, laser-generated or
sustained plasma) there arise at least two important problems concerning the
influence of a gas flow on heat exchange processes, and velocity of propagation of
the hot region front. In general, such problems are complicated. However, simple
hydraulic models of a gas flow through a region with large density variations based
on analysis of particular solutions, offer some possibilities of simplification of such
problems.

The first such a solution was proposed by Guskov et al. [1] as an attempt
to study the propagation of plasma front in case of laser-generated plasma. The
authors considered a stationary, homogeneous at infinity, inviscid (the Euler ap-
proximation, i.e. Re — o0) gas flow through a spherical region. The density of
the gas is assumed to be constant outside, and also constant but much smaller
inside the sphere. The gas is therefore assumed to be incompressible outside and
inside the sphere. Such assumptions allow to find an analytical solution of the
problem (by dividing the whole flow region into two subregions, finding solutions
to the continuity and Euler equations separately in each of them, and then by
matching these solutions by means of continuity conditions for densities of mass
and momentum fluxes at the surface of the sphere).

Next, Z. PERADZYNsKI and E. ZAwISTOWSKA [2] treated numerically the same
problem for a different Reynolds number, assuming however constant viscosity
coefficient in the whole flow region.

The aim of the present paper is to find an analytical solution of this problem
in the Stokes approximation (Re — 0) and to compare it with the analytical
solution of the problem in the Euler approximation, and also with the numerical
solution mentioned.



766 Z. Procriockl, B. KAZMIERCZAK AND Z. PERADZYNSKI

2. Statement of the problem

Consider a stationary gas flow through the spherical region of radius 2. The
density of the gas is assumed in the form:

» o= Qint + (gcxt _ Qim)H(F— I),
( ’ ) Qim
Epi = F < 1,

where o™ and p®* are constants representing the gas density inside and outside
the sphere, respectively; I/ (z — z¢) is the Heaviside function; and 7 stands for
the dimensionless r-coordinate in the spherical coordinate system (as referred to
the radius R). The density variation may be thought as generated by a constant
high temperature field inside the sphere and (relatively) low (and also constant)
temperature field outside. In such a case, also the viscosity coeflicient should be
assumed in the form:

n = Uint + (,]cxt _ ‘J]im)][(F . 1)7

B pext
&y = pint <1,

(2.2)

where 7" and 5 are constants representing the shear viscosity coefficient of
the gas inside and outside the sphere, respectively. Since for an ideal gas o o< 1/7
and 5 x /T, therefore for a gas, which can be approximately treated as an ideal
one, we have

(2:3) En = \/fE,-

The flow at infinity is assumed to be homogeneous. At the sphere surface
there are no mass and momentum sources.

In order to find the solution to this problem, the method of dividing the
whole region into two subregions is applied. Then, the governing equations for
the interior of both subregions, i.e. for r < R and r > R, are:

Vev =0, Vp = 'UVZV,

where v and p stand for the velocity vector and pressure, respectively. By intro-
ducing the spherical coordinate system r, ¢, § (with z-axis directed along the flow
velocity at infinity and centered in the center of the sphere), these equations can
be rewritten in the following detailed form:

-

18,
24) r2 E)—r(r urf rsinf 00

(vgsin®) = 0,
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@4 10 _120 (22”)+ 1 g(my') )
[cont.] n arf - 72 0r ar " r2sin ) 06 a6 "

2v, 2cosf 2 Jvg
T2 T 2sing T 208
10 19 /,0 1 0 Jd vp 2 dv,
no8" = 7 or ( ar" ) + i O "‘"W) rsinZg | 700
where v, and vy stand for the r- and #-coordinate of the velocity vector, respect-
ively, and the axial symmetry of the flow has been assumed (i.e. v, = 0).
The boundary conditions are assumed in the form:

