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Travelling wave solutions to model equations 
of van der Waals fluids 

K. PIECHOR (WARSZAWA) 

WE CONSIDER the existence and uniqueness of travelling wave solutions to the model hydrodynamics 
equations (without capillarity) obtained from a four-velocity kinetic model of van dcr Waals fluids. 
We analyze both the Euler and the Navier-stokes equations. The Eulcr equations are shown to 
change their type. The Rallkine-Hugoniot conditions are discussed in detail. It is shown that the 
Hugoniot locus can be disconnected even if the equations are hyperbolic. Using the Navier-stokes 
equations we show how to modify the Oleinik- Liu conditions of admissibility of shock waves to such 
situations. The shock-wave structures arc found numerically. In particular, the so-called impending 
shock splitting is obtained. 

1. Introduction 

THE VAN DER W AALS fluid is such a hypothetical one whose equation of state 
reads [1] 

(1.1) 
RT a 

p(w, T) = --b - 2' w - w 

where a, b are positive constants characterizing the fluid, p( w, T) is the pressure, 
R is the gas constant, T is the temperature, and w > b is the specific volume. Now 
much more sophisticated equations of state are known [2, 3, 4], but Eq. (1.1) is 
still in use since it describes qualitatively correctly the thermodynamic behaviour 
of real one-component fluids. 

If 

(1 .2) 
81 a 

T > 256 bR' 

then the isotherms in the p- w plane are monotonically decreasing convex curves. 
This is the case of classical gases. The mathematical background is the Lax theory 
of hyperbolic conservation laws [5]. 

If 

(1.3) 
8 a 81 a 
27 bR < T < 256 bR ' 

then the isotherms in the p- w plane are still monotonically decreasing- but they 
are no longer convex. This occurs in the so-called retrograde or Bethe- Zeldovich-
Thompson fluids. Such materials were considered in many papers [6 -17]. 
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The third case is when T satisfies 

(1.4) 
1 a r 8 a 
4 bR < T < 27 bR . 

The left-hand inequality guarantees that the pressure is positive for all w > 
b. Now, the isotherms are nonmonotone curves in the p - w plane, and the 
Euler equations are of mixed hyperbolic-elliptic type. In this case there is no one 
prevailing theory, and various approaches can be found (18-35]. Closely related 
problems are met in the theory of elastic rods (36-48]. 

The equations studied in (4- 48] are those of phenomenological thermody-
namics. However, at least as fluids are concerned, such a theory cannot describe 
correctly the structures of neither the shock waves nor the phase boundaries 
because, in those regions, the gradients of the flow parameters are very large. 
Hence, the use of kinetic theory seems to be inevitable. Usually one proceeds 
as follows: the Boltzmann equation is used in the gaseous domain and the fluid 
bulk is treated as a source (evaporation) or sink (condensation) of particles. Ref-
erences (49-51] represent three of many papers on the topic. 

We propose a more radical approach consisting in the use of one kinetic equa-
tion both to the liquid and the gaseous phase. Thus, in a sense, we attempt to 
follow the lines of the van der Waals' philosophy of fluid s [1], which is used in the 
quoted papers [2 - 35] on liquid-vapour phase transitions. In the papers, one sys-
tem of hydrodynamic equations with one equation of state suited for liquid-vapour 
systems is used without any splitting into liquid and gaseous domains. The es-
sential difference between this approach and that of ours consists in that that we 
want to replace the hydrodynamic descripti on of the system with a kinetic one, 
and next to compare the results. 

The fundamental trouble is the lack of such a universal and fully satisfactory 
kinetic equation. But this does not mean that there are no models that could be 
suitable for our purpose. We have chosen the Enskog- Vlasov equation because: 
i) it is relatively simple; ii) there are some results in [52, 53] suggesting its useful-
ness. Recently, we showed in [54] that the capillarity equations used in (18- 21, 
28, 32] can be deduced, at the formal level, from this equation. 

Unfortunately, if we want to investigate any flow by means of the Enskog-V1a-
sov equation, we find it to be too complicated. That is why we elaborated its 
discrete velocity models (see (55, 56]). In this way we obtain a more tractable 
system of equations. Basing on the successes of discrete kinetic theory of ideal 
gases ((57-59]) we hope that this approach will not be a fai lure in the case of 
interest. 

There are many problems which can be posed. First of all we have to give 
evidence that our discrete velocity model can be successfully applied to at least 
some of the phase transition problems. The next question is the relation between 
the results of our approach and those of [ 49- 51 ], where kinetic theory was applied 
to the gaseous phase only. 
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Another group of problems concerns the connection between the fluid dy-
namic and kinetic descriptions of phase changes. We know from the theory of 
the true Boltzmann equation [60] as well as from the theory of its discrete veloc-
ity models [57, 61] that the phenomenological fluid dynamics describes correctly 
the shock wave structure only if the shock is sufficiently weak. In the case under 
consideration the situation seems to be much more complicated. Namely, in [56] 
we considered the stagnant phase boundary problem. It turned out that both the 
model kinetic and generated by it fluid dynamic equations have exactly the same 
solution. The description of the phase boundary obtained in (56] agrees both 
with the physics of equilibrium phase transitions and the theoretical analysis of 
(18], hence it favours our model. But, on the other hand, this result is in con-
trast with the results of kinetic theory of ideal gases ([57, 60, 61 ]), because the 
stagnant phase boundary by no means can be treated as a "weak" shock wave. 
The explanation of this apparent paradox must be sought in the structure of the 
local equilibrium, i.e. the Euler equations. In the case of the ideal gases both the 
true and the model Euler equations are strictly hyperbolic, and the characteris-
tic speeds are either genuinely nonlinear or linearly degenerate in the sense of 
LAx (5]. It is worth to add that all the existing papers on the hydrodynamic limit 
of the true Boltzmann [62, 63, 65] or the Enskog equation [64, 65], or else the 
discrete Broadwell model [66 - 68], and more generally some hyperbolic systems 
of similar structure as the latter ones [69, 70] make an essential use of the strict 
hyperbolicity of the local equilibrium conservation equations. Very clearly it is 
pointed out in [70]. • 

In our problem, as we show it later in this paper, the local equilibrium equa-
tions, i.e. the Euler equations, can change type from hyperbolic to elliptic. The 
question arises: how important is it ? This will be discussed in our future papers, 
but for the time being let us notice that: i) the stagnant phase boundary discussed 
in [56] is admissible only due to the change of the type of the Euler equations; 
ii) if the formally deduced local equilibrium equations are ell iptic, then they can-
not serve as an approximation, as the Knudsen number tends to zero, to the 
kinetic equations if the latter are strictly hyperbolic . A brilliant example is given 
in (70]. Hence, the Euler, Navier- Stokes and other equations deduced from the 
kinetic theory should, with a great caution, be treated as "approximation" to the 
corresponding kinetic equations. 

With the present paper we open systematic studies of various "approxima-
tions" to the model kinetic equations. Now we limit ourselves to the Euler and 
Navier-Stokes equations only, but most of the present results will be used in the 
future. 

In the next Section we classify the Euler equations and give sufficient and 
necessary criteria for their being of a definite type. 

