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Boundary value problems for Poisson’s equation
in a multi-wedge — multi-layered region
Part II. General type of interfacial conditions

G.S. MISHURIS (RZESZOW)

THE BOUNDARY VALUE problems for Poisson’s equation in the plane domains represented by wedges
and layers are considered. Conditions of a general form along all the interior and exterior bound-
aries are prescribed. The analysis is significantly simplified by incorporating the geometrical features
of the layers and wedges: they present chain-like systems. The essence of the method applied con-
sists in using the Fourier and Mellin transforms for the corresponding regions, and in combining
the transformations of respective functions along the common boundaries. The problems are re-
duced to systems of functional or functional-difference equations, and later to systems of singular
integral equations with fixed point singularities. The results, concerning the solvability of the ob-
tained systems of the integral equations are presented. In the Appendix the formulae are also given
making it possible to use directly the results obtained from this and the previous paper to solve the
boundary value problems for linear partial-differential equations of divergence form in a similar
domain, corresponding to physical problems for anisotropic nonhomogeneous bodies.

1. Introduction

IN THE PREVIOUS PAPER [12] we have considered the boundary value problems for
Poisson’s equation in the plane domains represented by wedges and layers. Linear
conditions of general form have been prescribed on the exterior boundaries and
all the interfaces except the one between the regions of different geometry (layers
and wedges). Along these interior boundaries Iy we assume now general inter-

— . 8u —_

B = [+, ([u] — (rar + T);L%) IFi = g4
(t+,7> 0). These relations generalize the usual “ideal” contact conditions (7, 74 =
0) considered in the previous paper [12]. They appear, for example, if we pre-
suppose that there are special thin intermediate regions between the layered part
and the wedge parts of the domain, and which are represented in turn by a thin
layer and two thin wedges. Thus in the case of Mode III problem it can be proved
that 7 = h,/pa, 7+ = 0 /uE. Here p,, p¥ are the shear moduli and h,, 6% are
the respective geometric parameters of these thin elastic adhesive regions (u is a
piecewise constant function prescribed for the shear modulus of the materials).
Moreover, from the assumptions (the intermediate regions are thin) it follows
that r, 74 < 1.

These general conditions can be independently considered on the particular
model of a thin interconnecting adhesive surface. Then the parameters 7, 74
can be interpreted as a measure of flexibility of the adhesive. The mentioned
models have been discussed and investigated in details in [13]. Particularly, it
is shown that when a crack terminates at the bimaterial interface prescribed

facial conditions in the form: [;.z?]
n
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by the “nonideal” contact, the asymptotic behaviour of the stresses is different
in comparison with the case of the “ideal” contact and essentially depends on
the parameters 74, 7. Consequently, a priori estimations of the solutions in the
general case (72 + 72 + 72 > 0) should be corrected. Moreover, in spite of the
fact that the method of investigation is similar to that proposed in [12], all the
problems can be reduced (using a common scheme) to systems of functional
(r = 0) or functional-difference (r > 0) equations, contrary to [12], where only
the systems of the functional equations appear. However, even if we deal only
with the systems of functional equations (r = 0) and reduce them (following
[12]) to the systems of integral equations, then some of the systems obtained
lead to ill-posed (incorrect) problems. If this takes place (for certain values of
the remaining nonzero parameters 74+ and the exterior boundary conditions),
there are two possibilities: the symbols of the corresponding singular integral
operators with fixed point singularities are degenerate at infinity, or the systems
of integral equations degenerate from the second kind to the first one at zero
point. Hence, the respective systems are incorrect problems, in general.

Returning to the systems of the functional-difference equations (r > 0), they
cannot be uniquelly transformed, in the general case, to the systems of integral
equations. The process depends essentially on the external boundary conditions,
and the parameters 74, 7. Nevertheless, all the systems of functional-difference
equations for all values of the parameters are reduced to a similar class of systems
of singular integral equations with fixed point singularities investigated in [10,
11]. In the majority of cases the systems obtained are degenerate. Taking this fact
into account, other procedures to reduce the systems of the functional-difference
equations to the systems of integral equations for certain cases are also proposed.
For all cases of the boundary conditions under consideration and all values of the
parameters 74, 7 characterizing the “nonideal” interfacial contact, the systems of
the integral equations are investigated. So the indices of the nondegenerate op-
erators in Banach spaces of summable functions with a weight are calculated for
different parameters of the spaces. In the cases when the operators are degener-
ate, the theories developed in [18, 19] are used to investigate the corresponding
systems, and the indices of normalized operators are calculated.

In the first section we formulate the problems. In the next one, all the prob-
lems are reduced to certain systems of functional-difference equations. In the
third section, the systems obtained are transformed to systems of singular inte-
gral equations for such values of parameters for which the initial systems are of
functional type only (7 = 0). The symbols of the corresponding integral opera-
tors are investigated and theorems concerning the solvability of the systems of
equations are presented. Separately we consider those systems for which the cor-
responding integral operators are not normally solvable. In the fourth section, the
general functional-difference systems (r > 0) are reduced to systems of integral
equations and the symbols of the corresponding operators are investigated for
nondegenerate operators as well as in opposite cases.
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So, all problems of Poisson’s equations under different exterior and interior
boundary conditions have been solved. In the Appendix the formulae are given
which make it possible to use the results of this paper and [12] in solving the
boundary value problems for linear partial-differential equations of divergence
form. Such equations prescribe Mode III problems or similar physical problems
(e.g. heat conduction and mass diffusion in solids, theory of consolidation and
the like [16]) in anisotropic nonhomogeneous bodies.

2. Problem formulation

Let us consider the infinite domain presented in Fig. 1 consisting of a layered
n !
part 2 = |J f2; and two wedge parts 2% = |J 2F, 2 = G 2;.
i=1 j=1 k=1
1

¢ Ina Dlial I t nt,

2, 0 2,
) Yn Yn—1 y2 n
R hy

FiG. 1. Domain {2 under consideration.

By I (: = 1,2,...,n—1) we denote interior boundaries between the regions
©; and ;4. Similarly, I't (5 = 1,2,...,/-1) and I}y (k = 1,2,...,m~1) are
the interior boundaries between the corresponding wedge regions. Thus, by I,
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I'y and I, we denote the exterior boundaries of the layered region (£21), or
the wedges (£2%), respectively. Besides, let Iy = I} U Iy denote the interior
boundary between the different parts of the domain 2.

We shall seek the function u(z;,z;) which satisfies Poisson’s equation (2.1)
inside the corresponding regions 2;, .(2;' o Bt

—pi Au; = Wi, (z1,23) € 12,

_ +
(2.1) —;L;' Au; = Wj+ " (r,0) € 27,
i Aup =Wy, (R0 e,

with certain positive constants s, u}, s .
Along the interior boundaries of the layered domain {2, the conditions hold:

(u~ iy -r-—a—u-)
i+1 il O '8.’1:2 i

d
92, (is1%is1 — pitt;) .

Ly = dui(zy), z) € R,
(2.2) '

= (5(1,‘(11), ZIER, t=12,..,n-1.

Analogous relations for the interior boundaries of wedged domains 2% are given
in the form:

J
( ;-+l '”J 7 %”:)
(2.3)
1 d 3 +, 4+
r 90 (#J+1"J+1 Hj "j)

- buj(r), reRy,
J

6(1;(7‘), reRy, 7=12,..10-1;

r+
J

du, (r), re Ry,

_ gy
(“k+1 i %“k) r-
24)
10 e, = —~
r 09 ()uk+1uk+l Hi uk)‘rk_ - 6(11; ("‘)* r € Ry, k=1,2,..,m-1,

where r;, 7}, 7 > 0 are certain constants.
Finally, the last of the interior conditions between the regions of different
geometry (along the boundaries I}, I'y) are of the general form:

6u+(;r1),

('ﬂ = 'U.+ =FT— [l+T a >
1 { 1 I T+,

(){) ¥
(2.5) 01‘20 y

E)z_z (1w — ,uf' u[") 6q+(2:1), zy > 0;

ﬂ+

(u Uy ,u7'0u+,u ou) du” (1)
1% — M 1 1 T- = 1)
(26) - el

d o _
o (M"l = By U ) =0 (@), =<0,

0

with the constants 7, 7o > 0.
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Now we define the exterior boundary conditions for the domain 2. So, on the
wedge boundaries Iy, I',,, one of the following relations holds:

(a) uﬁﬂ = bug (r), r € Ry,
2.7) 19 ,

®)  wr gl =G0, reRs,

(a) u;lr_ = —bu,,(r), re Ry,

(2.8) 19 _
(b) #m; %umlr; —6([,."(1‘), rie IR+-

On the exterior boundary I, we shall consider conditions (a), (b) analogous to
(2.7), (2.8) and the relation (c):

(3) Un|p, = —(5u,,(z1), T € R?
J
(2.9) ()] #na—zzunm = —bqn(z1), 71 € R,
(c) lim wu,+; = 0.
Ty—00

In the case (c) we assume that the last region §2,4; is a half-plane. Then the
condition (2.9), means that the solution of the problem tends to zero both at
z3 — op and z; — oo. Consequently, we have here nine different combinations
of exterior conditions. The corresponding problems (2.1) - (2.6) with the boundary
conditions (2.7)-(2.9) are denoted by (7*,7,J), where (J* = 1,2, 7~ =
1,2; 7 = 1,2,3). Here the value of 7% is 1 (or 2) if the condition (2.7), (or
(2.7)) holds. In an analogous way, one can define the values of 7~, J from the
conditions (2.8) and (2.9), respectively.

