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Outlooks in Saint Venant theory
Part II. Torsional rigidity, shear-stress “and all that”
in the torsion of cylinders with section of variable thickness

F. DELL'ISOLA and L. ROSA (ROMA)

WE EXTEND the perturbative procedure developed in [7] to the case of Saint Venant Cylinders with
sections of variable thickness. In this way we are able to generalize the Kelvin and Bredt formulas
for torsional rigidity of open and closed sections, respectively. We recover all the results available in
technical literature. In particular we deduce an explicit analytical expression for warping function in
the cases of open sections of triangular shape [17] and of the closed section studied using numerical
methods by WanG [18].

I. Introduction

IN A RECENT PAPER [7] the authors tried to use a “perturbative development” [5]
to generalize the well known Bredt formulas in the theory of thin hollow elastic
beams. This development is possible for sections of the Saint Venant Cylinders
(SVC) constructed from a given curve (the mean curve) as the union of its ho-
motopic curves. The perturbation parameter ¢ is related to the thickness of the
sections. However in [7] the particular homotopic transformation used allows only
for the consideration of sections of constant thickness.

Here we want to overcome this limitation by generalizing the results found in
[3] and use a similar procedure, but allowing the homotopic transformation to
shift along the normal and the tangent directions both depending on the curvi-
linear coordinate along the inner curve of the sections. .

We recover all the classical formulas found by Brepr [1] (see also Viasov
[2]) considering terms of first order in ¢ in the development. The new procedure
we propose in the present paper is general enough to be applied, for instance,
to SVC whose doubly connected cross-sections are bounded by ellipses, the case
being out of the scope of applicability of the previous ones. In this way we can
check our perturbation method on the exact solutions (available in the literature,
see [4]) of Saint Venant torsion problem for the homothetic elliptic cross-sections.
Moreover, we can give an approximate expression for the warping field in the case
of the tubolar section of WANG (cf. [18]) and for the thin isosceles triangle [17].

For the reasons expounded in DELL'TsoLA and Rurta [7] we choose to state the
Saint Venant torsion problem in terms of the Prandtl stress function ¢.

Let D be the cross-section of the SVC, and let us distinguish two cases:
closed sections and open sections. In both cases D can be represented as fol-
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lows: D = D\ Dy, where D;, ¢ = 0,1, are simply connected domains, Dy C D,
and 0Dy N D = 0 but, in the case of open sections we have Dy = 0.

Prandtl function ¢ is the solution of the following elliptic boundary value
problem: ‘

Ap+2=0 in DCII,

¢ =0 on 9Dy,
(1.1) B
¢ =¢ on 9Dy,
f Vé-n = -24;5p,.

9Dy

Here IT is a plane, A is the Laplace operator, V is the gradient operator, n is

the outer normal of the domain Dy, and Asp, is its area. The value of ¢ on 9Dy,

#, is an arbitrary constant to be determined from the integral condition (1.1)4.
We will assume that the Prandtl function ¢ [6] can be expanded in terms of ¢:

(1.2) p=>3 pie’
k=0

in this way we get a hierarchy of ordinary differential equations for the coefficient
¢k, which allow us to generalize the well-known Bredt formulas.

Once we have found the expansion for the Prandtl function, we can calculate
the corresponding one for the torsional rigidity R, the warping w and the tangent
stress t using the following formulas [8, 9, 10]:

R = 20[¢ + Aapua,
Dy

(13)
Vuw(y) = -7 (*Vo(y) + *(y — 0)), t=—-Gr V4,

where o € 1T, * is the 7 /2-rotation operator in /7, y € D, G is the modulus of
elasticity in shear and 7 is the angle of twist.

To this end, we will try the formal expansions also of all the other quantities
appearing in the Saint Venant torsion theory in terms of the small parameter ¢
(for an accurate analysis of these slightly heuristic procedure see NAYFEH [5]):

[e.o] o0 (=)
(1.4) R= Z R.e", w(s,z) = E wy(s,2)™,  t(s,2) = Z tn(s, 2)e™,
n=0 n=0

n=0

thus obtaining, in a very straightforward manner, all the known formulas of the
technical theories as terms of the first order in e. We can find all the terms of
higher order in ¢ and here we quote the next non-zero corrections to these.
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2. Families of cross-sections

Let I : [0,!] — II be the curve of equation
(2.1) ro: 8+ 1o(S).

We will consider two cases: closed sections and open sections. In the first case
we identify the two extrema 0 ~ [ (we will identify s with the arc-length of the
curve Iy, thus ! will be the length of Ip).