In Sec. 3 we consider shock waves and discuss the solvability of the Rank-
ine- Hugoniot conditions. The properties of these solutions are investigated in 
Sec. 4. 
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Section 5 deals with the shock waves in the Navier - Stokes equations. The most 
important result is Theorem 5.8 stating the suffi cient and necessary conditions for 
existence and uniqueness of the travelling wave solutions to our equations. 

In Sec. 6 we give some numerical results concerning the structures of the shock 
waves discussed in Sec.5. Our results agree qualit atively with those of [4]. In this 
way we obtain a consecutive confirmation o f usefulness of our model for the 
qualitative analysis of the dynamic phase changes. 

2. Classification of the Euler equations 

In the lowest order of approximation to a fo ur-velocity model of the En-
skog-Vlasov equation, we obtained in [56] the foll owing system 

(2.1) 8w _ 8u = O 
at ax ' 

(2.2) 8u + 8p = 0 
fJt fJx ' 

where t ｾ＠ 0 is the time, x E lR is the Lagrangian mass coordinate, u is the 
velocity, w is the specific volume, and p is the pressure. 

The pressure formula reads 

(2.3) 
1 - u2 a 

p = p(w, u) = 2(w- b) - w2 ' 

where a and b are positi ve constants; a is the ratio of the mean value of the 
potential of the attractive tail to the mean kinetic energy, and b can be taken to 
be unity. 

Equations (2.1)-(2.3) form the Euler equations for our model hydrodynamics. 
We consider them in the foll owing domain: 

(2.4) w > b, 
a 
2b < 1' 

The set of (w, u) satisfying (2.4) is denoted by D . 
Condition (2.4)1 is obvious: the density 1/ w does not exceed the close-packing 

density 1/ b. The remaining constraints result from the physically reasonable de-
mand that the pressure p is positi ve. Indeed, the immediate consequence of that 
and (2.3) is 

(2.5) 
1 - u2 a( w - u) 
- 2- > w 2 · 

Dut for every w > b the foll owing estimates hold 

O a(w- b) a 
< w2 ｾ＠ 4b · 
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Hence, if for some uo 
1- u6 a --<-

2 - 4b ' 

679 

then there is wo > b such that p(wo, uo) < 0, contrary to our assumption. There-
fore we have to admit only such values of u that (2.3)3 holds. 

It we denote 

(2.6) 
1 - u2 

T = --
2 

then (2.3) takes the well-known form of the van der Waals equation of state (1.1) 
provided that T given by (2.6) is interpreted as the temperature. 

We rewrite the Euler equations in the matrix form 

(2.7) _§__ (w) + M(w, u) • i_ (w) = 0, at u ax u 

where 

(2.8) 
[ 

0 
M= 1 - u2 2a 

- 2( w - b )2 + w3 

- 1 l u . 

w- b 

The eigenvalues of M are called the characteristic speeds. They are solutions of 

(2.9) 
,2 - ap(w , u) \ ap(w, tt ) = 0 
A 0U A + QW ' 

or explicitly 

(2.10) .A2 + _u_>.-[ 1- u
2 _2al =O 

w- b 2(w- b)2 w3 · 

The system (2.1 ), (2.2) is called strictly hyperbolic if Eq. (2.9) has two real 
solutions, and elliptic if both solutions of (2.9) are complex. 

We have 

LEMMA 1. 
i) If 

(2.11) 

then for every (w, u) E V the Euler equations are strictly hyperbolic; 

ii) if 

(2.12) 
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then they are hyperbolic-elliptic. The domain 1-t. of hyperbolicity is simply con-
nected and separates the two components of the domain of ellipticity £; 

iii) if 

(2.13) 
27 a 

32 < 2b < 1' 

then the Euler equations continue to be hyperbolic-elliptic, but the domain of 
ellipticity £ is simply connected and separates the two components of the domain 
of hyperbolicity 1-l. 

Cases ii) and iii) are shown in Figs. 2 and 3 where the domain of ellipticity is 
shaded. 

P r o o f. Equation (2.10) has two real solutions if and only if 

(2.14) 
2- u2 8a 

Ll(w , u) = (w- u)2 - w3 

is positive. This is equivalent to 

(2.15) 

However, for any w > b 

0 
4a(w- b)2 16 a 

< w3 ｾ＠ 27 b' 

and the equality sign takes place for w = 3b only. Therefore, if a/ b is such that 

2 a ( 16 a) 
u < 1 - 2b < 2 1 - 27 [; , 

then we have i). If 

we have ii), and if 
16 a 

1 - 27 b < O, 

we have iii). The proof is complete. 

The change of type of the Euler equations is physically interpreted as the 
phase transition. Case iii) of Lemma 1 is of particular interest since it resembles 
the situation met in the theory of the true van der Waals fluids (see [18-48]). 
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PROPOSITION 1. 
i) If (wo, uo) E £,and (w, u) E £, then 

p(w, uo)- p(wo, uo) u2
0 ' > ＭＭｾｾＭＭＺＭ

w- wo 4(w- b)(wo- b) · 
(2.16) 

ii) If (wo, uo) E 7-{ , (w , u) E 7-{, and the interval ((wo, uo), (w, u)) C 1t, then 

p(w, uo)- p(wo, uo) u6 
ｾ ｾｾｾ ｾｾｾ＠ < Ｍ ＭＭ ｾｾＭＭＭ

w - wo 4(w- b)(wo- b) 
(2.17) 

P r o o f. First, let us notice that if ( wo, tto) E £ , ( w , u) E £ then the interval 
((wo, uo), (w, uo)) c £. On the other hand, if (w0, tto) E 7{, (w, uo) E 1{ then, in 
general, this is not true, and that is why we have to strengthen the assumptions 
in the hyperbolic Case ii) . 

Secondly, let us notice that the left-hand sides of (2.16) and (2.17) are symmet-
ric in their arguments wand w0. Therefore it is enough to prove these inequalities 
in the case of w > wo only. We have 

w 

p(w,uo)-p(wo,uo) = 1 ｪ ｾｰ Ｈ ＨＬ ｴｴｯＩ､Ｈ Ｎ＠
w - wo w - wo fJ( 

wo 

CASEi) 
For every wo ｾ＠ ( ｾ＠ w, we have ..:1((, uo) < 0. Therefore 

(2.18) fJ 1 (87>((, uo)) 
2 

tt6 
fJ(p((, uo) > 4 fJu - 4((- &)2. 

Hence 

p(w, uo)- p(wo, uo) tt6 jw d( u6 
ｾｾ ｾｾｾｾｾ ＾＠ - ＭＭＭＭＭＭｾＭＭＭＭ

w- wo 4(w - wo) ((- b)2 4(w- b)(wo- b) ' 
wo 

and (2.16) is proved. 
To prove (2.17) we proceed in a similar way, the only difTerence being that in 

(2.18) it is necessary to change the direction of the inequality sign. The proof is 
complete. 

3. The shock speed problem 

A discontinuous solution 

(3.1) { 
(w,, u,) 

(w, u)(x, t) = ( ) 
Wr, 1Lr 

for x < st, 

for x > st, 
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of Eq. (2.1 ), with shock speed s, is called a shock wave. Here, ( w1, u1) and ( wr, ur) 
are some constant values. To simplify the notation we write (w, u) for (w1, u1) or 
(wr ,ur), and (wo,uo) for (wr ,ur) or (w1,u1), respectively. These values have to 
satisfy the Rankine-Hugoniot conditions 

(3.2) 
SW + U = SWO + UO , 

- su + p(w, u) = - suo + p(wo, uo). 