We assume that all known functions which appear in the equations and the
boundary conditions are sufficiently smooth and their behaviour near zero and
infinity points is specifically defined (for details see (1.10) in [12]). In the opposite
case (when the defined functions are not smooth and have some singularities), it
is easy to find special solutions of the problems accounting for these singularities.
Then due to the linearity of the problems, the solution of the initial problem can
be represented as a sum of the solutions.

We shall seek the regular solutions of the problems (7%, 7~,J) in the class
of functions LW({2) such that u € LW({?) if the following relations are true:

(2.10)y  u, € C}G);

u(zy,z7) = O(r™™m),

rgradu(r) = O(r ™), (z1,22) € G, 1= \/a}+ 2} - o0;

(2.10), {
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w(zy,22) = u. + O(r™ In* 1), (z1,22) € 24,
U(II’IZ) = Ui+0(7‘70), (‘1:17332)E Qi, r— 0.

(2.10)3 {

Here G denotes all regions of 2, and vg, 71, 2 (0 < 7% £ 1; 71,72 > 0), k+1 € N
are certain constants which will be found by solving the problem. Besides, in the
cases of the first type boundary condition, at least on one exterior boundary of the
wedge (71 J~ < 4), additional relation corresponding to the respective notch
surface holds:

(2.11) ol T=0 [rF=1)

It has been shown in [12] for the case of the “ideal” contact conditions along
the interfacial boundary Iy (7,7+ = 0) that vy = u,, & = 0. In spite of the
fact that the values of parameters 7, 7, 72 are different for the “ideal” contact
and the “nonideal” one, they are positive. Therefore, all problems (2.1)-(2.9)
in the class LW(£2) have unique solutions, because functions of that class belong
to “energetic spaces” ([14]) of the respective boundary value problems. The fact
that v+ = 0 in the same problems follows from the corresponding boundary
conditions and from the properties of the functions belonging to LW(12).

3. Reduction of the problems to systems of functional-difference equations

Applying the Fourier and Mellin transforms to the Poisson’s equation (2.1) and
to the exterior and interior boundary conditions (2.2)-(2.9) in each respective
composite domains £2;, 2%, and using the sweep method [7], we obtain the
following relations between the transformations of unknown functions and their
derivatives along the boundary Iy (see Eqgs. (A.22), (A.45), (A.46) in Appendix
A [12]):

(3.1) uy(A) = M,()pi(A) + my (A) + my (A,
(32) vi(s) = Mq(s)qi(s) + my(s),
(3.3) wi(s) = M, (s)r}(s) + m.(s),
where
uy(A) = Ty, s vi(s) = ﬁf[,.‘u wi(s) = ﬂfjro_,

Jd _ d - _ 0 __
py(A) = 1505 iy qi(s) = Hfr‘a*a‘“ﬁr:, ry(s) = pg 961 I

Here, the Fourier transformation f(\) and Mellin transformation f(s) of a func-
tion f are defined in the usual way (see (A.2), (A.28) [12]). Functions M,, m%,
M,, my, M., m, are obtained in [12] (Appendix A (A.23), (A.47)). Their be-
haviour depends essentially on the exterior boundary conditions (2.7)-(2.9) (see
Lemma Al, Lemma A2 of the mentioned paper).
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Define the unknown odd and even functions z_, z; by the relation:

d
(3.4) z4(z1) + 2-(21) = Mg Bl

then, applying the line of reasoning used in Sec. 2 [12], the remaining contact con-
ditions (2.5), (2.6) can be reduced to the following systems of functional-difference
equations:

(3.5)  Y(s)-pitZ(s—1) = B(s)Z(s)+ F(s), max{0,1—7} < R 3 < Yoo,

where we introduce the symbols: u(s) = u(—s), d.(s) = 2} 7 I'(s),
Yoo = min{l17b72}a

YQ) = mAMZ(N) + Hz(0),  ZQ\) = [if;(:\))] ’
———MPZ: +m}
Hz(A) = mA (1+,\2 » )

F(s) = F(s,t4,t_,T) 1 ((d+(s) + [sMy + st_ + 7]d.(s))sin 7),

" T(s)sinws (d_(s) — s[M_ + t+]d.(s))cos§
—s[M_(s) + t+]tg¥ —s[M.(s) +t_]
SIMa()+ 1] S[M_(5) + taletg™ ’

72 =z, () - 2F (1 + AH)7, 23 (z1) = 24(z1) — 25 wexp(—|z1|),
2M4(s) = My(s) £ M.(s), Ui =1L,
2dy(s) = [My, — 77 15q (s + 1) F[M, +r*15q (s +1)

+m, + mg + bu (s) % 5;1+(3).

B(s) = B(s,t4,t-) = (

The unknown constant z} = 7, (0) for some types of the boundary conditions
can be defined from a priori estimates (see (A.24), (A.49) [12]):

1
'Z—NEW! j+=j-=2’ j=1)2’3’

23 =025, T=23, Jt=12,
unknown, for remaining problems.

Here 25, Ew = =}, + Sy are the resultant vectors of all the exterior forces
in the respective regions {27, 2%, and are defined in Lemma Al, Lemma A2
[12]. Besides, an additional condition should be satisfied

(.7) 2rZL + Sw =0
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for the solvability of the problems (7, 7%,77), J* = 2; 7 = 2,3 (see Remark
A1l [12]). But, for the remaining problems (1,1,1) and (1,2,1) the value of z}
can not be calculated from a priori estimates and will be obtained by solving the
problems.

A priori estimates (A24) [12] following from the properties of the functions
from the class LW({2) lead to the result that the vector-functions Y(s), Z(s) are
analytic in the strips —yp < s < 7; and —7y9 < RNs < 77, respectively. Using
Lemma Al and Eq.(2.17) from [12] it can be seen that

(3.8) YN +Z(\) = 0(\7%), - .

Taking this fact into account, we rewrite the systems of functional-difference
equations (3.5) inside the strip max{0,1 - 7} < R s < 70, in the form:

(3.9)  [Y+Z](s) = urZ(s — 1) + P.()Z(s) + F(s),  D.(s) =+ B(s);

then the left-hand side of (3.9) is an analytic vector-function in the strip —2 <
s < 7Yoo, Which is wider than the analyticity strips of i’(s), 2(3).

These systems for the case 7,7+ = 0 have been investigated in [12]. Note
that in the general case 7,74 > 0 not only there exists the term with the shifted
argument, but the behaviour of the matrix-functions ®.(s) (depending on the
values of 74 ) is different from that in [12].

4. Analysis of the system of equations (3.9) in the case 7 =0, 4 >0

First of all let us note, that the system of Eqgs.(3.9) in this case is not a
difference system, but a functional system only:

(4.1) [Y + Z](s) = ®.()Z(s) + F(s), 0<Rs < Yoo
We need the following Lemma generalizing the corresponding one from [12]:

LemmA. For each problem (7%, 7, J) there exists v = voo (T, 77) (0 <
Veo < 1) such that a matrix-function ®_'(s) inverse to ®. is analytic in region
|Rs| < veo (T T, T ™), and satisfies the estimates:

L
x+1 + x-Etg(rs/2), i =ty =0,
®-1(s) =4 Cws) [IFEtg(rs/2)], t_=Fty, t4>0,}+S.(s);
T(s), 2 #2, 130
O(e—clSsly, 1. =it =0,
®..(s) = ¢ O(Ss|™Y), . =gk, #3503, | 5| — oo;

O(ISs]72), 2 #2, t4>0,
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0(1), =ty = 0,
det®;'(s) = < O(Ss|™Y), t-=Fte, t+>0,7,  |Ss|— oo
O(ISs]™2), 2 #22, t.>0,

for all problems (7*,7°,7), J*=1,2; J=1,2,3;
2.
qp:l(s)={Al+a13E‘ J* =_1, T =123
Ayt+asE, JYJ->1, J =123,
b, JE=Ll F=128
0 JT*T =L T=123

} +0(s?), s—0

det®!(s) = { } +0(s%), s—0.