Starting from I, we will consider a family of domains, parameterized by e.
The domain D, is obtained as the union of the curves I';: s € [0,!] — I, with

z € [0,1], z-lifted from I} by the scalar fields (6,, 62): (ﬁI = df(z))

dz

@2)  r(s,2) = ro(s) + 2€ (Ba()ros — Ba(Wron(®),  De= | (T
z€[0,1]

In this way 9D := [y I for closed sections while, of course, in the case of open
sections we cannot obtain, by means of this procedure, the whole boundary of the
domain D because we loose the edges z-lifted from the two distinct points 0, /.

For these reasons we must assume that for open section the expansion is valid
only far away from the ending edges. The expansion we obtain in this paper
is an “outer” expansion to be matched with an “inner” one (see NAYFEH [5])
accounting for some edge effect.

We can think of é6(s) = \/612 * 6% as of a thickness of the section in the point
of coordinate s measured along I, and we will call (I, 8;(s), 62(s)) the “shape”
of the section.

In the following we will consider the cylinder of section D = D;\Dy whose
boundary is 9D = Iy|J . [ is a closed curve for closed SVC sections and an
open curve for open SVC sections. In the latter case we have Dy = (.

Considering the couple (s, 2) as a coordinate system on D,, we get the fol-
lowing holonomic basis (when not necessary we omit the explicit s-dependence
of the various functions)

or

e;(s,z) = a =To,s (] o 35(51,5 + 52,51")) + 2% "'0,3(1\'61 - 52.3)1

ar
e2(s,2) = i €(ro,s01 — *719,562)

(2.3)

(K (s) is the curvature of I}, ¢ = 1,2) and the following metric-tensor:
. e2(82 + &3
g —(561 + 252(6161,5 + 6262,5))
—(eé) + 2e2(6181,5 + 6262,4)) )
(1 + 26(61,0 + K62))2 + 226365, — Kby )2 )
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where g = ¢2 [gz (6162‘3 — 61,62 — K (63 + 6%)) - 62]2 is the determinant of the
metric tensor.

For the sake of completeness we quote here the expression of the gradient
and Laplacian that will be used in the following [11, 12]:

Vo = g ¢e;,
e 32¢ dé h _ 1 0 i
A““‘“(m‘m{u})‘ﬁ(a_ri‘@%")’

{ihj} are the Christoffel symbols, i,j,h = 1,2, 2y = s, 27 = 2.

@2.5)

3. Formal expansion of the Prandtl function

Using (1.2) and (2.5); Eq.(1.1) becomes:

o0

3.1) S{ e Agn-
n=0
+ €n+l (Bl¢n.z + B2¢'n,zz +* B3¢n,sz)
* €n+2 [Cl¢n,z + CZan,zz + C3¢n.s + C'4¢n.,sz + C5¢n,ss]
+ £n+3 [D1¢ﬂ.2 + Da¢n 2z + D3n s + Dadns: + Ds(f)n_s,]}
3
= 22 [e2 (81620 — 61,060 — K (63 + 83)) — 8a] .
Here
A= _629

By = K(8 - 83) — 26,64,
By = 2618, — 326261, — 32 K65 — 2K 67,
B3 = 26,6,,

C, = z(—2]§'2(6%52+5§)— R (8381 5+ 38381 5+ 2816283, ) — 2616 462, — 26,63
—K 5 (83 + 6163 + 83620 + 362.44) )
Cy = zz(-sa'z.sz(a% + 63) — 6, K (26} — 683) + 6, 4(—361,,67 + 26,62,5)

+6260,, (461K - 63,)),
Cy = 8 (26180,0 - 67K — 63K — 26561, ,
=122 (5%1{ + 883K + 26,6568, , — 626y, + 5352,5) i
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Cs = —636, - 63,

Dy = —2% (8} + 63) 63 — 63K = 36261 ,K? — 263 K + 3816, K%~ 263 KK
— (6181, + 82825) K s + 8161 oo I = 61 03025 + 8202 s K + 61 4625,

Dy = z3(—5;‘1f3 — 263657 — 83K — 3636y .65 K% — 38361 K — 8762 K
—362 63K — 87 ;62 + 36365, K2 + 3618362, K2 + 4816261 462, K
+816% 63,5 — 36783 (K — 636,63, + 6363 K + 5153‘,),
D3y = z(—zalaf',az + 20781 562, — 261,562,463 + 2616263, + 6] K 5 + 28763K