Vp = Vg COSH,

=0 Vg = —Vs Sind,
(2.5) P = Poos
r=0: o, vl 2< oo,

where v, and p., stand for the velocity modulus and pressure at infinity, repect-
ively. In order to match the solutions outside and inside the sphere, the local
conservation principles of mass and momentum are used. The equations, which
express these conservation principles, are assumed to be valid in the whole space
(i.e. — also at the sphere surface). Then the continuity conditions for the r-th
coordinates of the flux density of mass and that of momentum at the sphere
surface read:

T = R; HQ;!T]] = 0~
dv
T |
@:6) [r-252] =0,
CfOvg vy 1 0v\] _
(5 -7+l o
where
@7 [¢] = v = By - v = B),

where, in turn, the superscripts ext and int refer to the outside and to the
inside of the sphere, respectively.

3. Solution
The solution of the problem expressed by Eqs. (2.4)-(2.6) is sought in the
form:
vy = Voo f(r)cos b,

— Vs g(1) sinf.

(.1)

Il

vg



768 Z. Procrnockl, B. KAZMIERCZAK AND Z. PERADZYNSKI

Substituting Egs. (3.1) into Eq.(2.4); one obtains:

1
(32) g= 31+ 1,

where prime denotes the derivative with respect to r. Substituting Egs. (3.1) into
Egs. (2.4); 3 and using Eq. (3.2) one obtains:

ng = (j” + i_f’) cos b,
Voo OT r
n; % = = Grzf’"+3rf”+ 2f’) sin 6.

Integrating the latter equation and substituting the result into the former equation
we obtain:

1 1
(3.3) —p=C + (—rz_f’” +3rf" + 2f’) cos b,
NVss 2
(3.4) Y+ 82" + 8rf" — 8 =0,
where '} is a constant. The general solution of the latter equation is:

f=Cy+ Cyr? +§—4+(3,

where C stand for constants. Thus, according to Egs. (3.1) - (3.3) the solutions of
Egs. (2.4) outside and inside the sphere, which satisfy the boundary conditions as
expressed by Egs.(2.5), may be written in the form (all the constants occuring
in the formulae describing the flow in the Stokes approximation will be denoted
by tilde, to distinguishing them from the analogous constants in the case of the
Euler approximation, which will be discussed later):

— T 2 S 5 /“"
Ti= E >1: l’:x = Voo (1 + TT = 27?) COS(),
D ,I
cxt = —Vs I 9
v§ J ( >t ) sin
i CXL b ]3
(3.5) Pt = po + ”—I}U— — cos 4,
7= “;E <1 it =y (B + CF%)cosd,
it = —u\(b’ +2C7%)sin 0,
M i / 1
S v, 10C Fcosf.

= R Ey



THE STATIONARY STOKES FLOW 769

The constants A, B, C, D, E have to be determined from the continuity
conditions as expressed by Egs. (2.6). In fact, substituting Egs. (3.5) into Egs. (2.6)
we obtain the following set of equations for the constants considered:

14D -24=¢,(B +C),

E=p.,
v o 26
D—44A = C,

€y
2i=-%
€n

It follows immediately from the latter two equations that

(3.6) D=0,

and therefore:

1-24 =¢,(B+O),
(3.7) ‘(~ )
T
] 5
and
(3.8) E=ps.

It is seen that we have two equations for three constants: A, B and C.

Thus, in order to obtain a unique solution we should adopt an additional
condition, and the continuity condition of the tangent component of velocity at
the surface of the sphere (r = R) is assumed:

(3.9) [e]=0 ¢ =n),
which leads to the following additional equation:
(3.10) 1+A=05+2C.

