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Travelling wave solutions to model equations
of van der Waals fluids

K. PIECHOR (WARSZAWA)

WE CONSIDER the existence and uniqueness of travelling wave solutions to the model hydrodynamics
equations (without capillarity) obtained from a four-velocity kinetic model of van der Waals fluids.
We analyze both the Euler and the Navier-Stokes equations. The Euler equations are shown to
change their type. The Rankine-Hugoniot conditions are discussed in detail. It is shown that the
Hugoniot locus can be disconnected even if the equations are hyperbolic. Using the Navier-Stokes
equations we show how to modify the Oleinik-Liu conditions of admissibility of shock waves to such
situations, The shock-wave structures are found numerically. In particular, the so-called impending
shock splitting is obtained.

1. Introduction

THE VAN DER WAALS fluid is such a hypothetical one whose equation of state
reads [1]

RT a
w—>b w?’

(1.1) p(w,T) =

where a, b are positive constants characterizing the fluid, p(w, T') is the pressure,
R is the gas constant, 7' is the temperature, and w > b is the specific volume. Now
much more sophisticated equations of state are known [2, 3, 4], but Eq.(1.1) is
still in use since it describes qualitatively correctly the thermodynamic behaviour
of real one-component fluids.

If

81 a

then the isotherms in the p—w plane are monotonically decreasing convex curves.
This is the case of classical gases. The mathematical background is the Lax theory
of hyperbolic conservation laws [5].

If

8 a 81 a
(13) “2—7"b—lé< <ﬁﬁ’

then the isotherms in the p— w plane are still monotonically decreasing — but they
are no longer convex. This occurs in the so-called retrograde or Bethe-Zeldovich-
Thompson fluids. Such materials were considered in many papers [6-17].
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The third case is when T satisfies

la . 8 a
(1.4) sk <~ T <7

The left-hand inequality guarantees that the pressure is positive for all w >
b. Now, the isotherms are nonmonotone curves in the p — w plane, and the
Euler equations are of mixed hyperbolic-elliptic type. In this case there is no one
prevailing theory, and various approaches can be found [18-35]. Closely related
problems are met in the theory of elastic rods [36-48].

The equations studied in [4-48] are those of phenomenological thermody-
namics. However, at least as fluids are concerned, such a theory cannot describe
correctly the structures of neither the shock waves nor the phase boundaries
because, in those regions, the gradients of the flow parameters are very large.
Hence, the use of kinetic theory seems to be inevitable. Usually one proceeds
as follows: the Boltzmann equation is used in the gaseous domain and the fluid
bulk is treated as a source (evaporation) or sink (condensation) of particles. Ref-
erences [49—51] represent three of many papers on the topic.

We propose a more radical approach consisting in the use of one kinetic equa-
tion both to the liquid and the gaseous phase. Thus, in a sense, we attempt to
follow the lines of the van der Waals’ philosophy of fluids [1], which is used in the
quoted papers [2-35] on liquid-vapour phase transitions. In the papers, one sys-
tem of hydrodynamic equations with one equation of state suited for liquid-vapour
systems is used without any splitting into liquid and gaseous domains. The es-
sential difference between this approach and that of ours consists in that that we
want to replace the hydrodynamic description of the system with a kinetic one,
and next to compare the results.

The fundamental trouble is the lack of such a universal and fully satisfactory
kinetic equation. But this does not mean that there are no models that could be
suitable for our purpose. We have chosen the Enskog-Vlasov equation because:
i) it is relatively simple; ii) there are some results in [52, 53] suggesting its useful-
ness. Recently, we showed in [54] that the capillarity equations used in [18-21,
28, 32] can be deduced, at the formal level, from this equation.

Unfortunately, if we want to investigate any flow by means of the Enskog - Vla-
sov equation, we find it to be too complicated. That is why we elaborated its
discrete velocity models (see [55, 56]). In this way we obtain a more tractable
system of equations. Basing on the successes of discrete kinetic theory of ideal
gases ([57-59]) we hope that this approach will not be a failure in the case of
interest.