Eliminating u, and making use of (2.3) we obtain an equation for s = s( w; wo, uo) 
which reads 

w2 +wo-2b 2 uo [ 1- u6 a(w + wo)] 
(3·3) 2(w - b) s + w- b s - 2(wo - b)(w- b) - w6w2 = O. 

This equation has two real solutions if and only if 

(3.4) 
(w + wo- 2b)- (u6(w-b) 2a(w + wo - 2b)(w + wo) 

D ( w; wo, uo) = -'-------,:--'-"'-:-'::,--------'-
(wo - b)(w- b)2 w6w2(w- b) 

is positive. 

LEMMA 2. Let (w0 , u0) be such that p(wo, uo) > 0. Then the set 

{ w > b : D (w ;wo,uo) < o} 
is either empty or it is a finite interval contained in { x E IR : x > b} . 

Proof. We rewrite D(w; wo, uo) in the form 

1 
D(w; wo, 1to) = 2( b)2 P3(w - b), 

1U w-

where P(x) is the polynomial of grade three. 

3 [ 2b(l - u6) 4a l 2 P3(x) = 2p(wo, uo)x + 1 + b -- x 
wo- wo 

+ [2b (1 - ｾＩ＠ + &2(1 - u6) + 2abl x + b2. 
b wo - b w5 

Since P3(0) = b2 > 0, P3(x) > 0 for suffici ently large positive x, and P3(x) < 0 
for sufficiently large negative x, then this polynomial can take negative values in 
the domain x > 0 in a finite interval only. The proof is complete. 

In principle, we could make use of the theory of the cubic polynomials to get 
the precise answer to the question of the sign of P3(x ). Unfortunately, in our 
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case, the coefficients in P3(x) are so complicated that we are unable to draw any 
conclusions. Therefore, we present only partial answers to the question of the 
sign of D(w; wo, uo). 

LEMMA 3. 
i) If 

(3.5) 

then D(w; wo, uo) < 0; 

ii) if 

(3.6) 

then D(w; wo, uo) > 0. 

p(w,O) - p(wo,O) 
0 > ' w- wo 

p(w, uo) - p(wo, uo) 
0 < ' w - wo 

P r o o f. We have the foll owing identity 

D( 
. ) _ 

2 
fp(w,uo) - p(wo,uo) wo - b p(w,O)- p(wo,O)] 

w,wo,uo -- l + -- . w - wo w - b w - wo 

The assertion follows immediately from the above and the estimate 

(3.7) 
p(w,uo) - p(wo,uo) > p(w,O) - p(wo,O) 

w - wo w- w0 

for w > b, wo > b, 1LB < 1. The proof is complete. 

COROLlARY 1. If 0 < u5 < 1 - 16aj27b, then for every w > b, wo > b, 
D( w; wo, uo) > 0. 

P r o o f. If the assumption is satisfied, then op(w, uo)fow < 0 for every 
w > b. Hence, (3.6) holds. The proof is complete. 

LEMMA 4. If (wo, uo) E £, (w, uo) E £, and w > wo, then D(w; wo, uo) < 0. 

P r o o f. We write 

(3.8) 
u5 _ w + wo- 2b [4p(w, uo) - p(wo, uo)] 

D(w; wo, uo) = ..,--_;;__,-,-;c 

( w - b )2 2( w - b w - wo . 

Making use of (2.16) we obtain 

u6(w- wo) 
D(w; wo, uo) ｾ＠ - 2(wo _ b)(w _ b < 0. 

The proof is complete. 
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LEMMA 5. 
i) There are such pairs (wo, uo) E £, (w, uo) E £with w < wo that 

D(w; wo, uo) > 0; 

K. PlECI-I OR 

ii) also, there are other pairs ( wo, uo) E £, ( w, uo) E £, w < wo such that 
D(w; wo, uo) < 0. 

P r o o f. Let w0 > b be such that 

(3.9) 0 2 
_ 8a(wo-b)2 

1 
_ .!!:.__ 

< w5 < 2b' 

and let c > 0 be sufficiently small. We take 

2 2 
8a(wo- b)2 

uo = + c - w3 
0 

(3.10) 

Of course, then .:1(w0, u0) < 0. Using (3.7) in (3.4) we obtain 

w - wo [ 1 
(3.11) D(w; wo, uo) = - w _ b (wo _ b)(w _b) 

_ 2a [(3wo-4b)(w- wo) + 2wo(2wo- 3b)]] _ c 
w5w3 (wo - b)(w - b) · 

Owing to D(wo; wo, uo) < 0, there is w such that b < w < wo and 

(3.12) D(w; wo, uo) = 0, 

and D(w;wo,uo) < 0 for w < w ::; wo. From (3.11), (3.12) we obtain 

w = wo- c(wo - b) + O(c2). 

1 
_ 4a(wo - b)2(2w0 - 3b) 

w3 
(3.13) 

We assume additionally that 

1 
_ 4a(wo- b)2(2wo - 3b) > 

0 
w4 

0 
(3.14) 

for, of course, sufficiently small c > 0 and w < w0. 

Let us evaluate .:1(w, u0) . Using (3.10) and (3.13) in (2.14) we obtain 

12ab(wo- b)2 
1 - ----'---=---'-

w 4 
L1(w, uo) = - E 0 + O(c2

). 

1 
_ 4a(wo- b)2(2wo- 3b) 

w3 
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If there is w0 satisfying (3.9), (3.14) and 

(3.15) 1 
_ 12ab(wo- b? 

0 4 < ' wo 

685 

then we obtain i), since it is enough to take (w, uo) E £such that w < w. On the 
other hand, if there is wo such that 

(3.16) 1 
_ 12ab(wo- b)2 

0 4 > ' wo 

then we obtain ii) because then there is w < w < w0 satisfying our demands. 
Hence, it remains to show that there is wo satisfying (3.9), (3.14), (3.15), and 

that there is, possibly difierent from the previous one, another w0 satisfying (3.9), 
(3.14), and (3.16). 

The positive answers are readily available by noticing that (3.14) and (3.15) 
can be rewritten as 

(3.14') 1 
_ 4a(wo- b)2 _ 4a(wo- b)2(wo- 3b) 

0 3 4 > ' wo wo 

(3.15') 1 
4a(wo - b)2 4a(wo - b)2(wo - 3b) o· 

- 3 + 4 < ' 
wo wo 

whereas (3.14), (3.16) can be rewritten in the form (3.14') and 

1 
4a(wo - b)2 4a(wo - vf(wo- 3b) 0 

- 3 + 4 > . 
wo wo 

(3.16') 

The proof is complete. 

LEMMA 6. If (wo, uo) E 1-£, (w, uo) E 1-£, w ｾ＠ wo, and the interval 
((w,uo), (wo,uo)) c 1{, then D(w;wo,uo) > 0. 

P r o o f. Use (3.8) and (2.17). 