HE3I o + 816201 00 + 61,0083 — 382,00 — 61836200
Dy =22 (81K + 83K + by .62 — 8162,4) (61614 + 2b2,,) ,
Ds =z (5% + 5,_) (—5121( ~ 82K + 816y, — 51,352) .
3.1. Closed section

. ) .
Noticing that (2.5); V¢ n|.—¢ = —6—1% + 5_1—¢)‘z and using (1.2), we get for
2 2

condition (1.1)4

0 8 1
52 o (e, La) = 2,
(3.2) r; 62¢', 62<P 0

Iy

In this way we get for the first three terms of the c-expansion of the Prandtl
function:

¢0,zz(2s3) = O, d’ﬂ(oas) = 803
) i
$o(1,s) = 0, }gg% =0,
Iy
d’l,zz(zas) = Os (;bl(ov's) = 51 )
(3.3) $1(1,s) = 0, 6—51 = 24y,
Iy 2
A¢2,zz + Bld’l,z = 2631 @(Oss) = 521
- 12 _ _fA0,;_
#h9=0  frh= chah

g 28167, + (63— 82) K
with Iy = f&;‘, 1(s) = /62"‘, J= (22 ) :
I 0 %
0




758 F. peELL’IsoLA AND L. Rosa

Solving Eqgs. (3.3) we get

24
G(s2) =0, dils,2) = (1 - 2),

(3.4)
ba(s,2) = (1;02) lfaz N i[‘;‘}jh + (2 - 2)2;:)" {7-263}.

Iy
3.2. Open sections
In this case we have (up to %)

$0,2:(2,8) =0,  ¢0(0,5) =0,  ¢o(1,5) =0,
$1,2:(2,8) = 0, ¢1(0,s) = 0, #1(1,8) =0,

(3.5) Afpe: =263,  $(0,5)=0,  $(l,8) =0,

A3 = Bidps + Batoes + Baboes = 6263 [261,4 — 6180, + K (83 + 8)],
$3(0,5) =0,  ¢3(1,5) =0,
from which

do=0, =0, ¢ =206z-2%,

(3.6) 3 ;
9 = 2) + ()G - 2),

®3
with the following notations:

9(s) = 83 682,061 + 2K (63 + 6D)] , () = &2 [65,81 + K (63 - D).

4. Torsional rigidity, warping and shear stress
Using formulas (1.3) and the expansions (1.4), we obtain the following results.

4.1. Closed sections

_ 4G A}
= S

4G A A
- 120 ["7{62“70%‘]
0 I—‘n

RQ = 0, R]
(4.1)

&
|
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For the warping

] s
wo(s, z) _ 24,1 (s) /ro X g
T I() i

0
(4.2) w’(“) [152 ]() f&-ﬂfj —jaz
0

Iy

Ag b
+z {2—0 = by *rgergs + 521‘0*7‘03} =
Iy 5, ) )

and finally for the tangential stress
to(s, 2) (tﬂs tOz) ( Iy )
= S = An==
Gr o Gr) -\ )

t1s 11z A o
(4.3) (é é) = 2%9 [/2 + 2(62615 — 6162,5)] + 6222 = 1)

AO [0
by — — 261 Ag—
0

The values R;, wg and {y are the usual ones quoted in the literature [14, 15,
16]; they are due to BreDT [1]. We emphasize that for the rather general cross-
sections considered here, the first non-zero contribution to the z—component of
the shearing stress is of the first order in <. This means that the procedure pro-
posed by Bredt in deducing his formulas (in which this z-component is assumed
as vanishing), cannot be applied for the sections considered in the present paper,
being valid only for the class of sections dealt with in [7].

4.2. Open sections
We find for the torsional rigidity:
Ro = 0, R1 = 0

G
Ry =0, Ry = 3%63,
Iy
(4.4) Ry= — {az [51 J62 — 52,581 + K(67 + bz)]}

Fn
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For the warping

S

wo(s,2) _ —fv'o X 70
b8 )

-
(4.5) 0 ”
—wl(;’ 2 - z (rge 10,502 — 7o X T0,501) — /52,
0

and finally for the tangential stress

to(s,2) _ (& 1) _
Gr ~ \Gr’ Gr =0 0)

(é‘: 27) = (=621 -22), 0).

As in this case we do not consider the effect due to the “short ends” of the
section, it seems reasonable that there is no influence of the edge affect up to the
fourth order, at least in connection with torsional rigidity, but this needs more
investigation.