Here the constants and the matrices are calculated by the relations:

- b ™
& =t +wi’ ¢ T+ (s + - +2t4)°
_ 11y _ Ci T e
8L = Ty (=g + 22, b2 = cy + o +wpge_cy’
ik i H1
= — b =1+ we =142
az 2 ct + e 2 w ltl_ ’ + 1 Il?’ ]
v = (I -1, o =T 1)y, e=min{¢],¢7},
T(s) 1 —t4tg(rs/2) t
§) = ———— ,
@ -Gy -t —tytg(rs/2)

o (01 Ao 10 o[t 0
“\-1 0/ 7 lo 4 )’ 27 \o 0)°

but the values of constants (;*, ¢y » M+, n— are defined in Lemma A2 from [12].

As one can see, the behaviour of the matrix-function ®'(s) at infinity de-
pends on the type of the interfacial contact conditions (on the values of the
parameters ¢4, t_). The corresponding three cases (see 1) we shall denote by the
upper index j = 1,2, 3. However, the behaviour near the zero point depends on
the conditions along the boundaries of the exterior wedges (on the values of the
parameters 7%). The respective two cases (see 2) we shall denote by the lower
index k = 1, 2.

REMARK 1. Let us note that the function det ®.(s) has in the strip (0 < Rs < 1)
one zero in the first case of Lemma (¢4 = t_ = 0) only, and this zero is real
(see [12]). In the remaining cases (¢+ > 0) the determinant has two zeros with
different real parts in this strip. It means that the gradient of the solution of the
corresponding boundary value problem will have two singularity terms near the
wedge tip.
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ReEMARK 2. When all geometrical and mechanical parameters of the bound-
ary value problem are symmetrical with respect to the OX>-axis (see Corol-
lary A2 [12]), the systems of the equations (3.9), (4.1) split into two indepen-
dent equations, because the matrix-function ®.(s) is diagonal in such situations.
Then one can conclude that v, (71,7 %) = min{ws(1, 7 "),we (2, T %)}, where

Woo(1,T 1), weol(2, J*) are zeros of the corresponding diagonal elements of the
matrix-function ®.(s).

Typical graphs of the function det ®.(s) in the interval (0,1) for the prob-
lems (2,2,7) (J = 1,2,3) when the wedge regions 2% are represented by two

symmetrical wedges with angles r /2, and the mechanical parameters are symmet—
rical also with respect to O Xy-axis (uf = py, 7+ =

= 77 ), are presented i the
Fig.2a, b.
det®.(s) a) det®.(s) b)
10

------- = ]

Lo RN /7/-\;/\'\. f
\‘\ ‘ ¢ 7vf ‘\ .I
\‘ i — 0.0 i : \\ | s

s | - 025 \
mfuy =02 W | —~ 005 |10 S mlpt =50 4

LI s |

0 / \ // Vil

! ; 1

' 200l 7 i

04 0.6 08 s 10

0.6 0.8
F1G. 2. Graphs of the function dct ®.(s) in the interval (0,1) in the case pf = up, 7+

@

= e

Here continuous lines correspond to the “ideal” (71 = 0) contact, but dashed
and dotted lines correspond to “non-ideal” contact with respective values of di-
mensionless parameter uf 7, = 0.01,0.05,0.25.

Let us note that the values of the first zero v, (2,2) for small magnitudes of

pi 7+ < 0.1 differ but little from the values of the unique zero for the “ideal”
contact condition (4 = 0). Numerical results for the values of the mentioned

two zeros of the function ®.(s), for certain geometry and exterior boundary
conditions, are presented in [13].

Taking into account the results of the Lemma, we can rewrite the systems of
the functional equations (4.1) in an equivalent form:

42)  ®7'(s) [Y+Z|(s) - BIE)F(s) = Z(s), 0 < Rs < min{voo, Yoo}

Note that the vector-functions ®.!(s)[Y + Z](s) and Z(s) are analytic in the
strip — min{veo, Y0} < Ns < min{y, Vo0 }, at least. However, the vector-function
&7 (s)F(s) can have, in general, a pole at the point s = 0. By investigating the
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behaviour of the vector-function F(s) near the zero point in a similar way as
in [12] (we do not present the respective results in this paper) it can be shown
that the vector-function ®_'(s)F(s) is analytic in the strip —ve < Rs < veo for
the value of the parameter z} defined in (3.6). Besides, ®_!(s)F(s) has also no
pole in this strip in the problems for which this parameter can not be known
from (3.6). Finally, this vector-function tends to zero in the strip along any line
parallel to the imaginary axis for all the considered problems.

Further, it is evident that the first pole of the vector-function Z(s) which
is the nearest to the imaginary axis in half-plane Rs < 0 coincides with the

cosresponding pole of the vector-functions & (s)[Y + Z](s), 7" (s)F(s), hence:
(4.3) 76 = Voo(~7+»j_)'
The other parameters from the definition of the class L W({2) can be also found,

V4 = U.,

(4.4)

2 7 A T y
. u_xojy'('\)T = 20/ (3,02 () + ) WP )]

where yy, 24, h(zl) are the first components of the vector-functions Y, Z, Hz (see

(3.3))-

4.1. Reduction of the systems of functional equations to systems of integral equations

Let us recall that the system (4.1) under the first assumptions t4+ =0 (7% = 0)
has been investigated in [12]. For the cases t, > 0 these systems can be also re-
duced to systems of singular integral equations, taking into account the behaviour
of the matrix-functions ®_'(s) at the infinity point.

Thus, in the case t_ = Fty, ty > 0 (j = 2 see Lemma), system (4.2) is written
in the form:

1 E
..(s) [T +2] (5) + [—Y * (EE B 1) z] (s)
1 7s_15 . 5 a1
Foo 87 E ¥+ 2] () = @71 (5) F(s).
Then, applying the inverse Mellin transform to this system, and using a line of

reasoning similar to that used in Sec. 4 [12], we obtain a system of singular integral
equations:

BT+, g~ . NL=G6P, J=13, Jt=12

(45) B® @
BT T J)Y Gy J=23 Jt=12
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where

(B3 ul() = u(}) + / 1;?(’,,)()\,5)\1:(2>(A,5)u(g)dg
0

Z(Y)(A f) (‘E)Az 52 9

-(2) _ 2w+ méM,(£))
Kz 0 MM, () + 1 -pzwi ’

K® 2w (1 + (1EML(E)™")
(A 6) 1+ (1 = 2wi)1(/\plﬁfp(/\))‘l ’

(2) /\ - 2wi
AL At M,(\) + 1 - 2wy
1T e o )
< (% / N () F(s) ds — [BV11 7] (A)) ,
P = 22

a- 2wi)(z\,u,lﬁfp()\))‘1 +1

( / N® N ($)F(s)ds — [BP v () + IIy(A)) :
1

1AM, (N) 2%,

TO(, ) = %é 7@.‘(3) (?)sds, Hy(\) = —

=100

Oy = = [ g® e Twe 2
[B10) = g + 0/ T, u(e) de + —F 0/ TGhas

In the third case (13 # 2, t4+ > 0, see Lemma) the inverse Mellin transform
can be directly applied to the system (4.2). Consequently, the systems of the
integral equations are found:

B, g, N2 =6, g=13, Jt=1,2

(4.6)
BT, T I =GP, T=23, J*=12

where

[BZyyulA) = fziry(Mu(d) + / K50 ©TP0, u(e) d,
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N =1, Q)= m
- _ 1 100 P . é s .
00, 6) 27ri£_£°¢‘ ©(z) «
KDE) = (1 +meMy©), KD = ~[1+ (ued©)'],
620 = -5 / NBI(5)F(s)ds + / YOO, O M) de,
cP) = 2m / NS () F(s) ds + [ WO, )y (€) dE — Hy (M)

—100

Basing on the results from [2, 10, 11] it can be shown that the obtained oper-
ators B \(J*, T, ), Boy (I .77, ) for all of the problems (J*,7~,7)

are bounded in the spaces L5 “(R4) [10] with any values of the parameters
V(T , T )< a< B < um(:f*,j‘), 1 < p < oo. The right-hand sides of
systems (4.5), (4.6) belong to the spaces Wg(‘f:;‘)j(le for any m € N. Besides, all
these systems of the integral equations are of the second kind, but the operators
B@(J*,j',Z) are degenerate to the first kind in the point A = 0, in view of
the behaviour of the function M,(\) (see Lemma Al from [12]).

From a priori estimates for the solutions of class LW({?) it follows that the
inclusions should be true:

YeW,IPRy), ZeWy’(R:), -v<ai<0, 0<B<0.

Moreover, taking into account the smoothness of the kernels of the integral
operators and the reasons given in Appendix B [12], it is sufficient to assume that
for arbitrary p € [1, c0):

(47) YeLl2*(R,), ZeLZ*’(R)), -—1i<ai<0, 0<pB<7.