From a formal point of view the problem of an additional constant of integra-
tion, for which there is no suitable condition, follows naturally from the applied
method of dividing the whole flow region into two subregions. From the physical
point of view the assumption expressed by Eq. (3.9) may be argued as follows. The
expression in [[ ] in Eq.(2.6); represents the rf—coordinate of the momentum
flux density, which should be a continuous function in the whole flow region (in
particular — at r = R). The quantities: 7, v,, vy are assumed to be limited. If the
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function vy was discontinuous (as a function of r) at » = R, then this coordinate
of the momentum flux density would be singular at » = I2, and this singularity can
not be compensated by discontinuities of the other terms. It would denote, that
at the boundary between subregions there are some momentum sources (surface
tangent forces), which are absent by the assumption. Short discussion of the as-
sumption considered, which is based on the properties of a weak solution of the
flow equations in the Stokes approximation, is presented in the Appendix. It may
be treated as a formal support for the continuity condition expressed by Eq. (3.9).
Now, solving Eqgs. (3.7) and (3.10) we obtain:

/‘i = 1—'59 ,
2+ g,(1 42y,
~  344de, —2e,.€
A1 B = B e
G 2+ g,(1 + 2e
C"v = 251](] _50)

2+e,(1+2

Inserting the approximate relation ¢, = | /Z, into the above formulae we may
obtain the asymptotic expressions as ¢, — 0, namely:

-1 3 _ 3 4
A=-2*(1'—§59), U=§<]+§\/5),

- 3\
G-y (1-30) = -y,

On the other hand, by putting ¢,, = 1 we obtain respectively:

(3.12)

¥ 1-¢, fxl(] éc‘)
T 243, 2\ 27
= P—2 7 25
i | = i =~ 1——5),
) ~ 2+ 3¢, 2( 147¢
1—¢

=~ € 5
= — L2 (1-Z2¢g,).
¢=-2713, O 29)

Thus, Egs. (3.5) with Egs. (3.6), (3.8) and (3.11) represent the solution of the
problem expressed by Egs. (2.4) - (2.6), which is unique in the class of functions
specified by Egs. (3.1).

4. Results

From the formulae given in the previous section one may obtain all the infor-
mation about the flow examined. Examples of two types of such an information
will be presented.



FiG. 1. Streamlines pictures for the flow through the sphere in the Euler (the lower half) and
Stokes (the upper half) approximations under the assumptions: e, = /&g, €, = 2.5 x 1072,
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F1G. 2. Dimensionless velocity (as referred to v..) at the flow symmetry axis as a function of the

dimensionless z-coordinate (as referred to R) under the same assumptions about £, and €,
as in the case of Fig.1 in the Euler (solid line) and Stokes (dashed line) approximations.
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The information of the first type concerns the flow fields at a given £,. As an
example, value £, = 2.5 x 102 is assumed as a typical one for the laser-sustained
plasma. Thus, the upper half of Fig.1 presents the streamlines pictures. Figure
2b (dashed line) presents the dimensionless z-coordinate of velocity:

v vy .
7, = —cosf — —-sin 4

Voo Voo
at the flow symmetry axis (6 = =, 0, respectively) as a function of dimensionless
z-coordinate (z = (z/R)cos#), under the same assumptions about ¢, and ¢, as
above. Figure 3 presents the dependence of the dimensionless pressure difference:

Ap =2l Le
QOOvoo

on the dimensionless z-coordinate at the flow symmetry axis under the same
assumptions about ¢, and ¢, as in the case of Fig. 1, where the Reynolds number

BosVoo It

n oo

Re =

plays the role of the scale factor only.

The information of the second type concerns the characteristics of the flow
considered as functions of ¢,, as for example: velocity and pressure on the flow
symmetry axis at the center and at the boundary of the sphere (Fig.4b, Fig. 5b)("):

€n = fEo £n =1
TEN(1)=1-24 = %sa, = gey,
Ty = B+ C ’-—‘-’%+ G 2%—?69,
i ~ o 1D o1 25
'Uzt(O)-_-B =§+2\/‘5, —E—‘ZEQ,
4.1 e e
1 [:] =1-24-B-¢ z—%—\/;, z-g+%5—sg,
M) =0
Re int = é o~ 3 ~ 5
EaJ (1)—~‘—; —1—5\_9, 1—250,
A—plnt(o) =0

[[_\_p]] = A0,

(') Note that the part of the gas flux flowing through the sphere as referred to the flux incoming from
infinity is given by £ (1).