LEMMA 7. If 
27 a 27 
37 < 2b < 32 

then there is uo such that Ll( w, uo) > 0 for every w > b, and there are ( wo, uo) E 

1{, ( w, uo) E 1-£, w > wo such that D( w; wo, uo) < 0. 

P r o o f. Let c > 0 be sufficiently small. Let us take 

(3.17) wo = b(3 - c), 



http://rcin.org.pl

686 

and 

(3.18) uB = 2 _ a(wo-b)(wo + b)2 

bw3 
0 

K. PIECHOR 

Then 0 < u5 < 1 - (a/2b}, and 

_ 2 [ 4a( w - b }2
] u5 

L\(w,uo)- (w- b)2 1 - w3 - (w - b)2 

1 [2 32a 2] 16ae:
2 

( 1 7 ) 
ｾ＠ (w- b)2 - 27b - uo = 81bw6(w- b) - 12£ > 0 

fort: sufficiently small. 
Next, we rewrite D(w; wo, uo) in the form 

(3.19} D(w; w, u) = 2(wo _ ｢ｾＨ ｷ＠ _ b)2 [cw + w0 - 2b) 

We take also 

(3.20) 

Then 

2 (2 2 a(wo- b)(wo + b)
2
) ( ) 2] - u0 - u0 - + w0 - w u0 bw6 

a(w + wo- 2b)[(wo - b)w- 2bwo]2 
Ｋ ｾ ＭＭＭＭｾＭＭｾｾＭＭｾＭＭＭＭｾｾ＠

2bwo 
w = -- . 

wo - b 

3- t: 
w - wo = t: b-- > 0. 

2- t: 

2bw6w2( w - b )2 

Inserting (3.17), (3.18), and (3.20) into (3.19) one gets 

. _ e:bwou6 
D(w, wo, uo)- - 2(wo - b)2(w - b)2 < 0. 

The proof is complete. The profiles s(w; wo, uo, a) for some values of wo, uo and 
a are shown in Fig. 1. We can see that these profiles depend very strongly on the 
values of the three parameters. They can be nonmonotonic or even undefined for 
some values of the specific volume w. Also, the change of sign of s(w; wo, uo, a) is 
noticeable. On the other hand, the profile in Fig. le is very much like that in the 
case of ideal gases, despite the fact that now the system of the Euler equations 
is hyperbolic-elliptic, and the domain of hyperbolicity is disconnected. 
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FIG. L The function s(w; wo, uo, a) versus w for some values of wo, uo, a. a) a = 1.65, wo = 2.25, uo = 0.25; 
b) a = 1.65, wo = 2.3, uo = 0.25; c) a = 1.9, wo = 1.7, uo = 0; d) a = 1.9, wo = 6.5, uo = 0. 
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4. Properties of shock speed and the Hugoniot locus 

In this Section we investigate properties of the shock speed s( w; w0, u0) as-
suming, of course, its existence. 

PROPOSITION 2. Let s = s( w ; wo, uo) be given. If 

(4.1) 

and 

(4.2) 

_ bwo 
w> --b, 

wo-

0 2(- ) a( wow-b(w0 + w))2 

< s w;wo,uo < 3-3 ' 
2bw0w 

then there are exactly two w 1 > b, w2 > b, w1 -:f w, w 2 -:f w such that 

(4.3) s(w1; wo, uo) = s(w2; wo, uo) = s(w; wo, uo). 

In other words, any value of s can be taken at most three times. 

Proof. Let s = s(w ; w0, u0) be given. Then the following identity is true 

w + wo- 2b_2 uo _ [ 1- u5 a(w + wo)]-
0 (4.4) 2(w · b s + w- b s- 2(wo-b)(w- b) - wijw2 - · 

Now, Jet us consider Eq. (3.3) with s = s, but with unknown w. Using the identity 
(4.4) to eliminate u0s from Eq. (3.3) we obtain 

(4.5) (w- w) { s2(w- b)2 + 2 [s2b- a(wwo- ｢ｾｷ＠ + wo))l (w - b) 
w2w2 

0 

1.2 [ ...,2 2a( w + wo)] } = 0 +u s + 2- 2 . 
w0w 

One solution is trivial: w = w. This equation has two other solutions if and only 
if (4.2) holds. These two solutions are of the same sign. They are positive if 
additionally 

(4.6) 
_2 a(wwo- b(w + wo)) 
s < --'-----=-'---=----'-'-

bw6w2 

This condition is not contradictory if the term on the right-hand side is positive. 
In turn, it happens if and only if ( 4.1) holds. We show now that ( 4.1 ), ( 4.2) imply 
( 4.6). Indeed, 

a( wow- b(wo + w)2
) = ! (1 _ .!!_ _ .!!..) a( wow- b(wo + w)) 

2uwgw3 2 wo w bwfiw2 

a(wow-b(wo + w)) < ｾｾ ＭｾｾＭｾ＠

bw2w2 
0 

The proof is complete. 
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PROPOSlTION 3. If Ll(wo, uo) > 0, then the equation 

(4.7) s(w; wo, uo) = >.(wo, uo) 

has at least one solution, namely w = wo. If additionally 

(4.8) wo > 2& , 

and 

(4.9) 2 a(wo- 2&)2 

>. (wo,uo) < 4 ' 
2bw0 

then there are two other solutions wb w2 satisfying w1 > b, w2 > b, w1 'f wo, 
'W2 'f WQ. 

Proof. Since D(wo;wo,uo) = Ll (wo,uo), then w = wo is a solution of 
(4.7). If (4.8) and (4.9) hold, then w = wo, and s = >.(wo, uo) satisfy (4.1), (4.2). 
Therefore, making use of Proposition 2 we obtain the second thesis. The proof 
is complete. 

LEMMA 8. If 

(4.10) d I -l -s(w; wo, uo) _ = 0, 
GW w=w 

then w satisfies 

( 4.11) 
_ 2bwo 
w > --b. 

wo-

Moreover, there is exactly one w 'f w such that s(w ; w0, u0) = s(w; w0, uo); w is 
given by 

(4.12) 
btvow b 

w = > . 
w (wo- b) - 2bwo 

P r o o f. Differentiating Eq. (3.3) with respect to w we obtain 

(4.13) ----s+-- - = s Ｋ ＭＭｾ＠[ 
w + wo - 2b uo ] cls wo - b 2 uos 

w- b wo- b dw 2(w- b)2 (w- b)2 

[ 
1 - u5 a( w + 2wo)] 

- 2(wo- b)(w- b)2 - w5w3 · 

We use Eq. (3.3) to eliminate u0s and obtain 

[
w + wo- 2b 

8 
+ ｾ ｝＠ !!!._ = _ 1 { 82 _ 2a [(wo- b)w- 2bwo]}. 

w- b wo- b dw 2(w- b) w5w3 
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Hence, (4.10) holds if and only if 

(4.14) 2(_· ) _ 2a [( w0 - b)w- 2bw0] 
s w, wo, uo - 2- 3 . 

w0w 

The right-hand side is positive for 

only. 

2bwo 
w >--

- wo - b 

Inserting ( 4.14) into Eq. ( 4.5) we find easily that it has one double solution 
w = w, the third one is given by (4.12). The proof is complete. 