Let the matrix-function BW(a — it, 7*,7-,7) (t € R, j = 2,3, J* = 1,2,
J = 1,2,3) denote the symbol of the corresponding operator BU( T+, 7~,.7)
in the respective space (for definition of the symbol of singular operator see, for
example, [3, 18]). Then, basing on the results from [10] one can conclude that:

B (o —it, 7*,T7,1) = - & (a — it),
48  BY)y(a—it,7*,77,3) = I- (1 - N“—‘H) & (o — it),

BP(a - it,7*,7",2) = & (a - it).

http://rcin.org.pl
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Taking into account the fact that formulae of symbols of the operators B(Zz()y)

(J*, J-,7)and Bgzy)(J+, T, J), (J = 1,3) are of similar form, we will not
use the upper indices (j = 2,3) when it does not involve difficulties. Note only
that the matrix-function ®_"(s) depends on j (on the values of 7).

REMARK 3. Strictly speaking, all the operators B(J*,7~,.7) (as well as the
operators from [12]) are isometrically equivalent (with the accuracy to compact
operators) to some pair systems of integral equations on the axis with the kernels
depending on the difference of the arguments [10]. Their symbols are represented
in the forms (t € R, 6 = £1):

Symb B(T*, T, T)lz.e(t,0) = Bla - it,j*,_’]",j)l—;—o + 11—5—0.
Hence, it is sufficient to investigate only the matrix-functions B(a—it, 7+, 7, 7).
Thus we have denoted the symbol of the operator B(7*,7~,.7) by the corre-
sponding matrix-function B(a — it,J%,7~,J) instead of that written above.
Besides, these matrix-functions are continuous in R, but can have a point of dis-
continuity at infinity. Hence, they are not the symbols, but presymbols, in general
(for details see [2, 8, 18]).

Note that the operators 8(23) (J*,77,3) (J = 2,3) are isometrically equivalent
to the operators B(j)(J *,77,3) (see Remark B2 [12]). Consequently, it is suffi-
cient to investigate only the first of them. Moreover, in the case y; = .4+ these
operators are the Fredholm ones (they can be represented in the form I + K,
where K is a compact operator), and we will not consider such situation below.

One can see that the symbols B{,Z)(a —it, J*, J~,2) of the operators B%P(j*,
J~,2) are degenerate at the infinity point for any values of a. Hence, these op-
erators are not normally solvable in the considered spaces (see [18]) and the
corresponding systems of integral equations are ill-posed problems [19]. The the-
ory of such singular integral equations in classical spaces is constructed in [18].

4.2. Investigation of symbols of the nondegenerate operators

Let a = 0, then by v(J*,7~,7), (J = 1,3) we denote the real parts of
zeros of the determinants of the matrix-functions Bz(—it,J*,7-,7) (J = 1,3),
which are the nearest to the imaginary axis (inside half-plane ®s > 0). Besides,
by v.(7*,7~,J) we denote the real parts of the next zeros (v. > 1g). It can be
shown that

(4.9 0<n(2,2,1), wI*J,3)<1, Jr=12,
and all zeros are real and simple. For other problems

v(1,1,1) = 1y(1,2,1) = 0,
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and the orders of multiplicity of these real zeros are equal to two. Thus the
problems with nondegenerate symbols are divided into two groups, depending on
the values of the respective zeros.

First of all consider the first group (all of the problems for which vy(J*, 77, J)
> 0). Denote by a.(J*,7,.7) = min{vg(T*, T, T), V(T ¥, T 7)}. Then it is
easy to see that for all values of |a| < a.(J %, T, J) the indices of the respective
operators are equal to zero:

(410) k = —ind dEtBZ(y)(a—it,j+,j_,j)=0., |a|<a_(j+,J",j).

However, when we deal with the systems of integral equations, the partial indices
K1, k2 play also an important role [4]. Using a line of reasoning similar to [12] it
can be shown that the symbols of operators are definite matrix-functions [4] for
these problems. Hence, we can prove the following theorem:

THEOREM 1. Let 1 <p<oo,me€ N, »(T*,T-,T) >0 B < v (T, T7),
B-—a>0 |la|l <a(Tt, T ,J) then;

1) the operators Bzyy(J*, T, T), in the spaces I,g’“’[i(R+) are normally solv-
able, and their indices and all partial (left-hand and right-hand) indices are equal to
zero;

2) there exist the unique solutions of the corresponding systems of equations from

Wf,f)‘ﬁ(&) c LZ*(R,).

Results concerning asymptotics of the solutions near zero and infinity points,
and the convergence of numerical method can be obtained analogously to those
presented in [12].

Now, consider the operators for the problems (1,1,1) and (1,2,1) when vy =
0. In these cases the index and partial (left-hand and right-hand) indices are
calculated:

K

—ind det BZ(y)(CY -, 1,77, 1) = +1,
Rl(1$j—sl)= —‘J:I, ".2(]:»’]—\1)=03

depending on the value 0 < +a < min{v.(7+, 77, 7), eo(T*, T 7)}. For these
problems the values of z} are unknown (see (3.6)). Moreover, the right-hand
sides of the systems (4.5), (4.6) can be represented in the form Gz = G, + 27 G%,

where the vector-functions G} and G% belong to the spaces WE’;:)'_ﬁz(RJf). So we
can prove the following theorems:

THEOREM 2. Assume 1 <p< o, V. <a <0, f<vy B-—a>0, meN;
then

1) the operators Bz(1,1,1), Bz(1,2,1) in the spaces Lg'“’ﬁ(ﬂh) are normally
solvable with the index k = —1 and the partial (left-hand and right-hand) indices
K1 =-1 k=0
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2) for these problems there exist unique values of z} for which the systems of
equations (4.5), (4.6) have (unique) solutions Z(\) in the spaces wf;?;ﬁmg C

L2*P(R+).

Let us note that the systems of the integral equations in these cases can not
be solved by applying numerical methods directly to the systems, as it has been
stated in Theorem 1. To remedy this, the systems should be regularized (see
[3, 9, 18]). Then the systems obtained will have unique solutions for arbitrary
right-hand sides (for any values of z}). Thus, solving the regularized systems for
the right-hand sides corresponding to the individual vector-functions G}, and G2
the unique values of z} can be found from the conditions (2.11) and relations
(4.4). For these values of z} the right-hand sides of the equations belong to
kernels of the corresponding conjugate operators.

THEOREM 3. Let 1< p< oo, 0<a< v, B< Vo, B—a >0, meN, then

1) the operators Bz(1,1,1), Bz(1,2,1) in the spaces L’Z”a'ﬁ(R+) are normally
solvable with the index k = 1 and the partial (left-hand and right-hand) indices are
k1=1 k=0

2) for these problems there exist unique nontrivial solutions Zgy of the homogene-
ous systems (4.5), (4.6) which belong to any spaces Wf,‘:)'g(Rq .

Zoe () WishRa).
p.a,B

The asymptotics of the solutions from the Theorems 2-3 can be obtained
analogously to [12]. Note that nontrivial solutions of homogeneous boundary
value problems which can be constructed from the nontrivial solutions of the
corresponding homogeneous systems of the integral equations (Theorem 3) do
not belong to class LW({2). They tend to infinity (as In») when r — oo. Such
solutions play an important role in the asymptotic method theory (see [15]).

REMARK 4. For the symmetrical problem (1,1,1) the operator Bz(1,1,1) splits
into two scalar operators (Remark 2). Then, one of them has the index which is
equal to zero (see the values of partial indices) and for the corresponding singular
integral equation the Theorem 1 holds also true.

4.3, Investigation of the degenerate problems

Now we consider the operators 5§3’(j+,;7-.2) (7* = 1,2) which are not
normally solvable in the spaces Lg‘““j(ﬂ{g (the symbols are degenerate at infin-
ity). They can be presented in the form:

BOIT*,T,2)=BP + Q+K.
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Here P, Q are complementary projectors (P + Q = [) of multiplying by the
characteristic functions of the sets (0,1) and (1, ), respectively. The opera-
tors B, are isometrically equivalent to the Wiener-Hopf integral operators in
the classical spaces L5(R) with the symbols B(yz)(a -, J%,7J°,2), but K are
compact operators. We shall “normalize” the corresponding systems of integral
equations following for the theory developed in [18]. First of all let us note, that

the matrix-functions Bg)(a —it, J*,J~,2) can be represented depending on the
value t_ = Ft; (see Lemma) in the following manner:

| ) t+i)"1 0 1 0
nga_zuj+“7,2)=AX0(( J) 1)(ii 1)’

where the matrix-functions A;(¢) are not degenerate at infinity.
Let us consider the operators:

DP+Q 0 PGP +Q 0
4.11 D= . @s['T :
@10 ( +iP 1) Y ( Fi PGP 1)

in the spaces L’z"“'ﬁ(R+), where the scalar operators Dy, G, are of the form

A
[Py1u](M) = i!%:t({)(lf, [Giu]()) = i [[1 — 0% s(M]u()) — ,\u'(,\)].