There are many problems which can be posed. First of all we have to give
evidence that our discrete velocity model can be successfully applied to at least
some of the phase transition problems. The next question is the relation between
the results of our approach and those of [49 - 51], where kinetic theory was applied
to the gaseous phase only.
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Another group of problems concerns the connection between the fluid dy-
namic and kinetic descriptions of phase changes. We know from the theory of
the true Boltzmann equation [60] as well as from the theory of its discrete veloc-
ity models [57, 61] that the phenomenological fluid dynamics describes correctly
the shock wave structure only if the shock is sufficiently weak. In the case under
consideration the situation seems to be much more complicated. Namely, in [56]
we considered the stagnant phase boundary problem. It turned out that both the
model kinetic and generated by it fluid dynamic equations have exactly the same
solution. The description of the phase boundary obtained in [56] agrees both
with the physics of equilibrium phase transitions and the theoretical analysis of
[18], hence it favours our model. But, on the other hand, this result is in con-
trast with the results of kinetic theory of ideal gases ([57, 60, 61]), because the
stagnant phase boundary by no means can be treated as a “weak” shock wave.
The explanation of this apparent paradox must be sought in the structure of the
local equilibrium, i.e. the Euler equations. In the case of the ideal gases both the
true and the model Euler equations are strictly hyperbolic, and the characteris-
tic speeds are either genuinely nonlinear or linearly degenerate in the sense of
Lax [5]. It is worth to add that all the existing papers on the hydrodynamic limit
of the true Boltzmann [62, 63, 65] or the Enskog equation [64, 65], or else the
discrete Broadwell model [66-68], and more generally some hyperbolic systems
of similar structure as the latter ones [69, 70] make an essential use of the strict
hyperbolicity of the local equilibrium conservation equations. Very clearly it is
pointed out in [70].

In our problem, as we show it later in this paper, the local equilibrium equa-
tions, i.e. the Euler equations, can change type from hyperbolic to elliptic. The
question arises: how important is it? This will be discussed in our future papers,
but for the time being let us notice that: i) the stagnant phase boundary discussed
in [56] is admissible only due to the change of the type of the Euler equations;
ii) if the formally deduced local equilibrium equations are elliptic, then they can-
not serve as an approximation, as the Knudsen number tends to zero, to the
kinetic equations if the latter are strictly hyperbolic. A brilliant example is given
in [70]. Hence, the Euler, Navier - Stokes and other equations deduced from the
kinetic theory should, with a great caution, be treated as “approximation” to the
corresponding kinetic equations.

With the present paper we open systematic studies of various “approxima-
tions” to the model kinetic equations. Now we limit ourselves to the Euler and
Navier - Stokes equations only, but most of the present results will be used in the
future.

In the next Section we classify the Euler equations and give sufficient and
necessary criteria for their being of a definite type.

In Sec.3 we consider shock waves and discuss the solvability of the Rank-
ine-Hugoniot conditions. The properties of these solutions are investigated in
Sec. 4.
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Section 5 deals with the shock waves in the Navier - Stokes equations. The most
important result is Theorem 5.8 stating the sufficient and necessary conditions for
existence and uniqueness of the travelling wave solutions to our equations.

In Sec. 6 we give some numerical results concerning the structures of the shock
waves discussed in Sec. 5. Our results agree qualitatively with those of [4]. In this
way we obtain a consecutive confirmation of usefulness of our model for the
qualitative analysis of the dynamic phase changes.

2. Classification of the Euler equations

In the lowest order of approximation to a four-velocity model of the En-
skog - Vlasov equation, we obtained in [56] the following system

ow Ju
(2.1) FTiah i 0,
du  Jp _
(2.2) 2 -+ % 0,

where ¢t > 0 is the time, z € R is the Lagrangian mass coordinate, u is the
velocity, w is the specific volume, and p is the pressure.
The pressure formula reads

1—u? a
(2.3) p=plw,u) = w0 w
where a and b are positive constants; a is the ratio of the mean value of the
potential of the attractive tail to the mean kinetic energy, and b can be taken to
be unity.
Equations (2.1)-(2.3) form the Euler equations for our model hydrodynamics.
We consider them in the following domain:

a 2 i
(2.4) w > b, % <1, w<l 5
The set of (w, u) satisfying (2.4) is denoted by D.
Condition (2.4), is obvious: the density 1/w does not exceed the close-packing
density 1/b. The remaining constraints result from the physically reasonable de-
mand that the pressure p is positive. Indeed, the immediate consequence of that

and (2.3) is

1-u?  a(w-0b)
2 ” w?