Let ( w0 , uo) be given. The Hugoniot locus H ( w0, u0) is defined as the set of 
all states (w, u) E V which satisfy (3.2) for some real s. For any (wo, uo) and 
w > b, if D(w; wo, uo) ｾ＠ 0, H(wo, uo) consists of two branches II ±(wo, uo), and 
each of them is defined by 

H±(wo,uo) = {Cw,u): u = uo - s±(w;wo, uo)(w- wo)} , 

where 

(4.16) w- b [ uo V ] s±(w;wo,uo)= 
2
b - --b± D(w;wo,uo) . 

w + wo - w-

Of course, (wo,uo) E If+( wo,uo)n ff_ (wo,uo). However, there can be other 
states (w, u) belonging both to H +( wo, uo) and H _(wo, uo). As it is seen from 
(4.16), it occurs if D(w; w0, uo) = 0, w t= w0. Then H(w0, uo) forms loops. Also, 
let us notice that the Hugoniot locus can be disconnected. 

The shapes of the Hugoniot loci for a few values of w0, u0, and a are shown 
in Figs. 2 and 3. Figure 2 presents them for the case when the domain of hy-
perbolicity is connected. As we can see, the curves can be either connected or 
disconnected. In the latter case they can form loops, and enter the domain of 
ellipticity where the speed of sound is complex. 

In Fig. 3, four examples of the Hugoniot loci are given for the case of discon-
nected domain of hyperbolicity. The ineresting thing is that they can traverse the 
domain of ellipticity. Also, loops to the right (Fig. 3b) or to the left (Fig. 3d) of 
the point ( w0, uo) can be formed. In Fig. 3c the point ( wo, uo) belongs to the do-
main of ellipticity. In this case, the Hugoniot locus consists of three components: 
the left-hand branch, the sole point (wo, tto), and the right-hand branch. 

We have to add that these do not exhaust all possible interesting situations. 
We establish two auxiliary results. 
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FIG. 2. The Hugoniot loci for some values of wo, u0. The domain of hyperbolicity is connected. a) a = 1.65, w0 = 1.7, u0 = 0.25; 
b) a = 1.65, wo = 1.95, uo = 0.25; c) a = 1.65, wo = 2.25, uo = 0.25; d) a = 1.65, wo = 2.3, uo = 0.25. 
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FIG. 3. The Hugoniot loci for some values of wo, uo. The domain of ellipticity is connected. a) a = 1.9, wo = 1.7, uo = 0; 
b) a = 1.9, w0 = 1.8, u0 = 0; c) a = 1.9, w0 = 2.5, u0 = 0; The cross x denotes the position of (wo, uo) in the domain of ellipticity. 

d) a = 1.9, wo = 6.5, uo = 0. 
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PROPOSITION 4. Let s = s(w; w0 , u0) be a solution of Eq. (3.3). Then 

{ 

WQ - b 2 UQS 

(4.17) (w- wo) 2(w _ b)2s + (w _ b)2 

[ 
1 -u5 a(w+2wo)]} 

- 2(wo- b)(w- b)2 + w5w3 

= _ { ( w - b )2 + ( w0 - b )2 
82 + uos( wo - b) _ [ 1 - u6 _ 2a] } . 

2(w- b)2 (w - b)2 2(w - b)2 w3 

P r o o f. Let C be the left-hand side of ( 4.17). We have trivially: C = C - 0, 
and substituting the left-hand side of (3.3) for zero we obtain the right-hand side 
of ( 4.17). The proof is complete. 

PROPOSITION 5. If (w, u) E JI(wo, uo), then 

(4.18) [s(w; wo, uo) - A+(w, u)] [s(w; wo, uo)- A_(w, u)] 

= (w- b)2 + (wo - b)2 
82 + su0(wo - b) _ [ 1 - u5 _ 2al 

2(w- b)2 (w- b)2 2(w- b)2 w3 ' 

where A±(w, u) are the solutions of (2.10) 

A±(w, u) == ｾ＠ ( - w ｾ＠ b ± J i1(w, u)) . 

Proof. Setting u = uo- s(w- wo) in Eq. (2.10) we obtain 

(4.19) 
uo- s(w- wo) 

A+(w, u) + A_(w, u) = - w _ b , 

and 

. - s2(w- wo)2 suo(w- wo) [ 1- ufi 2al 
(4.20) A+(w, u)A_(w, u)- 2(w _ b)2 - (w _ b)2 - 2(w _ b)2 - w3 · 

Equation ( 4.18) is an immediate consequence of these identities. The proof is 
complete. 

LEMMA 9. Let D(w; wo, uo) > 0. 

i) If (w, u) E H +(wo, uo), then 

ds+ 
(w- wo)- > 0 

dw 

if and only if 

( respectively : ( w - w0) ｾｳ［＠ < 0) 

A_(w, u) < s+(w; wo, uo) < A+(w, u), 

(respectively: s+(w; wo, uo) < A_(w, u) or s+(w; wo, uo) > A+(w, u)). 
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ii) If (w,u) E JL(wo, uo), then 

( 
ds_ 

w- wo) - > 0 
dw ( 

ds_ ) 
respectively : ( w - wo) dw < 0 

if and only if s_(w; wo, uo) < A_(w, u) or s_(w; wo, uo) > A+(w, u) 
(respectively: A_(w, u) < s_(w; wo, uo) < A+(w, u)). 

· Proof. Owing to (4.13), (4.17), and (4.18) we have 

[
w + wo - 2b 

8 
+ ｾ ｝＠ ｾ＠ = _ (s- A+)(s - A_). 

w - b w - b dw w - wo 
(4.21) 
' 

w + wo - 2b uo J ---=----s + --b = D(w; wo, uo) . 
w-b w-

Therefore on H + ( wo, uo) 

I ｾＫ＠yD(w;wo,uo)(w- wo) dw = - (s+ - A_)(s+- A+)· 

K. PLECHOR 

Assertion i) is an immediate consequence of this identity. To prove ii) we use 

j D(w; wo, uo) (w- wo) ｣ｾ ｳｾ＠ = (s_ - >._)(s_ -A+) 

on H _ ( w0, uo). The proof is corn plete. 
LEMMA 10. If 

(4.22) 
d
d s(w; wo, tto)l _ = 0, 
W w = w 

then s(w;w0,u0) = A+(w,u) or >._(w,u), where (w,u) E H(wo,uo). 
Conversely, if for some w = w -::f wowith (w,u)Ell( wo,uo), D(w;wo,uo) > 0, 

and s(w; w0, u0) = A+(w, u) or A_(w, u), then (4.22) holds. 

P r o o f. The first part of the Assertion is a consequence of (4.20) and the 
Assumption. Conversely, if s = A+ or s = A_ then dsjdw = 0, since D > 0. The 
proof is complete. 

LEMMA 11. Let (w, u) E H(wo, uo). Then 

(4.23) 
du = Ｍ ｾ＠ s2

- A_A+ 
dw 2 A_ + >. + ' 

s- 2 

where s = s(w;wo,uo); A± = A±(w, u). 
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P r o o f. DifTerentiating 

u = uo - s( w - wo) 

we obtain 
du ds - = - (w- wo)-- s. 
dw dw 

Next, making use of (4.21) we get 

-dw- = - 2s + _u_ 
w - b 

wo - b 2 ( uo ) --b s + s --b + .L +A+ - A_ A+ 
w - w -du 

Applying (4.19) we obtain (4.23). The proof is complete. 