By u’ we denote the distributional derivative of a function v € L»*#(R,), but
functions connected with the weight of the spaces are defined as follows:

A% 0< A<,
M, 1< )< oo

Qo,ﬁ(’\) - {

Aoy, 5(A) _Ja 0<AKL,
Qa,ﬁ(/\) 3, 1 <A< oo

Introduce spaces f,z""ﬁ(R+) = G(Lg‘a‘ﬁ(ﬁh)), Lg‘“’fj(R+) C Q'O"ﬂ(ﬂh).
One can directly verify that the relations are true: ¢ D = [, DG = I, and the
spaces Ly™#(R ) with the norm:

[l

(4.12)
0552 =

= || D]l

L]

1PaB p.a,B
L2 l.2

become the Banach spaces.

Represent the initial operators B§?’(;7+ ,J~,2) from ig‘“’ﬁ(R+) to L;’""'ﬁ(lR+)
in the form:

BAg*,7-,2)=B2g*,7-,20, BPI,T,2)=AP+Q+K..
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Here the operators A; = Ay(J*,J7,2) are isometrically equivalent to the
Wiener - Hopf operators with the symbols A;(t). Besides, we can prove that the
operators K.: L’z"o"ﬁ(R+) - Lg’“'ﬁ(R+) are also compact. By investigating the
symbols of the operators E()JZ)(j+, J~,2) it is found that they are normally solv-
able in the spaces L§’°'ﬁ (R4) with the indices (7%, J~,2) and partial indices
Ki,K2:

k(1,1,2) = 0, kK1 =r3=0; 0 < |a] < min{1p(1,1,2),v(1,1)};
R(IT*,T7,2)= %1, K1 =0, kg = 1, TrI- > 1,

depending on the value 0 < +a < min{v.(J*,77,2), voe(T ¥, T 7)}.
Now we can solve the normalized systems of equations:

B, 7,27 =62,

instead of systems (4.5). Theorems which are similar to those proved above can

be formulated for these systems. Then relation (3.7) is the usual condition of
solvability of the corresponding boundary value problems. Recall that G(Yz) €
Wf%g(R” and consequently, the solutions Y belong to spaces Wf{i’f(RQ, at
least. Then the solutions Y = GY of the initial systems (4.5) belong to the spaces
Lg""ﬁ(R+) C f,g""ﬁ(R+), because the operators G : W"”‘l')g(Rﬂe) — Wﬁ':ﬁ)yz(Rﬂ&)
are bounded for any m € N. Consequently, condition (4.7) has been satisfied.
Taking into account the volume of the paper we shall not present here the

integral form of the operators [_u‘().?)(jj*,j‘,Z)K,, and the analytic structure of
the spaces ig'“~ﬁ(R+)_

The remaining degenerate operators Bg?’(j*, J~,2) (J* = 1,2) will be in-
vestigated in the Hilbert spaces L%‘“’ﬁ(R,L). To this end we apply the method of
solution of ill-posed (incorrect) problems [19]. Consider the Tikhonov functional

(a > 0):
3 ~(3 (3
(4.13) FlY, GP) = 1BPY ~ GPI[F3s + alVllTzes

Let Y, be the minimal element of the functional 7, in the spdce L2 L /}(R+) with
the parameters —v. (77, 77,2) < a < 0, a < 3, f < veo(J*,T7). As it has
been shown above, the equation bgg)Y = (.g?’ can have a unique solution only in
the mentioned spaces. Consequently, Y, — Y weakly when a — 0 (see [19]). The
minimal element Y, of the functional F, for any ¢ > 0 can be calculated by any
standard variational methods [8]. Moreover, we can also write Euler equation for
this functional:

1

———[BGP(\
a+ f}z(\) 1),

(4.14) [A3Y.](N) =
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where B* is the formal operator conjugate to the operator Bg):

[ w(®)
w(})

[B*u)() = fr(\u() + KON (e, 0)  u(e) de,
w(A) = 02a-1,28-1(A),

[su]() = u() + [, () de,
0

-1 Oy g w(§) 3) 3
QA = — f‘%(,\){f, WEPOTOC, O+ TS R OFP ) (T )T
“((f\))l PN ‘”(5)(\11‘3)(:,A))T\Ir<3)(z,¢)dz}.

Here the functions fy (A), I\ (,\) 0a,5(A) are defined in (4.6), (4.12).
Basing on the results of []0] it can be shown that the symbol of the operator
Aj in the space Lg'a‘ﬂ(RJ is of the form (see Remark 3):

- YT e ] '
SymbA3|L§.a,,@ =I+a (q)_ (a + 1.1.)) P (a - it),

and for a = 0 it is the real matrix-function. Moreover, its determinant is the
even real function which is not equal to zero along R. Consequently, the index
of the operator Ajz is equal to zero for any |a| < wy. Further note that for
a = 0 the symbol of the operator is the Hermitian matrix-function (the transposed
matrix-function is equal to the complex conjugate one). Then, taking into account
the fact that the symbol is the definite matrix-function in the point t = 0 (or at
infinity), we can conclude that it is definite in any point (see the corresponding
theorem from [4]). Hence, for the system of equations (4.14) all partial (left-hand
and right-hand) indices are equal to zero and the Theorem 1 holds true. Note
only that the value of the first zero of the determinant of the operator symbol
vy = vg(a) depends essentially on the value of a > 0. Besides, we should choose
only negative value of a; then the convergence of the solution Y, to the solution
of system (4.6) has been justified.

So, the systems of integral equations (4.5), (4.6) which are obtained under the
assumption 7 = 0 have been investigated for all problems (7+,7,7) (7% =
1,2, J = 1,2,3) and for all values of the parameters 74 > 0. The values of the
unknown parameters 7..(= min{y1,92}), & = 0, v, u.(= vy) of class LW(2)
have been obtained (see the Theorems, a priori assumptions (4.7) and relations
(4.3), (4.4)). Besides, the relation between the values of the parameters vy, 7y, are
given in Corollary A.1 [12].
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5. Analysis of the system of functional-difference equations (3.9) in the case
> 0

It is easy to prove by contradiction that the terms of systems (3.9) can not
have any pole, the real part of which lies between 0 and 7., and, consequently,
70 > 1. Consider the equivalent systems

G1)  BTEY + Z(s) = @I (6)Z(s — 1) + Z(s) + D1 (5)F(s)

in the strip 0 < Rs < min{v, 7o }. Taking into account the results of the Lemma
and a priori estimates for the vector-functions [Y + Z](s), Z(s) (see arguments
before (4.2)), one can easily see that the vector-function Z(s — 1) can only have
a simple pole in the point s = 0, and for some 6 > 0

(5.2) Z(X) = A~? (ﬁ ) +0(\'%, Ao .

Here the constant 2* is defined for some of the problems as follows:

(53) 2" — 07 k7j:=1v j=112’33
' ~ 7 ] unknown, Jr 7 =1, J =1,2,3.

For the remaining problems 7* 7~ > 1, 7 = 1,2, 3, this constant will be calcu-
lated below from an additional condition.
Introduce a vector-function Z.(A) by the relation:

(5.4) Z.0\) = Z(\) - H;A\i ((1)) .

Note that the inverse Fourier transformation of Z,(A) is of the form:
-1 = Z+(5121) —lzy] —Z:
Pzl = (200) 7 (v

where the functions z+(z,), 2_(z1) and the constants 2], 27 are defined in (3.4),
(3.6), (5.3). Using a priori estimates of the solutions belonging to the class L W(12),
and properties of the Mellin and Fourier transforms, we can obtain the values of
the parameters from the definition of L W(2):

(5.5) Vi = Us — 2rjzl()\)rl/\ ~xrlzt w20)
0

where the value of u, is given by (4.4), but the integral of the first component of
the vector-function Z (or Z.) is bounded in view of (5.2).
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Rewrite the systems of equations (5.1) as follows:
(56) DTN+ Z(s) = pr @I (9)Zu(s — 1) + Zu(s) + Fy(s).

Here the vector-function

e HMTTZ, - s X 0
F"“Z(s)—@,l(S)F(s)"'m 1(“)( ) W(l)

tends to zero at infinity, but systems (5.6) are true in the strip —¢é < s <
min{Veo, Yoo }- Note that F3,(s) = Fi(s) + 2 Fa(s) + 27F3(s), in general. Be-
sides, the vector-functions multiplied by the unknown constants z}, 2] are always
bounded in the zero point.