F1G. 3. Scaled relative pressure at the flow symmetry axis for e, = \/g,, €, = 2.5 % 1072
solid line — the Euler approximation: 2(p — peo)/ (00 v%),
dashed line - the Stokes approximation: 2(p — po)/(2c v2)(Re)/(20).
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Fi16. 4. Dependence of 7(1) (solid line), 7™ (1) (dashed line) and 7/™(0) (bold line) on ¢,
for the flow through the sphere in the Euler (a) and Stokes (b) approximation

under the assumption: e, = | /g,.
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FiG. 5. Dependence of Ap (1) (solid line), Ap (1) (dashed line) and Ap "'(0) (bold linc) on
€, for the flow through the sphere in the Euler (a) and Stokes (b) approximations under the
same assumptions about ¢, as in the case of Fig. 3.

where the first column represents the exact formulae, the second one — the asymp-
totic formulae for small ¢, under the assumption ¢, = | /&,, the third one — the
asymptotic formulae for small ¢, under the assumption ¢, = 1;

¥(1) := $(6 ==, r = R),
0(0) := (0 =7, r = 0);

and [[v] is defined by Eq.(2.7).
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5. Discussion

The velocity field in the Stokes approximation is, from the qualitative point of
view, similar to that in the Euler approximation (Fig. 1). It follows from the fact
that the dependence of the velocity coordinates on 7 and @ has the same structure
in both approximations (Egs. (3.5); 2,45 with Eq. (3.6)). However, quantitative pic-
tures in both cases are different (Fig.2), because the integration constants A, B
and C' in the Euler approximation (they have no tilde, for distinguishing) are given
by different functions of ¢,. Namely, in the case of the Euler approximation they
are the solutions of the set (the typing error in the sign is corrected):

_3-(2+¢,)B
4+e¢,

2—~¢,—€,B

A=
4+¢,

5 C

)

3A(2 - A) +2(1 = 2A)2 = —,C(3B + 2C) + 2c,(B + C)%.

Solving this equation set with respect to A, B, C' one may obtain the vel-
ocity characteristics in the Euler approximation analogous to those given by
Eqgs.(4.1);_4 in the case of the Stokes approximation (number errors are cor-
rected) (Fig.4a):

1 /3
Ty = 1-24 = 5\/;,/??,
; 1 1 /31
(D= B+ C S gy
v (Dew . 2 2 A,

1

: 1 31
7(0)g, = B = __ + \ﬂ )
/] 2./,

[7],, = 1-24-B-C = 5",

e

where the same convention was used as in the case of Egs. (4.1).

Therefore, from the quantitative point of view the velocity field in the Stokes
approximation is remarkably diflerent (especially inside the sphere) as compared
to that in the Euler approximation. Generally, one may say, that viscosity forces
(when they are dominating over the inertia forces) accommodate the flow, al-
though (inside the sphere) not as much as it follows from the numerical results
presented in [2]. For example, the (nondimensional) internal velocity (as referred
{0 v..) On the z-axis for £, = 2.5 x 10~2 increases parabollically from about 4.35
at7 = 1 to about 7.25 at ¥ = ( in the Euler approximation, whereas in the Stokes
approximation (under the assumption: €, = | /&) it increases (also parabolically)
from about 1.63 to about 1.78, respectively.

Comparison of the analytical results presented here (under the assumption:
€, = 1) and numerical results presented in [2] for Re — 0 shows some differences
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inside the sphere. The numerical results are lower and more weakly depending
on z-coordinate. For example, the analytical formulae for the internal (dimen-
sionless) velocity (as referred to v.,) on z-axis for ¢, = 2.5 x 102 give the value
about 2.46 at ¥ = 1 and about 3.40 at 7 = 0, whereas the values in [2] are about
1.85 and 1.96, respectively.