But for every w > b the following estimates hold

(2.5)

0< (L(w—b)< a

w? = 4h°
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Hence, if for some ug
1- u(z) a
L= y
2~ 4b
then there is wy > b such that p(wy, ug) < 0, contrary to our assumption. There-
fore we have to admit only such values of u that (2.3); holds.

It we denote

(2.6) T = ,

then (2.3) takes the well-known form of the van der Waals equation of state (1.1)
provided that T' given by (2.6) is interpreted as the temperature.
We rewrite the Euler equations in the matrix form

Jd (w J (w
@7 E(U)+M(w,u)-a—z(u)—0,
where
0 -1
(2.8) M=] 1-4° L2 u
2(w-b)? Wi w—b

The eigenvalues of M are called the characteristic speeds. They are solutions of

Ip(w,u) dp(w, u)
2 _ Y ! -
(2.9) A 9 A+ Em 0,
or explicitly
2 u _ 1- Uz _ _2£ _
(2.10) A+ o b/\ [2(w Y w3] = 0.

The system (2.1), (2.2) is called strictly hyperbolic if Eq.(2.9) has two real
solutions, and elliptic if both solutions of (2.9) are complex.

We have
LemMMmaA 1.
i) If
a 27

then for every (w,u) € D the Euler equations are strictly hyperbolic;
i) if
27 a 27

(212) ﬁ<ﬂ<3_2’
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then they are hyperbolic-elliptic. The domain ‘H of hyperbolicity is simply con-
nected and separates the two components of the domain of ellipticity &;

i) if

27 a
(213) 3—2' % El; <1,
then the Euler equations continue to be hyperbolic-elliptic, but the domain of
ellipticity £ is simply connected and separates the two components of the domain
of hyperbolicity H.
Cases ii) and iii) are shown in Figs.2 and 3 where the domain of ellipticity is
shaded.

P r o o f. Equation (2.10) has two real solutions if and only if

2 —u? 8a

(214) A(U),’[L) = G}——_l))z — E;‘

is positive. This is equivalent to

(2.15) u? <

w3

1 da(w — b)z] ‘

However, for any w > b

» da(w — b)? 2 16 a

0 w3 _2_75’

and the equality sign takes place for w = 30 only. Therefore, if a/b is such that

g2 _Eﬁ)
u” <1 2b<2(1 273

then we have i). If

16 a 2 a
O<2(1—ﬁg)<u <1—2b,

we have ii), and if

we have iii). The proof is complete.

The change of type of the Euler equations is physically interpreted as the
phase transition. Case iii) of Lemma 1 is of particular interest since it resembles
the situation met in the theory of the true van der Waals fluids (see [18 -48]).
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ProOPOSITION 1.
i) If (wo,ug) € &, and (w,w) € &, then

p(w, ug) — p(wo, up) u%
(2.16) r—— 4(w — b)(wg — b)”

ii) If (wo, ) € H, (w,u) € H, and the interval ((wq, up), (w, v)) C H, then

p(w, ug) — p(wo, uo) up
17 w — wy 4(w — b)(wp — )

P r o o f. First, let us notice that if (wg, ug) € &, (w,u) € £ then the interval
{(wo, ug), (w,up)) C €. On the other hand, if (wy, up) € H, (w, up) € H then, in
general, this is not true, and that is why we have to strengthen the assumptions
in the hyperbolic Case ii).