Now we can reduce the systems of functional-difference equations (5.6) to
systems of singular integral equations. The way to do that essentially depends on
the behaviour of the matrix-function ®'(s) at infinity. Using the Lemma, let us
rewrite the systems for the first case ({4 = t_ = 0) in the form:

[x+1+ x-Etg(rs/2) + Boo()]Y(s) + Z(s) — mi7Zu(s = 1)] = Z.(s) + F3(s).
Then, applying the inverse Mellin transform, we obtain
(5.7 [Y+(Y+Z—/11T,\Z)—Z](/\)

2 L Ad
- E]mz—wfzm) =

s+ [¥OOOIY +2Z - réZ.] (€) e
0

1 100 )
=5 j F3,(s)\° ds,

—100

where

v 6) = -2:—& 7@..(3) (%) ds

=100

It remains to leave in systems (5.7) only one of the unknown vector-functions
using relations (3.5), (5.4) between Y(A), Z()), Z.()). For the exterior boundary
conditions along I, of the first and the third type (7 = 1,3 see (2.9)), it is
convenient to leave the vector-function Xz(\) = Z.(A)(1 + A). This is because
the matrix-functions belonging to the kernels of the obtained operators (which
are different from the homogeneous matrix-functions of the degree — 1) should
be bounded at zero and infinity. The corresponding systems of integral equations
are of the form:

(5.8) eI, T, NXz=0Q%, =13, Jt=1,2,
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where
a0 = u() + [ 1P, u(e) de
0

A dE

2xE / LY OO 7

(1 + N[+ p EM(E) — €]

LO0,€) = ,
2O = T+ mAM, 0 ) = 1]
- 2Z2A(1+ mAM,) /0
HZ_IIZ+ T+ 52 (1),

1) 1+ A
A) =
QN X+ + mAM,(A) = pyrA) -1

x (zi j N® ] (s)Fy(s) ds - ICé"Hz](A)) ,

—100

c$Puln) —x+u(,\)+/‘I’“)(/\ u(€) de — —\f Ef v g Ad{

However, when we deal with the problem (7%, .77,2), systems (5.8) are not
suitable, because in this case the function M,(\) = O(A~2) as A — 0, and con-
sequently the corresponding integral operators are not bounded in the spaces
L5*#(R ) under consideration. For these problems the method of reducing the
systems of functional-difference equations (5.1) to systems of integral equations
should be similar, but slightly different.

Namely, from (3.8) and (5.2) it follows that

(5.9) Y(A) = 2~} (29 ) + O, Ao

Then denote . 3
Y.(A) = Y(A) + ] +/\2 (]>,

and rewrite systems (5.1) in the strip —6 < Rs < min{rs, 7o0} in an equivalent
form:

(5.10) &7 (s) [Vo + Z (5) = juur® T (9)Z(s — 1) + Z(s) + Fi(s),

Here the vector-function

Fi(s) = TP () + 5o @) (1)
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is analytic in the mentioned strip in view of the Lemma and tends to zero at
infinity.

Repeating the former line of reasoning we are led to systems of integral equa-
tions with respect to vector-function Xy (A) = Y.(A\)(1 + A):

(5.11) eI, T Xy =QY,  T7=23, J*=12,

where

1) = u) + [ 190, OFOO, u(©) de
0

-2y E ] B0 O 57
(L4 001+ (M) — 701, €)1
T+ OO0+ GuAMLO) T = (007 - GuXL,G) )
1+ A
X+ AR, ()T = 7L, 00) T = Gu 3, ()

P08y =

Q) =

% (,,im f X®I (s)F5 (s) ds — [CSVHY (M) + 1[,:(,\)) :

—100

.« — o _ il 0
Hy =My = e 3,0 (1) :

For the second case (t4+ > 0, t_ = +t,), the systems of integral equations are
analogously obtained, because the behaviour of the matrix-function at infinity is
similar to that in the first case (t4 = 0). Then the corresponding operators and
systems of integral equations can be obtained from (5.8), (5.11) by replacing the
upper indices 1 with 2, and the constants y+, y_ with the constants (2e4)~!,
F(2w4 )™ !, respectively.

In the third case (t+ > 0, 12 # t%), the procedures of reducing the systems
(5.1) to systems of integral equations are the same as in proving (4.6), (5.8) and
(5.11). The corresponding systems are of the form:

cITH, T, DXz =QY, T=1,3 JE=12

(5.12) e o
CSNTY, T Ty = Q5 J=23 J*=12

where

€3 ul() = gz (M) + j L9 ¥ DO, Ou(©) de,
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1
gz(A) = T+

1
MM, ()1 +A)

gy(A) =

@y 1+ pEMy(E) — e
1§ = - Tt
Grev _ 1+ (EML(E))™! — (M,(€))!
1P = - A ST
1 100 100
QP = —5 [ ¥R+ [ FO0 O3 e,

—t00 0

QP = — 2m / NS (s)Fy (s) ds + f WO, )13 (€) dE — T (V).

—100

Here the matrix-function W) (), £) and the vector-functions Hz(N), Hy () have
been previously defined.
Basing on the results presented in [2, 10, 11] one can show that the obtained

operators C(Zj()y)(J+ yJ =, T) (G = 1,2,3) for all of the problems (7%, 7~,.7) are
bounded in the spaces Lg‘“'ﬁ(R+) with the parameters —vo. (77, T )< a < B <
Voo (T*,T7), 1 < p < 0. As before, the right-hand sides of the corresponding
systems of integral equations belong to the spaces \V?;T‘;’)'g(R+) for any m € N.
All these systems of integral equations are of the second kind, but the operators
C(ZB)(J*,J‘,J) (J = 1,3), (7&3)(&‘7*,‘7_,3) are degenerate to the first kind at
infinity, and the operators Cf?)(jﬂ J~,2) are degenerate at zero and at infinity.
Note that the vector-functions Xz(y)(A) should belong to the spaces:

Xy € LB*VA(R,), Xz e L3**P(R,),

(5.13)
=y < oy < 0, 0<pB<é,

for arbitrary p € [1,00) and some § > 0, in view of a priori estimates (5.2), (5.9)
for the vector-functions Z(\) and Y(\) and the choice of Z.(A) and Y.(A).

REMARK 5. By assuming 2 = 0 in the systems obtained in this section, one
can equivalently investigate all these systems in the spaces (5.13), however with
the negative values of 3 (-6 < 3 < 0) only.

Using the results from [10] we can write the symbols C(Zj()),)(t,é?,j*,j‘,j)

(t € R, 8 = +1) of the nondegenerate operators C(Zj()y)(jﬂj—,j) G = 1,2),
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which are represented in the form C = AP + BQ + K.

c(t,6,7%,77,1) = [1- & '(a - it)] 1+9+<1> @ — i)} 9
(5.14) C(Z’()Y)(t,(),J+,J‘,3) = [I— (1 — ”—‘) & a - u)] kR
Hn+1
+d>,“([3—it)1 =K
ct,6,7%,7°,2) = ' (a - n)l el ;'3 - iz)1 =1

"Note that the symbols of the operators C(/z()} )(.7 Y, J~,J) in the spaces Lg“"ﬁ

(R ) are degenerate for any values of 3 (det (3 —it) tends to zero as t — o).
Hence we can directly investigate the operators C(;(), (I, T~,T) only. Thus the
indices and the partial indices of the operators (‘ffl(), )(J+, J~,J) in the spaces

Lg'“'ﬁ(Rg for some |a| < a., |3| < B. are calculated as follows:

sgna; (s =signa, ;p=0),  J*I" =1,

w(a, 8577, J -, 1) =< signa—signg; (k1 = signa, ry = —signp), J*J~ =2,
_Sigﬂﬁ; ("-l —_ O’ Ky = —Signﬂ), J+j— = 4;

0; (k1,2 = 0), gt =1,

: + 79 =

Mawbnd 5T "12) {signa—signﬁ; (k1 = 0, Ky = signa—signg), J*J~ > 1,
0. (H19H2=O)s j+u7_ = 17

h(ﬂ ,8 j .7 3) {—Slgnﬂ (Hl == 0, Ky = —sign;3), j+:7— > 1.

After ellmmatmg, when the occasion requires, the index and the partial indices
of the operators CJ(Y)(j*,J“,J) (and the constituent operators A, B) by the
methods presented in [18], we can solve the corresponding systems of equations
. 8), (5.11). The unknown constants z73, z* (if they are presented in the respect-
ive systems) are obtained from the conditions of solvability of the systems. For
example, if the parameters «, 3 of the spaces L’z"“‘ﬁ(]R+) satisfy the conditions
a < 0 < g (see (5.13)), then we have r(a,3,1,1,1) = =1 (k) = —1,k3 = 0),
and the corresponding system contains the unknown constant =% only. But in the
problem (1,2,1) x(er, 3,1,2,1) = =2 (k] = k2 = —1) and two constants z%, z* are
presented. However, if we choose the values of the space parameters in a different
way: a < 0,4 < 0, then for the mentioned problem (1,2,1) s(a,3,1,2,1) =
(k1 = —1,k2 = 1) and there is only one constant 27 (see Remark 5) in the
corresponding system.
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5.1. Investigation of the degenerate problems

The degenerate systems with the operators C(Zz()y)(j*,j‘,J) and Cg()y)

(J*,TJ~,TJ)can be analogously transformed, and investigated as it has been done
in the previous section for the operators b‘ﬁ?’(;]*, J~,2) and b’g)(j*,j‘,Z).
But we shall investigate them in a different way.