The pressure field obtained in the Stokes approximation has different struc-
ture as compared to that in the Euler approximation, although variations of pres-
sure are relatively small in both of them (Fig.3). General difference in pressure
behaviour is seen by comparing Eqs.(3.5)36 (With D = 0) and the following
formulae for pressure given in [1]:

2
v A A -
p‘é’g = Poo + TT_j{_ (2+ _—3> +3(2—T_—3) COSza}g

T
. 2
P = b0+, 20T { B + C72 - (38 + 207) cos® 0},
where ’
PO = Poo = 500005 {AQ + A) + £,C(B + O)} .

Using these formulae one may obtain the pressure characteristics in the Euler
approximation analogous to those given by Egs. (4.1)s_g in the case of the Stokes
approximation (Fig.5 a):

ApT (s = 4A(1 - A) ®1- ggg,
——int . = 1 3
ApT(Mew = —{AQ+ A) +£,C3B +20)} = 7 —\[5 V5,

29" (0w = — {AQ + A) +,0(13 + C))

]

112
ool

3.

B ==
Peirs
%

[~}

I

[27],, = 342 - 4)+,068+20)
u
where the same convention was used as in the case of Eqs. (4.1).

Appendix

Below we will show that, if a weak solution to the conservation laws exists, then
the tangent component of the velocity must be continuous. In a Cartesian system
of coordinates the conservation laws for mass and momentum can be written as:

Ve(ov) = 0,

A.l
(A1) Ver; = 0,
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where o; is the i-th row of the matrix

0 0
0;j = —bi;p+ A6;;Vv+ 7 (()—l]v, + 0—vaj) R

n is a shear viscosity coeflicient, A = ( — % and ( is a bulk viscosity coefficient.

Weak formulation can be obtained by multiplying the Eq. (A.1) by smooth test
functions and formal integration by parts. Thus, for given p, n and ¢ we say that
v € L}, i € {1,2,3}, and a distribution p € D’ satisfy the system (A.1) in the

weak sense, if for all C3°(R3) functions ¢ and ¥, 1 € {1,2,3}, we have:

Z/Ql'i¢,i dr = 0,

(A2)
Z/a,,-w,j dz =0, ie1,23,
J

where the integrals are taken over 3. Still, the integration in (A.2); must be
understood as action of a distribution on ;, because o;; is a combination of
derivatives of the components of v and they are, in general, discontinuous. At
the beginning let us assume that 5 and ¢ are smooth functions. For the sake of
brevity, let us assume that the boundary dividing the regions of different p is a flat
surface, e.g. the plane z3 = 0. (In the case of smooth though not flat boundary,
the complication would be only technical: curvilinear coordinates and covariant
derivatives.) Let us examine the equations for the components of o, and o5. If
we suppose, for example, that vy is discontinuous while crossing the plane z3 = 0
in the vicinity of the point 2 = (0,0,0), then there exist bounded continuous
functions Ajj(x), A1,(z) and Aj3(a) with A;3(0) # 0 such that:

o13(z) = n(x)A3(x)é(as) + {bounded terms},
on(z) = AMz)An(x)é(esz) + Ay,(x)p + {bounded terms},

whereas oy, is bounded. But then Eq. (A.2); cannot be satisfied for functions ;.
To see this, let us take for example

P = 13w (é;v;) w (%\/\r% + 1.-%) :

where w(y) is a C§°(R>) function such thatw(y) = 1for |y| < 1,0 < w(y) < 1 and
w(y) = 0 for |y| > 2, and choose ¢ sufficiently small. So, »; must be continuous.
In the same way we may prove that v, must be continuous. When the tangent
component of v is continuous, then the distributional sense of derivatives of the
components of v retains its validity even for discontinuous coefficients 7 and A
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(while crossing the plane z3 = 0). Then, however, the pressure p ceases to be
well determined even in the distributional sense, since according to the equation
(A.2)3:

/ {(—p + (/\ + 21])1)33 - 5‘3)'{,’)3_3 + 52‘(,’)3’2 + 54 1,/)3’1} dz =0,

where S§; are bounded, its singular part should be equal to the singular part of
the expression (A + 275)v3 3. Thus it must be proportional to (A + 27)d(z3) and
the last expression is not a well determined distribution (at the boundary surface
I3 = 0)
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