Secondly, let us notice that the left-hand sides of (2.16) and (2.17) are symmet-
ric in their arguments w and wq. Therefore it is enough to prove these inequalities
in the case of w > wq only. We have

p(w, ug) — p(wo, ug) _ 1 fg
w — wy T w - wy (')CP(C’ ) d¢.
we

CASE i)
For every wy < ¢ < w, we have A((, up) < 0. Therefore

d 1 7 ap(c, ’UO))Z uf
(2.18) OCP(Ca“O) > a ( bn - 4 - by
Hence
p(w, ug) — p(wy, ug) s u? 7 ac_ ud
w— wg 4w —wo) ) ((—0)?  4(w—b)(wo—b)’
wy

and (2.16) is proved.

To prove (2.17) we proceed in a similar way, the only difference being that in
(2.18) it is necessary to change the direction of the inequality sign. The proof is
complete.

3. The shock speed problem

A discontinuous solution

(wi, wp) for z < st,

(3.1) (w,u)(z,t) = {

(wy, uy) for = > st,



682 K. PIECHOR

of Eq. (2.1), with shock speed s, is called a shock wave. Here, (w;, w/) and (w,, u,)
are some constant values. To simplify the notation we write (w, u) for (w;, ;) or
(wr, u,), and (wo, ug) for (wy,u,) or (wy,u;), respectively. These values have to
satisfy the Rankine - Hugoniot conditions

sw+u = swy + uy,
(32)
—su + p(w,u) = —sug + p(wo, to)-

Eliminating u, and making use of (2.3) we obtain an equation for s = s(w; wy, ug)
which reads

w2+wg—2b2+ u 1-u} a(w + wp) 0
s - - = (.
2(w —b) w—b 2(wp — b)(w — b) wiw?

(3.3

This equation has two real solutions if and only if

(w + wy — 2b) — (u%('w - b)_2a(w + wg — 2b)(w + wyq)

(34) D('UJ; wo, u{]) = (w() — b)(w _ b)z wéwZ(w = b)

is positive.
LemmMa 2. Let (wy, ug) be such that p(wg, ug) > 0. Then the set
{w >b 1 D(w;wp,u) < O}
is either empty or it is a finite interval contained in {z € R: z > b}.

Proof. Werewrite D(w;wg,ug) in the form

1

wz(w _ b)2 P3('IU - b)s

D(w; wp, U()) =

where P(z) is the polynomial of grade three.

(1 -u}) 4a

P3(z) = 2p(wo, ug)z> + []+ v - z?
201 _ .2 b
+ 21:(1—E)+f)—(1—“0)+2i2 z + b2
b wo—b wy

Since P3(0) = b% > 0, P3(z) > 0 for sufficiently large positive z, and P3(z) < 0
for sufficiently large negative z, then this polynomial can take negative values in
the domain z > 0 in a finite interval only. The proof is complete.

In principle, we could make use of the theory of the cubic polynomials to get
the precise answer to the question of the sign of P;(z). Unfortunately, in our
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case, the coefficients in P3(z) are so complicated that we are unable to draw any
conclusions. Therefore, we present only partial answers to the question of the
sign of D(w; wo, up).

LEmMMA 3.
i) If
w — Wy
then D(w; wo, ug) < 0;
ii) if
(36) p(UJ, uU) s p(w01 uO) < 0’
w — Wy

then D(w;wy, ug) > 0.
P roof. We have the following identity

D(w; wo, ug) = —2 {p(w, uo) — pliag, wo) , 00 = b plw,0) - pliwn, )]

w — wy w—"b w — wy

The assertion follows immediately from the above and the estimate

3.7 p(w, up) — p(wq, ug) > p(w, 0) — p(wp, 0)

w — wy w — wg
for w > b, wg > b, u} < 1. The proof is complete.

CoroLLARY 1. If 0 < u} < 1 — 16a/27b, then for every w > b, wy > b,
D(w; wg, ug) > 0.

P r o o f. If the assumption is satisfied, then dp(w,ug)/0w < 0 for every
w > b. Hence, (3.6) holds. The proof is complete.