(4.6)

5. Conclusions and perspectives

In this final section we consider some applications of the results found in the
previous ones. The first application concerns the torsion of a section bounded by
two ellipses: in particular we find the expression for torsional rigidity available in
the literature for sections bounded by homothetic ellipses. As a second applica-
tion we find the warping field for a section siudied by WANG [18] (who used a
rather sophisticated numerical method): we are able to supply a simple explicit
polynomial perfectly matching his numerical results.

Finally as a third application, we recover the results found in [17] concerning
torsion of the cylinder whose cross-section is an isosceles triangle, under the
assumption that its base is much shorther than its altitude.

5.1. Section bounded by two non-homothetic ellipses

Let D be the section enclosed between two non-homothetic ellipses Iy and
I whose parametric representations are, respectively:

ro: [0,2x] = I, 7o = (acose, bsing),

(5.1) )
r: [0,2x] = I, v = (kacose, (k+ ¢)bsine);
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we get for the torsional rigidity

Ry = ZG7ra3b3;1—),

(32} 2 - J. 2 2
2065 —a®)(1 - k) b a*(1 - k)
R, = Grd¥®L 1+)+28 +e|m — o1
2 Ta pz{ ” {1 &)+ 2a" %¢ 2 T k+q-1D)
i _ g+ k-1 _ 2 52 (b2 — a®)(k — 1) + b%qg
with ¢ = o1 andp=a"—-b"+c¢ F+g_1 ’
When ¢ — 0 we find
a*b3(k — 1) b3 (k - 1)?
(5.3) Rl = 4TFG_+7-— 5 RZ = 67;GW—

in agreement with the well-known (exact) formula.
We observe that for fixed «,b and k, the ratio Ry/R, is a function of g.
Choosing a = 4, b = 2 and k£ = 1.3 we get

Ry(k -
(5.4) 1221(( T ])) ~ 0.135 + 0.292¢ — 0.091¢ + 0.1224* + O(¢*);
k—1)2
so, for example, with ¢ = 0.2 we find %—_11)) ~ 20%.

5.2. The warping field for a flattened tube

The efficiency of our asympthotic expansion is here tested on a section which
is not thin and which was studied by WANG [18] using numerical methods. For a
discussion of the limits of the present form of our expansion we refer to [19]. We
consider the linear (in 2z coordinate) terms appearing in the first four terms of
the asymptotic expansion for warping, calculated in the particular case examined,
thus finding:

w 8 S 1 . .
= (9 T 37r)) B+31) 5(1 — z)sin(2s), if s¢€ (0,7/4),
w  [(4s—4—7)(384 + 80 — 27x7 + 384 + 2887z + Sdx z)]

@3 = 48(8 + 371)?

if se(r/4,1+ n/4).

It is very easy to check that the contour plots we produce exactly coincide
with those given by Wang. Because the (s, z) coordinate-system is meaningful also
outside the section and because the Prandtl and warping functions are determined
as elementary functions of these coordinates, they can be extended outside of the
section. Thus we have a hint about the form of warping for larger sections. The
scale is immaterial for the elliptic problem determining warping (see [4]).
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T

o

o 0.5 1 15 5

F1G. 1. The figure shows the iso-warping contour lines for the flattened tube studied in [18].

5.3. Warping field of thin triangular cross-sections

It is easy to generate the triangular cross-section considered on page 74 of
[17] using the following values of ¢, and é, expressed as functions of the altitude
C and basis & of the triangle:

B 2(’&/6)2 _ 4(/£/C)
(5.6) W= mion 2T Tex Gjor

Using formulas (4.5) we prove the validity of assumption (1.3) p.6 [17] at the
first order of the ratio 2/C. The warping field we find at the same order is given
by:

w(s,z) _ ,(1 4h/C
.7) e (E - ) T

It is easy to see that Eq. (5.7) coincides with formula (2.19) on p. 75 of [17] modulo
a rigid motion.

5.4. Conclusions

Finally we want make a few comments on the results obtained. Despite the
fact that our procedure is rather general, it is not capable of reproducing the most
general cross-section. Maybe this task can be solved by means of the Conformal
Mapping Theory [20].

In [19] are studied some cases in which the proposed expansion does not
converge. Therefore — assuming that before diverging the expansion seems to
approach reasonably the solution — a regularizing method seems to be necessary
to increase its scope of applicability.

On the other hand - from the mathematical point of view — our results seem
to open some interesting estimation problems which most likely can be solved
using the methods of the papers [21, 22].
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