LEMMA 12. Let D( w; wo, uo) > 0, and let 

d
d s(w; wo, uo)l _ = 0. 
W w=w 

Then 
i) s( w; wo, uo) attains a local minimum at w, provided that ( w - wo)r· \1 A < 0 

at (w, u); 
ii) s( w; w0 , u0) attains a local maximum at w, provided that ( w - wo)r· \1 A > 0 

at (w,u). 
Here, u = uo - s(w; wo, uo)(w- wo), r = r±(w, u) is the right eigenvector of 

the matrix M corresponding to A± respectively, and A = A+ or A_ according to 
whether s = A+ or s = A_ , 

Proof. DifTerentiating (4.21) and using the Assumption we get 

d2s 1 [ dA+ dA_] 
(2s - A_ - A+) dw2 = w - wo (s- A_) dw +(s-A+) dw . 

Let s = A+, then the above reduces to 

d2s 1 dA+ 
dw2 - w- wo dw 

But, making use of ( 4.23) we obtain 

dA+ = 8A+ + 8A+ du = OA+ _ A+ 8A+ = r +. \1 A+. 
dw 8w 8du dw 8dw 8du 

Hence, at w = w 
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Similarly, ifs = >. at w = w, then 

d2s 1 
-2 - r_.\7.)._ . 
dw w- wo 

The proof is complete. 

PROPOSITION 6. Given Wr, W/, Ut with (wt, Ut ) E V, then (wt, Ut) E H(w,, ur), 
and 

(4.24) 

where 

(4.25) 

provided that s(wr; w,, u,) exists. 

P r 0 0 f. If (w, u) E H(wr, ur ) then 

U = Ur- s(w;wr,Ur)(w - Wr )· 

Setting here w = w1, and using (4.25) we get 

u = Ut - [s(wr; Wt, Ut)- s(w1; Wr, u,.)] (wr- w,). 

It follows from the above that it is sufficient to show that ( 4.24) holds in order 
to have (wt,ut) E H(wr,ur )· We introduce the shorthands St = s(wr ;w,,u,) 
and sr = s( w1; wn ur ). These quanti ties satisfy Eq. (3.3) with w = wTl wo = w,, 
uo = u,, and w = w,, wo = wn uo = Ur, respectively. Substituting (4.25) into the 
equation for sr, and using Eq. (3.3) for s1 we obtain 

2 2[ut- St(Wr- Wt)] 3wt - Wr - 2b 2 2UtS/ O 
Sr + Sr - St - = . 

Wr + W[- 2b Wr + Wt- 2b Wr + W[ - 2b 

This equation has two real solutions, one of them is given by (4.25). The proof 
is complete. 

PROPOSITION 7. Given w, wo, uo with (wo, uo) E V. Then 

(4.26) s±(w; wo, -uo) = -s'f(w; wo, uo). 

P r o o f. Equation (4.26) is an immediate consequence of (4.16) and the 
identity 

(4.27) D(w; wo, -uo) = D(w; wo, uo). 

The proof is complete. 
The graphs of the shock speed as a function of the specifi c volume w are given 

in Fig. 1 for a few values of a, b, w0, and uo. 



http://rcin.org.pl

TRAVELL ING WAVE SOLUTI ONS T O MODEL E QUAT IONS 697 

5. Travelling waves in the model Navier-Stokes equations 

Within the Euler equations, the shock wave is a jump discontinuity propa-
gating along the line x - st = 0. Let ( wt, ut) and ( Wr, ur) be the given states 
to the left and to the right of the line of discontinuity. They have to satisfy the 
Rankine- Hugonio t relations. However, it is not enough to accept such a jump 
as physical. It is well known that some additional conditions have to be im-
posed. Various ideas were used to formulate such additional admissibility criteria 
[10-48]. 

We remind that our principal task is to investigate different approximations 
to the model kinetic equations of [56], and the Euler equations (2.1) are the last 
but crucial term in the sequence. H ence no freedom of choice of admissibility 
criteria is left to us, and we have to turn to the next order approximation, i.e. to 
the Navier - Stokes equations. 

The Navier- Stokes equations read 

(5.1) 

aw au - -- = 0, at ox 
8u 8 8 ( 8u) Bt + OXp(w, u) = cOX J.L OX ' 

where t , x, w, u, and p(w, u) are the same as previously, but cJ.L is the coeffi c ient 
o f viscosity, c > 0 is a parameter, and J.L = ;.t(w, tt ) is given by 

(5.2) 
w 

e(w) = --b . 
w-

A travelling wave solution to (5.1) is a solution o f the form 

(5.3) (w, u)(x, t) = (w, u)(z), 
x - st 

z = -- E lR, 
c 

where s = const is the wave-speed, such that 

(5.4) 

(5.5) 

and 

(5.6) 

Jim (w, u)(z) = (wt, Ut), 
z- - oo 

Jim (w, u)(z) = (wr , Ur), 
z- +oo 

lim dd (w,u)(z) = (0,0). 
z___,.oo z 

A discontiuous solution (3.1) to Eqs. (2.1) is said to be admissible, if Eqs. (5.1) 
admit a travelling wave solution (5.3)-(5.6) for sufficiently small £ > 0. 
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We substitute (5.3) into (5.1), perform one integration with respect to z, use 
the limit conditions (5.4)-(5.6), and obtain 

(5.7) 

(5.8) 

as well as 

(5.9) 

u = Ut - s(w- Wt), 

J.l. ｾＺ＠ = -s(u - Ut)+ p(w, u) - p(wl, Ut) , 

S"Wr + Ur = S"Wt + Ut , 

- SUr+ p(wr, ur) = - SU[ + p(wt,Ut)· 

Equations (5.9) have the form of the Rankine- Hugoniot conditions (3.2), 
which were discussed thoroughly in the preceding sections. 

Using (5.7) to eliminate u from Eq. (5.8) we arrive at the problem: 

find a solution to 

(5.10) 

such that 

(5.11) 

(5.12) 

ｾ ､ ｷ＠ f C ｾ Ｉ＠ o SJ.l. dz + I "W = ' 

lim w(z) = "W[ , 
z--oo 

lim w(z) = "Wr , 
z-+oo 

lim w'(O = lim w'(O = 0, 
z -. - oo z-+ + oo 

where the prime ' denotes d/ dz , and where 

(5.13) 

(5.14) 

ft(w) = s2(w- w1) + p(w, Ut - s(w - wt)) - p(wt, Ut) , 

ft(Wt) = ft(wr ) = 0 

and ji = J.J.(w, u1- s(w - w1)). The subscript l in ft is used to mark that f(w) is 
related to the left state ( w1, u1) which is treated as given. We have 

LEMMA 13. Problem (5.10)-(5.14) has a unique solution if and only if 
ft(w) < 0 between Wt and "Wr for s(wr - w1) > 0, 
ft(w) > 0 between Wt and "Wr for s(wr - w1) < 0. 

p r 0 0 f. If Wr > W[, then we must have w'(z) > 0. Hence, if s(wr - Wt) > 0, 
then SW1(z) > 0, therefore f(w) haS tO be negative between W[ and Wr. The 
second case is analyzed in a similar way. The proof is complete. 

