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Non-uniform extensional motions 
of materiall y non-uniform simple solids 

s. ZAHORSKI (WARSZAWA) 

N ON-UNlFORM EXTENSIONAL M OTIONS of materially non-uniform simple solids are considered in 
greater detail . These motions may be useful as applied to quasi-elongational motions with tem-
perature and structure variations. In particular, the constitutive equations are discussed for steady 
drawing processes of polymer fibres. 

1. Introduction 

IN OUR PREVIOUS PAPER [1] the resul ts valid for uniform motions with constant 
stretch history (MCSH) have been generalized to the case o f non-uniform stag-
nant motions (NUSM) of materially non-uniform incompressible simple fluids. 
The coresponding constitutive equations are very simil ar to those known for 
MCSH. 

In the present paper we discuss in greater detail the non-uniform extensional 
motions (hereafter call ed NUEM) of materiall y non-uniform simple solids [2]. 
Such motions deserve more attention since in many practical situations met in 
the rheology of po lymers (d rawing of fib res, non-uniform elongations, etc.), ther-
mal and structural e!Tects as well as nonli near viscoelastic properti es are of major 
importance (cf. [3]) and can be taken in to account through the assumption of 
the proper material non-uniformity. In soli ds, in contrast to flui ds, the deforma-
tion energy cannot be neglected and may, through the corresponding dissipation 
mechanisms, lead to temperature variati ons and, in consequence, to variable ma-
terial properties (cf. [3]) . 

In what fo ll ows the non-unifo rm extensional motions (NUEM) are defined 
in general and steady-state cases. Next, the corresponding constit utive equations 
are discussed for materiall y non-uniform simple locally isotropic so lids. 

2. Non-uniform extensional motion (NUEM) 

Consider a class of isochoric motions for which the deformation gradient at 
the current timet, relative to a configuration at time 0, is o f the following diagonal 
form: 

(2.1) 
[

A Ｍ ｾＱ ＯＲ＠
Fo(X, r) = 

0 
A - 1/2 

0 

det F0 = 1, 
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where the non-uniform stretch ratio >.(X , t) depends on time t as well as on the 
position X of a particle X in an arbitrarily chosen reference configuration K. 

(not necessarily at time 0). Thus, a non-uniformity of the quantities considered 
can be expressed either by X or X, X = K.( .... Y). Such a motion may be called the 
non-uniform extensional motion (NUEM). 

In general, we obtain the velocity gradient in the form: 
. 

1 >. 
0 0 

2 >. . 
(2.2) Ll (X, t) = F (X, t)F- 1 (X , t) = 0 

1 >. 
0 

2 >. . 
0 0 

>. 

>. 

If, in particular, the gradient (2.1) can be presented in an exponential form: 

(2.3) Fo(X, r) = exp(rL(X)), 

where r denotes any past time and the diagonal tensor L(X) depends only on the 
position X, we arrive at the definition of steady NUEM. 

From Eq. (2.3), the deformation gradient relative to a configuration at the 
current time t amounts to 

(2.4) Ft(X, t) = F0(X , r)F0
1(X , t) = exp(-sL(X)) , 

leading to the following time-independent velocity gradient: 

(2.5) 

Therefore, for steady NUEM we can write 

{2 .6) L1 {X) = L(X) = 

Ｍ ｾｖＧ＠
2 

0 

0 

0 0 

1 I 
- - V 0 

2 
0 V' 

T = t - s, 

where V'(X) formally denotes the z-component of the velocity gradient. 
Equations (2.3) and (2.4) lead to the following expressions for the left Cauchy-

Green deformation tensor B and the history of right relative deformation tensor 
q (cf. [4]): 

(2. 7) B(X, t) = Fo(X, t)Fif (X , t) = exp(tL(X) exp(tLT (X)) , 

(2.8) c:{x, s) = Ct(X, t - s) = F{(X , t - s)F1(X , t- s) 

= exp( - sLT (X)) exp( - sL{X)), 
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respectively. The above expressions can be simplifi ed a littl e since the tensors 
L(X) are diagonal by assumption. 

3. Constitutive equations of materially non-uniform simple isotropic solids 

According to our remarks, at the beginning we assume that a priori unknown 
temperature and structure distributions lead to a material non-uniformity, i.e. to 
the fact that all the functionals, functions and material constants depend on the 
position X and vary from particle to particle or from place to place. 