Namely, return to systems of functional-difference equations (5.1) and de-
note by Zy(A) a new vector-function, using the relation similar to (5.4) with the
constant zj:

™

615 20 = Z0)- i (7).

such that the additional condition
O,1)Zy(-1)=0, J*J =1, J=123,
0, 1)Z0) =0, J*'I7->1, J=1.2.3,

. _ {unknO\yn, JET= =1,
9 —4z-160), J*T >1,

(5.16)

is true for the problems (7*, .7, 7). Here f,(s) is the second component of the
vector &7'(s)F(s). In the case 7+, 7~ = 1 the unknown constant zg will be
calculated below. Note that the vector-functions Zg(A) and Z(A) are of a similar
behaviour (see (5.2)). It means that the systems:

(5.17) STV G)Y + Z)(s) = jur®IN()Zo(s — 1) + Zo(s) + Fo(s)
are true in the strip 0 < s < min{r.,, v}, in general, but the vector-function
e JITTZgS o 4 " 0) zg (1 + s) (0)
Fo(s) = 5 (F() + gy B ) (1 T doos(rsy2) \ 1

is analytic in the strip |%s| < v, and its second component is equal to zero when
s = 0 for the problems (7*,7,7) (7*J~ > 1) in view of (5.15).
Now introduce a new vector-function V() by the relation:

Zy(s) = R (s)V(s),
R3i(s) = I'(s + l)cos%s- ((1) 1_:23)) .
1 [ T(s+1)cos™" £I(s + 1)cos=a(s)
(518)  Rau(s) = 5 ( : : ) :
1 Fai(s)
1 0
Ria) = (0 2y())

_tg(rsf2), k=1& J*T- =1,
ox(s) = {
ctg(rsf2), k=2 J*'T >1,
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where choice of j = 1,2,3 depends on the behaviour of the matrix-function
&7 !(s) at infinity (see Lemma). Besides, in the case j = 2 the sign is defined
from relation t_ = Fti. The value of k£ (k = 1,2) depends in turn on the
behaviour of @ (s) in zero point (see Lemma).

One can see that the vector-function V(s) has no poles in points s = 0 and
s = —1 in view of (5.2) and (5.16). Consequently one can assume that

(5.19) Ve L3’ (Ry), -m<a<0, 0<pf<1+é

Besides, for the problems (7%,7-,7) (7*J~ =1 what is equivalent to k = 1,
see (5.18)) the additional condition should be satisfied to calculate the unknown
constant z3:

(5200 ((-1y''-1,2V0)=0, J*T- =1, T=1,23 ;=123
From (5.18) one can obtain the relations between the vector-functions Zy and V:

(5:21) Zo(A) = [R;jxVI(A),

_(I 0 (T 1 (5 0
R”“(o sk)’ R““(ﬂz,k m)’ R““(o ’ru)

where [ is the unity operator, but the other scalar integral operators are defined
as follows:

2 OO/\u(f)(lf
T & ) 2\

[S1u](N) = [Sau](N) =

oo

- 2f € oy = 2 feos &
(62) B = T [sn(/ou@ ., Tl = 7 O/ Os(A /U

(Banl) = 75 [ [Si0V/€) cos(h/€) + ci (/€)sinA /€] u©) G
0

Here the singular integral operators Sy, T2, 73 : LP*A(R,) — LP*#(R.) and

S1, Thy : ?'O'B(R,) — LP*A(R,) are bounded. But fp'a‘a(R,) C LPP(R.) is

the set of functions from L7*#(IR,) which satisfy the respective condition (5.20).
Revwrite the systems (5.17) in an equivalent form:

(523)  Njk()Y + Z)(s) = pmM;(s)V(s — 1) + V(s) + R;u(s)F% (),
in the strip —é < Rs < min{ve0, Yoo} for some value 6 > 0. Here we denote

Gy 0= Ris(s)27'(s) = NP(s) + NP(s),
M;i(s) = Rix()®I (R A(s - 1) = M + Mf,?_(.s).
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Note that the matrix-functions of these representations satisfy the estimates
N(Z)(zt) = o(t~1/?), M(z)(zt) = o(t™1) as t — oo, but

Mgy = [ X+ x—tg(WS/Z)) M(1>=(X+ —x-)
o= (50 Xhms) M= (40 ),

N3 () 2wy (1 Ftg(rs/2) )’ M; 2mtywe \ 0 2ty )’

N 1 t =
N(l) =0, M(l) = ( + ﬁ) .
3 (S) 3 l‘l(ﬁ = t%-) —to by

Then substituting (5.23) in systems (5.20), and applying the inverse Mellin
transform, we obtain the systems of integral equations:

5.25) WY+ 2))0) + VY + )]0
= [14 mrAMIVQ) + i r[MEUEVENIN) + Go(V),

where the operators Nm N(z) are defined analogously to M(z):
2 2 2 Die &g
MPu]()) = ] MO /Ou©)dese,  MD() = / M@ (s)t* ds,
y_ [ x+I  x-8 ) Ay _ 1 (0 0 ) v = o
Nl( (—X—f —X+81 /"’ i 20 \I FS1)° s )

Substituting then in (5.25) the vector-functions Z, Y from relations (3.5), (5.15)
and (5.21), and taking into account the fact that the matrix-function K;(\) =
(14 A)[1 + p17AM;]~! is nondegenerate in R, we obtain the systems of integral
equations for the new vector-function V.(A) = (1 + A\)V(A):

(5.26) [T, T, IWV.I(A) = Hjk()), J¥=12 J=13,
where the operators £U)(J*, 7, 7) and the vector-functions H; ;. are:
[EOT*, T, T = V() + K; () (MOt + 97v.)] ()
—K;) [V + VD) ([0 + MR, (0 + 57 V.0)(©)] V),

H;x(\) = K (I + M) 6)() = Go(h),

[1+ €M, (6)]=5¢ (0)
areyr 1)

Ho(&) = Hz(€) +

Go()) = 2_175 / R; . (s)F% (s)A° ds.

—i00
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These equations can not be used in the case when the gradients of the solution
are prescribed along the most external boundary I, (7 = 2) (with respect to the
layered part of the domain).

Solutions of equations (5.26) are sought in the spaces (see (5.19)):

(5.27) V.e LE“P(Ry), -m<a<0, 0<f<é;

besides, for the case k = 1 (conditions of the first kind J* = 1 are given along
the external boundaries with respect to the wedges), the additional condition
(5.20) should be true. Basing on the results known from [10], the symbols of the
operators £EUX(J*, 7, ) from (5.26) can be calculated:

1-46
2

. -1
Symb EO(T*, T, 1), ,(,0) = (MS?) " M,x(8 - it)
2

. q1+0
+ [[= Nji(a — it)R] }(a — it)] —

(5.28) 18

2

3 -1
Symb EON(T*, T7,3),.,(1,6) = (M) M, (8 - ity
2

23! ! ‘. ] , 1446
+ [I = (1 = ;-t:;) N_,"k(a = H,)ijk(a = t!)] —2- 5
where the matrix-functions R; x(s), N;x(s), M; x(s) are defined in (5.18), (5.24).
As it follows from (5.24), the symbols of operators £U)(J+,7-,J) are not
degenerate for the values of j = 2,3, in contrast to the symbols of operat-
ors CUNJ*+,7-,7) from (5.14). Moreover, one can see that the identities:
det [T-yN; k()R 4 (s)] = det [I-y® ' (s)], det M, 4 (s) = —(s ctg(rs/2)) " a2 (s)
det ®_'(s) are true for any y € R. Then the indices and pair indices of the corre-
sponding operators £@(7*, 7~,.7) in the spaces L2 (R ) can be calculated:

signa — signf3; (k1 = signa, xy = —signg), JtJ~ =1,
wle, 8. 3% I 1)= signa; (k, = signa, Ky = 0), TJEF~ =2
0; (k1 = K2 =0), Jr*I- =4

—signB; (s1 =0, ry = —signfd), J*J~ =1,
0; (k1 = K2 = 0), L adi it

So, for the values of the parameters a < 0, 5 > 0 as in (5.27), the indices
and the partial indices of the operators are equal to zero or negative. In the
last case there exists exactly |~| unknown parameters (z; or (and) z3) which
are found from the additional condition (5.20) and the corresponding condition
(2.11) together with (5.5). Note here, that only one of the conditions (2.11) is
independent, when both external boundary conditions along the wedge surfaces
are of the first type (J* = 7~ = 1), because 27 = 0 in (5.5) for this case.

ﬁ(a,ﬁ,j+,j—,3)={
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The remaining problems (7*,.7~,2) for the second and the third combina-
tions of the parameters 74 ( = 2, 3, see Lemma), which have not been considered
as yet, can be investigated on the basis of systems (5.11), (5.12). The correspond-
ing degenerate operators C?(7%,7-,2), C3)(J*, 7~,2) could be analyzed sim-
ilarly to operators B® (7+, 7-, 2) and B®)(J7*,7,2) in Sec.4.