THEOREM 1. The problem (5.10)- (5.14) has a unique solution if and only if" 

i) for s(wr - w1) > 0, the chord joining (wt,p(wt, ut)) to (wr.p(wr, ur)) li es 
above the graph of p(w, Ut- s(w- Wt)) between Wt and wr; 
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ii) for s(wr - Wt) < 0, the chord joining (wt, p(wt,Ut)) to (wr, p(wr, ur)) lies 
below the graph of p(w, ut- s(w- Wt)) between w, and Wr· 

Proof. Rewrite f(w) < 0 in the form p(w, u,- s(w- w,)) < s2(w- Wt) + 
p(w1, ut). The case of f(w) > 0 is analyzed similarly. The proof is complete. 

This theorem reminds the simil ar ones of [18] or [19] for the isothermal case. 
The essential difference between the latter case and that of ours is that in the 
isothermal case p does not depend on s. Therefore changing s we change only the 
slope of the Rayleigh line, i.e. the chord joining ( Wt, p(wt)) to ( Wr. p( Wr )), and the 
graph of p( w) remains intact. In our case, when changing s we change not only the 
slope of the Rayleigh line but the graph of p itself, since p = p(w, Ut - s(w-Wt)). 
Hence, the use of this very intuitive theorem is a little bit troublesome in the case 
under consideration. 

The assertions of Lemma 13 and Theorem 1 were essentially independent 
of the specific form of p(w, u). If p(w, u) is given by (2.3), then we can obtain 
analytical criteria for existence of the travelling waves. Namely, we have 

LEMMA 14. Let p(w, u) be given by (2.3). Then, there is a unique solution to 
(5.10)-(5.14) if and only if: 

i) for s > 0: 

(5.15) ( 
U J ) 

2 
( W - b )2 

s + 2b - ( 2b)2D(w;wt,ut) :::; 0 
w + w, - w + Wt -

between Wt and wr ; 

ii) for s < 0 

(5.16) ( 
Ut ) 2 (w- b)2 

s + 2b - ( 2b)2D(w;w,,ut) ｾ＠ 0 w + w, - w + Wt -

between Wt and Wr, where D(w; w,, u,) is given by (3.4). 

P r o o f. Using (2.3) we write 

ft(w) = (w- w,)w + w, - 2b [(s + Ut )
2 

2( W - b) W + W t - 2b 

(w- b)2 l 
-

2
b)2D(w;w,,u,) . 

W + Wt -

From this identity and with the use of Lemma 13 we obtain easily (5.15) and 
(5.16) by considering separately four cases of s > 0, wr - W t > 0, etc. The proof 
is complete. 

Let us notice now, that the necessary condition for (5.15) to hold is D(w; w,, u,) 
> 0 between Wt and Wr. Hence, ( Wr, ur) has to belong to the same component 
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of ｈＨｷｾＬ＠ ut) as (wt, ut) does. Next, (5.14)2 means that s satisfi es Eq. (3.3) with 
(wo, uo) = (wt, ut) and w = Wr. Thus, s = s(wr; Wt, Ut ) Therefore we can rewrite 
(5.15) as follows 

(5.17) 

between Wt and Wr· 
This is a generalization of the Oleinik- Liu condition [10, 13 -15] to the present 

problem. 
Summing up we have 

CoROllARY 2. If the wave speed s = s(wr ; Wt, ut) is strictly positive, then 
(5.10)-(51'!4) has a unique solution if and only if 

i) (wr,ur) belongs to the same component of J!(wt,ut) as (wt,ut) does; 

ii) the Oleinik- Liu condition (5.17) is satisfi ed. 

On the other hand, let us notice that if s< 0, then the case when D(w; wt, ut) 
takes negative values is not excluded and (wr,ur) and (wt , ut) can belong to 
different components of J!(wt, ut). If so, then s±(w; Wt, ut) becomes complex for 
some values of w between Wt and wr . Consequently, the Oleinik - Liu condition 
is violated. 

This asymmetry can be understood on physical grounds. Namely, if s > 0, 
then the left-hand state (wt, ut) is the sta te after the wave, and the right-hand 
state ( Wr, ur) is that before the wave, whereas if s < 0, the situation is opposite. 
We can see that by treating the right-hand state ( wn ur) is given. Then, instead 
of (5.7) we have u = Ur - s(w-wr), and Eq. (5.10) is replaced by 

(5.18) SJ-Lr(w) ｾｾ＠ + f r(w) = 0, 

where J-Lr(w) = J-L(w, Ur- s(w- wr)) and 

(5.19) fr(w) = s2(w - Wr) + p(w, Ur- s(w - Wr)) - p(wr, Ur) , 

(5.20) fr( wt) = fr( wr ) = 0. 

Instead of Lemma 14 we have 

LEMMA 15. Let p(w, u) be given by (2.2). Then, there is a unique solution to 
(5.11), (5.12), (5.18)-(5.20) if and only if 

i) fors > 0 

(5.21) 

between Wt and wr; 
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ii) for s < 0 

(5.22) 

between Wt and wr . 
We have also 

CoROLLARY 3. If the speed s = s( Wt; Wr, ur) is strictly negative, then the 
problem (5.11), (5.12), (5.18)-(5.20) has a unique solution if and only if 

i) (wt , ut) belongs to the same component of JJ(wn ur) as (wn ur ) does; 

ii) the Oleinik- Liu condition in the form 

(5.23) 

holds between Wt and wr . 

LEMMA 16. Conditions (5.15) and (5.21) are equivalent, as well as (5.16) and 
(5.22) are. 

P r o o f . Let £1 denote the left-hand side of (5.15) and (5.16), and let Lr 
denote the right-hand side of (5.21) and (5.22). Since s = s(wr; Wt, ut), then using 
Eq. (3.3) with w = w" (wo, uo) = (wt, ut) to elimin ate Uts from £1, we obtain 

r _ W - Wr { 2 2a[w(w,.wt - bwt- bwr ) - bwtwr ]} 
J..-t - s -

w + Wt - 2b w2w2w2 · I r 

Similarly, using the fact that s = s( w 1; Wr, ur) (cf. Proposition 6) we can write 

Let £ :::; 0; then either 

a ) W- Wr :::; 0 and 

or 

{J ) W- Wr ｾ＠ 0 and 

Let us consider a). The inequality w < Wr implies Wt < w < wr. Hence 
w - Wt > 0. Therefore (5.21) holds. In the case (J ), it must be Wt - w < 0, and 
again we obtain (5.21). 

If Lr ｾ＠ 0, then we proceed similarly and obtain (5.15). The proof is complete. 
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Th unify our considerations we introduce the following definitions: 

{ (wt, Ut) for s > 0, 
(wa, Ua) = ( ) for s < 0, Wr, Ur 

and 
{ (wr, Ur) for s > 0, 

(wb, ub) = ( ) for s < 0, Wt, Ut 

and call ( wa, ua) the state after the wave, whereas ( wb, ub) the state before the 
wave. 

We have 

THEOREM 2. Equations (5.1) admit the unique travelling wave solution (5.3)-
(5.6) if and only if 

i) (wb, ub) belongs to the same component of H(wa, ua) as (wa, ua) does; 
ii) the Oleinik- Liu condition: 

is satisfied for every w between Wa and Wb· 

This theorem is a compilation of Corollaries 2 and 3, and as such it needs no 
proof. 