The general constitutive equations of materially non-uniform simple isotropic 
solids (cf. [2, 4]) can be expressed as 

(3.1) T(X,t) = ｳｾｯＢ＠ (c:(X,s), ll (X , t) , x) , 

where T is the non-uniform stress-tensor, 1-£,. denotes the non-uniform constitut-
ive functional depending on the reference configuration K. and the tensors q 
and n have been defined by Eqs. (2.7) and (2.8). In the case of incompressible 
materials, the stress tensor T should be replaced by the corresponding extra-stress 
tensor T£. 

It can be proved that the constitutive equations (3.1) are in agreement with 
the principles of determinism and local action. They also satisfy the principle 
of objectivity (invariance with respect to the reference frame), if the group of 
material isotropy (symmetry) is equivalent to the full orthogonal group (cf. [2, 
4]). A non-uniform material may be considered to be globally isotropic if there 
exists the configuration K. at which its isotropy group is the same for all the 
particles. In other words, in a globally isotropic non-uniform solid all possible 
directions of deformation are equivalent while its material properties vary from 
particle to particle. 

For steady NUEM defin ed by Eq. (2.3), after introducing Eqs. (2.7), (2.8) into 
Eq. (3.1) and taking into account the properties of tensor exponentials, i.e. 

(3.2) 

we arrive at 

00 

00 1 
expA = L -,An, 

n=O n. 

(3.3) T(X , t) = 1-l "(exp( - 2sL(X)) , exp(2tL(X)), X) = h(L(X), ll(X , t) , X) , 
s=O 

where h denotes an isotropic function of the tensor arguments. In particular, 
instead of L(X) , the first Rivlin - Ericksen kinematic tensor A1 = 2L can be used. 
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Various reprtesentations of Eqs. (3.3) can be constructed in the usual way. For 
instance, we have 

(3.4) T(X,t) = a(L(X),X,I8 )I + a 1(L(X) ,X,I8 )B(X,t) 

+ B(X, ＨｾＳ Ｑ＠ (L(X), X, la)+ B2(X , t)P2(L(X) , X, I a)+ a 2(L(X) , X, Ia)B2(X, t), 

where the material (tensor) coefficients depend on the velocity gradient L(X), 
the invariants of tensor n, and explicitly on the position X. 

4. Application to steady non-uniform drawing of materially non-uniform polymer 
fibres 

In the case of drawing of solid polymer fibres (cf. [3]), we may assume that, 
under a quasi-elongational approximation, the deformation gradient as well as 
the velocity gradient are of the form (2.1) and (2.6), respectively, with 

(4.1) 
V 

.X=-Vo, E: =In .X, 

. 
.X .X' 

[ = ｾ＠ = ｾｖ＠ = V', 

where V(z) denotes the axial velocity depending on the spati al position z, and 
the primes denote differentiation with respect to z. The possibility of replacement 
of the particle position X by its place in space x (or rather z) results from the 
assumption that the motion considered is steady; then the reference configuration 
can be chosen at the current time t. 

Under the above assumption, Eqs. (3.3) lead to the following stress difference: 

(4.2) T33 - T 11 = a(V, V'; z) = a1( /\ , .X'; z) = a2(c: , E: ; z). 

Thus, in the case of non-uniform drawing of solid polymer fibres, the correspond-
ing elongational stress may depend at most on the velocity and its axial gradient 
or on the strain and its time-derivative, respectively. 

It is worth noting that the constitutive equations desribing drawing processes of 
polymer fibres were also considered by COLEMAN [5]. He proposed the particular 
approximate form 

(4.3) T = r( .X) + {3 (.X ).X'2 + 1 ( .X).X", 

where .X is the stretch ratio. A simple comparison of the above equation with ( 4.2)2 
shows that our equation is pretty general since it admits arbitrary dependence 
on .X and .X', and explicitly on z . Equation (4.3), however, shows a particular 
dependence on .X' and moreover on .X" . 
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5. Conclusions 

The concept of non-uniform extensional motions (NUEM) of materially non-
uniform simple locally isotropic solids leads, in the case of steady motions, to the 
constitutive equations in a form of isotropic function of the deformation gradient 
and the velocity gradient, depending explicitly on the position of a particle. 

For drawing processes of solid polymer fibres, a simplified form of the consti-
tutive equations depending on the velocity, its axial gradient and the place along 
the fibre axis may be very useful. 
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