LemMA 4. If (wg, ug) € &, (w,ug) € €, and w > wy, then D(w; wp, up) < 0.
Proof. We write

ud _w+ wp —2b [, p(w, ug) — p(wo, uo)
(w — b)? 2(w—b w — wy ’

(38) D(w; wo, uo) =
Making use of (2.16) we obtain

ud(w — wo) <0

: £ = .
Dlwswo, vo) < =500 "

The proof is complete.
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LeEMMA 5.

i) There are such pairs (wy, ug) € &, (w,ug) € £ with w < wy that
D(w; wo, ug) > 0;

ii) also, there are other pairs (wp,ug) € &, (w,up) € &£, w < wq such that
D(w; wo, ug) < 0.

Proof Letwy> bbe such that
(3.9) 0<2-

and let ¢ > 0 be sufficiently small. We take

v — B2
(3.10) =By W

U/O

Of course, then A(wy, ug) < 0. Using (3.7) in (3.4) we obtain

N w — wy 1
(311) D(UJ, 0 0) wi— b (w() — b)(w — l))
_2a [Bwg — 4b)(w — wg) + 2we(Rwy — 3b)] 3 €
wgw3 (wo — b)(w —b)

Owing to D(wg; wo, ug) < 0, there is w such that b < w < wp and
(312) D(E; we, ’IL()) =0,
and D(w;wg,ugp) < 0 for w < w < wy. From (3.11), (3.12) we obtain

e(wp — b)
da(wy — b)*(2wo — 30)
1- !
0

(3.13) W= wy — + 0(eD).

We assume additionally that

Y22 —
(3.14) L) §2wo 3) o

Wy

for, of course, sufficiently small ¢ > 0 and @w < wy.
Let us evaluate A(@, up). Using (3.10) and (3.13) in (2.14) we obtain

1 12ab(wq — b)?
wg
i 4a(wy — b)2(2wy — 30)

wd

AW, ug) = —¢ + 0(e2).
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If there is wy satisfying (3.9), (3.14) and

12ab(wg — b)?
0

(3.15) 1 0,

then we obtain i), since it is enough to take (w, ug) € £ such that w < w. On the
other hand, if there is wq such that

12ab(wq — b)? 2

4
Wy

(3.16) 1 0,

then we obtain ii) because then there is W < w < wy satisfying our demands.
Hence, it remains to show that there is wyq satisfying (3.9), (3.14), (3.15), and
that there is, possibly different from the previous one, another wy satisfying (3.9),
(3.14), and (3.16).
The positive answers are readily available by noticing that (3.14) and (3.15)
can be rewritten as

~ 4a(wo — b)? ~ 4a(wo — b)?(wo — 3b) 50

14/ 1
(3.14") a7 i ’
_ 52 N
(3.15") 1- 4a(wo3 b)?  da(wo 0)4(100 3) _ g,
'(L’O w[)

whereas (3.14), (3.16) can be rewritten in the form (3.14') and

3 4a(wg — b)? 4 da(wg — b)*(wo — 3b) 50

4

(@16) 1 w) w,
0 0

The proof is complete.

LemMA 6. If (wp, ug) € H, (w,ug) € H, w < wy, and the interval
((w1 uO)v (UJ(), U())) CH, then D(w: wo, 'U.()) > 0.

Proof. Use (3.8) and (2.17).

LEmMA 7. If
27 a 27

AT
then there is ug such that A(w, ug) > 0 for every w > b, and there are (wyg, ug) €
H, (w,ug) € H, w > wp such that D(w; wy, ug) < 0.

Proof. Lete > 0 be sufficiently small. Let us take

(3.17) wo = b(3 — ¢),
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and

a(wp — b)(wy + b)?
b'wg ’

(3.18) w=2-

Then 0 < u} < 1 - (a/2b), and

. 2 da(w — b)? ud
Alw,uo) = 7 [l T W | T wob)y
1 32a¢ 16ae? 7
> — _—_— = = — —
= (w—b)y [2 27 ”0} 81bw3(w — b) (1 125) =1
for ¢ sufficiently small.
Next, we rewrite D(w; wp, up) in the form
(3.19) D(w;w,u) = ! (w+ wy — 2b
‘ ) S — Bl =B | T T )
a(woﬂb ('wo+b2
—u% (2 - u(z) - bzua ) + (wg — w)u%

" a(w + wo — 2b) [(wg — b)w — 2bw0]2
2bwiw?(w — b)? ’

We take also
- 2[)11]0
(3.20) w= B’
Then
w — wp = ebo—= > 0.
2—¢

Inserting (3.17), (3.18), and (3.20) into (3.19) one gets

Ebwou%
2(wo — b)%(w — b)?