6. Shock-wave structure 

The problem (5.10)-(5.14) with J.l(w , u) given by (5.2) and u given by (5.7) 
admits an explicit solution. To determine it we perform some transformations and 
substitutior;ts. Let wr, wt, Ut be given, and let s denote the shock-wave speed, i.e. 
s = s(wr ; Wt, u,). 

First, from (5.2) and (5.7) we obtain 

(6.1) 

where 

(6.2) 

1 4 . 

jl,(w) = 8w3(w- ｢Ｉｾ＠ A;w'' 

Ao = b2( 1 - (ut+ swt)2) , 

A1 = -2b [1- (ut + swt?- bs(ut + swt)], 

A2 = 1 - (ut+ swt)2 - 4bs(ut + swt) - b2s2, 

A3 = 2s(ut + s(wt +b)), 

A4 = 2b2 - s2
. 
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Hence, fi( w) is a rational function. Also, f 1 ( w) is such. Th show this we make use 
of (2.3), (5.7), (5.13), and (5.14) and obtain 

(6.3) 
F( ) (w- Wt)(w- Wr ) [ 2 2 2a(wtWr-bw,- bwr) 2ab l 

.1 1 w = s w - w + -- . 
2w2( w - b) WfW; WtWr 

Using (6.1), (6.3) we rewrite Eq. (5.10) in the explicit form 

(6.4) 

where 

(6.5) 

4 

L Aiwi 

ＭＭＭＭＭＭｾｾﾷＭ］Ｍ Ｐ ｾｾｾＭＭＭＭＭＭｾ､ｷ＠ = ＭＴｳ､ｾ＠
w(w- Wt)(w- wr)(w2 - 2ow + {3 ) ' 

are constants. 
Equatio n (6.4) can be easily integrated. The result depends significantly on 

the sign of 

(6.6) 

CASE I. W > 0. 

Under this assumption, the equation f 1(w) = 0 has exactly two real solutions 
w = w1 and w = wr . H ence, the general solution of Eq. (6.4) is 

(6.7) 

where 

1 
Alnw +Bin lw- wtl + C ln lw- wrl + 2Dln(w2 - 2ow + {3 ) 

E w +a 
4 

. . + arctan = - sz + mtegrat1on constant, 
Jf3- a 2 Jf3- a2 

ａ］ｾ＠
f3wtWr ' 

B = An - w1A21 

(wr - w,)(w1 - 2aw, + {3 ) ' 

Au - WrA21 c = ＭＭＭＭＭＭＭＭｾＭＭＭＭＭＭＭＭｾ＠
(wr - Wt)(w; - 2owr + {3 ) ' 
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2 2 Ao 
A21 = -A4(wl + WJWr + wr) + A3(w1 + Wr) + A2 - - - , 

WJWr 
D = A4 - A - B - C, 

I< . P lECHOR 

E = A4(w1 + Wr) + A3 + 2aA + B(2a- w1) + C(2a- Wr ). 

The explicit analytic solution (6.7) was used to obtain a series of shock profil es 
shown in Fig. 4. The input data were so chosen as to receive results resembling 
those of [4, 7]. Our Fig. 4 is qualit atively simil ar to Fig. 10 of [4]. In particular, 
we see that so-call ed impending shock splitti ng can be derived from our model 
equations. The notion of "impending shock splittin g" was fir st introduced in [4] 
and refers to shocks having two infl exion points instead of one, what is usual. 

y 

Ｐｾｾ Ｍ ＶＭＭｾ Ｍ ｾｊｌｕｾ ｏ ＭＭｾｊＭＭｾＭＭｾＹｾ＠

z ·Jo· l 

F IG . 4. Impending shock splitti ng. ｎ ｯ ｲｭＺＺｾ ｬｩ ｺ ｣､＠ profiles \1 = (w- w l) f ( -wr - 'Wl ) versus z X 10- 4
, 

a = 0.5, W r = 10, Ur = 0; J - W l = 1.623, 2 - W l = 1.653, J - 'Wl = 1.683, 4- W l = 1.713, 
5 - W l = 1.743. 

We omit all detail s of how to choose the entry data to obtain such phenomenon 
since it is fairly well done and explained in (4]. 

C ASE II . w :::; 0. 
U nder this assumption the equation 

w2 - 2aw + (3 = 0 

has two real solutions w_ :::; w+; what means that f1(w) has two additional zeros 
w = w_ and w = w+, except the "o ld" o nes w = w, and w = Wr. The existence 
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of shock connecting ( w,, tLL) to ( Wr, tlr) demands w_ and w+ not to lie between 
w1 and Wr. The result of integration of Eq. (6.4) depends however on additional 
detailed relations between the zeros o f ] 1 ( w ). 

i) w, 'I W±, Wr 'I w'f, w_ < w+. In this case, the general solution of Eq. (6.4) 
reads 

A In w + B In lw- wd + C In lw- w,.1 +DIn lw- w_ l + E ln lw - w+ l 

where now 

A= Ao 
{JW{Wr 1 

B= 

C = 

(w1- wr)(wf- 2aw, + {3)' 

A11 - Wr A21 

= - 4sz + integration constant, 

W/ + Wr 
Au = - A4w1wr(w1 + Wr ) - A3W1'Wr-J\ 1 + Ao , 

W{Wr 

2 2 Ao 
A21 = A4(w1 + W{Wr + wr ) + A3(w1 + Wr) + J\2- --, 

W{Wr 

D = l [A 4(w1 + Wr + w _ ) + A3 + Aw+ + JJ(w1- w+ ) + C (wr- w+)] , 
w_ - w+ 

E = A4 - A - B - C - D . 

This case we illu strate with a series of expansion shock profiles presented in Fig. 5. 
A shock wave is called expansion shock if the graph of p(w, u1 - s(w- w1)) li es 
entirely above the Rayleigh line jo ining (wt, tt1) with ( wr, ttr ). Our Fig. 5 can be 
treated as a counterpart o f Figs. 3 and 7 of [4]. We can noti ce easily that the shock 
thickness increases rather than decreases, with strength. Also this phenomenon 
was discovered fir st in [ 4] and it is thoroughly discussed in the cited paper. 

ii) Either w1 = W± or wr = w'f , or both. In this case we have one-sided o r 
two-sided sonic shocks, i.e. shocks moving at the speed equal to the characteristic 
speed before or after the shock, or else all three of them are equal. In a situation 
like rhat, the asymptotic states of the shock are achieved algebraically rather than 
expcnentially and shock thickness is much greater than in the previous cases. This 
is very similar to what is discussed in detail in [6] . Therefore we omit a discussion 
of tt.e case. 

Summing up, we can say that our model equations produce results qualita-
tively similar to those obtained within the framework of the true Navier- Stokes 
eqmtions. 



http://rcin.org.pl

706 K. PlECHOR 

FIG. 5. Rarefaction shocks. Normalized profiles V = (w - Wt)/(wr- Wt ) versus z X w-2; 

a = 0.5, Wr = 10, U.r = 0.5; J - Wl = 6.5, 2 - Wt = 7.25, J - W t = 8.0. 
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