Finally, the systems of integral equations (5.11), (5.12), (5.26) obtained under
the general assumption 7 > 0 have been investigated for all problems (7%, 7, .7)
(J7* =1,2, 7 = 1,2,3) and for all values of the parameters 74 > 0. The values
of parameters u,, vy of the class LW(§2) have been found (see (5.5)), 70 = 1,
k = 1, but the value of 4., = min{y;,72} is calculated from the symbols of the
corresponding operators (as in the theorems presented in the previous section).

6. Conclusions

We have considered all different combinations of the external boundary con-
ditions, and values of the parameters 7, 7+ > 0 determining the interfacial condi-
tions near the wedge tip. As it could be expected, the singularity of gradu near the
wedge tip depends essentially on the models of the interface. Thus, if the model of

interface is of the form: ([u] - TTﬂl%)| =0, [#_O;u:‘ = ( (corresponding

an

Iy P
to the adhesive region represented by two thin wedges onlyt), the main exponent
of the singularity is in the interval (—1,0). It has the value close to that of the
case of an “ideal” bimaterial contact for small values of the normed parameters
py Ty uf it Besides, there is a second exponent in the interval (—1,0), which
has the value near zero. Nevertheless, the corresponding term of the asymptotic
expression should be also taken into account in the process of fracture mechanics
analysis.

When the geometry of the adhesive is assumed to be of the general form
du

p——] =0, ([u] —(rre + T)[L-?—u) =0, (r,7+ > 0) or in the case of a
on sy dn

r

thin layer only (where 7 > 0, 7. = 0), tgrad u increases in the neighbourhood
of the wedge tip as Inr inside the domains (2 only. But inside the domains 24,
the value of gradu is bounded as well as the normal derivative du/dn along the
interface.

Note that the cases, when at least one of the parameters 7, 74 is negative, are
not considered in this paper. Such situations appear on the declining segment of
curve ¢ — o and are often connected with a loss of stability of bodies in contact.

Let us remark that all the used functions M, (A), mE(X), M,(s), M.(s) can
be effectively calculated by the recurrence formulae presented in Appendix A
[12], and the asymptotics of these functions have been analytically obtained.
Moreover, an effective way of finding the complex zeros of determinants of the
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matrix-functions €.(s) (and the symbols of the singular integral operators) has
been proposed in [1].

In Appendix it is shown that the method developed makes it possible to solve
not only Poisson’s equations but also the equations of second order of a general
form. It is only necessary that the method of integral (Fourier and Mellin) trans-
forms could be applied to these equations. Hence, the results of [12] and this
paper completely solve such problems under arbitrary boundary conditions.

Appendix

Consider similar problems for the following equations:

O%u; 0 0
i— ¥ —pi—u = =W, iy P
! dz? (?;rzﬂ Bmzu (e1,22) € 2
a Ou} o L0
+ _ 5 _
(A‘l) ’UJ- ETa—; 4 mlj %ll] = —'”J-+ . (1,6)6 .Q:.,
_ 0 Jdug A -
v _T‘OTT I + ——rzt')()llki)_(fuk = -W_, (r,0) € 2, ,

instead of the equations (2.1). Here vy, t; = vy, pi(a2), v¥, u¥ = v, uF(0), are
known bounded positive functions. Without any loss of generality we can assume
that:

(A2) v, i €CNyict %), vl uteC¥0,,0),  vi,ur €CHO_1.07),

and they can be extended to closed intervals.

All external and internal boundary conditions are prescribed in (2.2)-(2.9).
Such problems can be solved by using the mentioned method. We shall find in
this Appendix only the necessary conditions which make it possible to use the
formulae given in [12] (Appendix A) in order to obtain the equations similar
to (3.1).

(Applying the Fourier and Mellin transforms in the corresponding regions we
obtain:

—A Utul o+ O_—.U'l (‘)l' §i = _Wiv A € Rs ) € (yi—lvyi)v
o , 0. s .
(A3) ofPa) + ot Souf = —WF, 0<Ms<m, 8e(@l,0)),
" d . — _
Uk_s?’u; + ag;t;%u =-W7, 0<RNs<y, O€(0_,,0;)

Let pE(), z2), qji(s,ﬂ), ri(s,0) be the linear independent solutions of the
corresponding homogeneous equations (A.3). Besides, these functions can be
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chosen so that they will be even functions with respect to the new variables (A,
and s). Consider in details the solutions of the first equations.

From the VKB method [5] the behaviour of the functions pF (), z;) for large
values of the parameter A can be justified:

1

Vvilz)pi(x2)

. exp i|,\|f,/:i§gd§ [1+()(|A]‘1)], A — oo,
Yi-1

uniformly with respect to z; € [y;—1, v:]. These solutions can be found, for exam-
ple, from the following initial (Cauchy) conditions:

(A4) p}t(,\, z7) =

BE(\) a i(/\) _ (vip
o= B0 D B i
pP; ( vyi) lei, 0.‘1'2;)1 (/\7 y:t) 4 L‘ '“ :t| I i 41;1”'

where y+ = yi—1, y- = yi, but

BEN=1, B =exp |- [ ;8’5

We can also obtain asymptotic expansions of these functions for small values of A:

B (N [1 (Vi)'
_ o |
NEITTREE 4oip

-rz
V.
: + 00\, A— 0.
1A |\/H y& ﬂ@ (A%

Consequently, the functions pi (), z;) are absolutely continuous near points
(0, z;), and are sufficiently smooth in any other points (), z;) from the corre-
sponding region (|A| € Ry, 23 € [yi—1, ui])-

Now, we can write the solutions ;(\, z3) of the first equations (A.1):

(AS) ()‘a 2)

(A.6) %A, 22) = Aepl (N 22) + A_p7 (A, 22)

ik / Py (A, OWi(A, €) P 7 pFOW(NE)
ke 2)/ OWGT 0,0 P ) / HOWOE DS

where W(p}, p; )(A, z2) is the corresponding Wronskian.
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Following [12], denote functions

i 90 _ i —
p;(A) = #-'B_Izuflr.’ ui(A) = Uilp, s
(A7) 5
p,(N) = /,t,'—a-;-z-ﬁ”r._l, u,(A) = E'.“‘,'H;’ 1=1,2,...,n.

Then, substituting (A.6) in (A.7), and eliminating the constants Ay from these
equations, we obtain the relations between functions u) and p:(b) in the form:

“b P Upg b Ath
where coeflicients are calculated from the equations

J
; i (A i 0

(u:o) = |Ri(Y) g ) )

Lo 0 Mig oy T\ vicr)

(Pi (A w) 0 )] (L:’)
0 (A yic1) L)’

v
N PEO, O (A, €)
Ly = f WO T 2100
W, pDO vim1)
1D ()
DO, yi_1, ¥:)

(A9)  Ri(N) = -

b(X) = b Yi)
! pi(i-1) DS (V)

i DO, yi, yio1)
‘tt A= ——————————— =,
b pi)DS (V)
Ri,() = Y@L PDO %)

wilyi1)) D)

Finally, the functions D)(\, a,b), D{()) are expressed in terms of the solutions
+
P (Aa IZ):

D90, a,8) = o 8) ety O B) — 57 O &) et (A, B),
Jx, 0zy

i a _ 0
DY) = —p,( Ui 1)0 PEOVU) = b7 (i) O ).
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Hence, we can use all the results of Appendix A [12] in order to obtain
the functions M,(A), m*()) in the first relation of (3.1). For some functions
vi(z2), pi(z2), the mentioned solutions pE (), z;) can be calculated exactly (see
for example [17]). Anyway, the functions pF (A, z;), and consequently, all func-
tions from (A.8) as well M,(\), mZ(A) can be numerically calculated. Moreover,
their asymptotics at the zero and infinity points with respect to the variable A,
which play an important role in the process of investigation of the systems of
functional-difference equations, can be analytically determined.

1 [vipi(y)] /2 =287 (M[vipi(yi-1)] "2
Ry = Al 2B7 (M (v:)] 12 —[wipi(yi-1)]7/?

o) ae

gy up = oI\ T'BT(A), A — oo
-1

; -
Ri(\) = % / vi(€) de (i ) +0(l), A—0,

-1
Yi—1
-1
) ) 1 Yi U — _1
ulg, wo(A) = 13 / vil€)dé [ V,(0,6) d€ + O (I_AI> ,  A=0.
Yi—1 Yi—-1

In conclusion let us note that we can always obtain the solutions pf‘(/\, z7) sat-
isfying the relations (A.S), and belonging to the class C**(R x (y;_1, y;)) by correct-
ing the Cauchy data (A.4). But this makes no sense, because the matrix-function
R;()) has always the singularity in zero point, and does not depend on the choice
of the solutions pE (A, ).

In the wedge regions the relations similar to (A.8) between Mellin transfor-
mations of the solution and the tractions are constructed in a similar manner. To
this end it is sufficient to replace the corresponding functions v;(z;), pi(z7) by
vf(t?), ,uf(ﬂ); to substitute new variable A = is; and to consider separately the
real and the imaginary parts of the solutions. The corresponding results will not
be presented here.
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