D(w; wy, ug) = < 0.

The proof is complete. The profiles s(w; wo, ug, @) for some values of wy, uy and
a are shown in Fig. 1. We can see that these profiles depend very strongly on the
values of the three parameters. They can be nonmonotonic or even undefined for
some values of the specific volume w. Also, the change of sign of s(w; wq, ug, a) is
noticeable. On the other hand, the profile in Fig. 1c is very much like that in the
case of ideal gases, despite the fact that now the system of the Euler equations
is hyperbolic-elliptic, and the domain of hyperbolicity is disconnected.
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4. Properties of shock speed and the Hugoniot locus

In this Section we investigate properties of the shock speed s(w;wyg, ug) as-
suming, of course, its existence.

PROPOSITION 2. Let 3 = s(w; wo, ug) be given. If

b'UJO
(4'1) wO _ b ]
and
(4.2) 0 <. Ay v} ¢ 2L00T = Blwo + )Y

21)108"&)‘3
then there are exactly two w; > b, wy > b, w; # w, wy # w such that
(4.3) s(Wy; wo, wg) = s(Wa; wo, ug) = $(W; wy, ug).
In other words, any value of s can be taken at most three times.
Proof. Let3s = s(w;wp, up) be given. Then the following identity is true

(4.4)

E+wg—2b§2 uy _ 1-ud _a(ﬁ+w0) -0
2(T- b T-b"  |2wo-0)@-b)  wia? |

Now, let us consider Eq. (3.3) with s = 3, but with unknown w. Using the identity
(4.4) to eliminate uy3s from Eq. (3.3) we obtain

g a(Wwy — b(W + wy))

% — 2(_2 (w — b)

’(L’O w

2 [;2 % 2a(w + wo)]} - 0.

2=2
wow

45 (w-) {Ez(w —b)?+2

One solution is trivial: w = @. This equation has two other solutions if and only
if (4.2) holds. These two solutions are of the same sign. They are positive if
additionally

o a(wwy — b(W + wy)) .

(4.6) :

e
bwom

This condition is not contradictory if the term on the right-hand side is positive.
In turn, it happens if and only if (4.1) holds. We show now that (4.1), (4.2) imply
(4.6). Indeed,

a(wo® — b(wy + W)?) _ 1 (1 b 1}_) a(wo® — b(wy + W))
2bwiw? T2 bwlw?

wg w
a(wo®@ — b(wo + W))
bw%ﬁz ’

The proof is complete.
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PropPOSITION 3. If A(wg,ug) > 0, then the equation
4.7) s(w; wo, ug) = Mwo, ug)

has at least one solution, namely w = wy. If additionally

(4.8) wg > 20,
and

2 a(wg — 20)°
(4'9) A%(wo, ug) < —:)-W 3

then there are two other solutions w;, wj satisfying w; > b, wy > b, wy # wy,
wy # wo.

P r oo f. Since D(wg; wg,ug) = A(wp,ug), then w = wyp is a solution of
(4.7). If (4.8) and (4.9) hold, then @ = wy, and 5 = A(wy, ug) satisfy (4.1), (4.2).
Therefore, making use of Proposition 2 we obtain the second thesis. The proof
is complete.

LEmMA 8. If
d
(4.10) Es(m; wo, uo)‘w=m =0,
then w satisfies
__ 2bwy

Moreover, there is exactly one w # w such that s(w; wg, ug) = s(W; wo, ug); @ is
given by
bwow
= g > b
w(wy — b) — 2bwg

(4.12) B =

P r o o f. Differentiating Eq. (3.3) with respect to w we obtain

w + wo — 2b g ] ds wg—b 5 ups
4. —
(4.13) [ w—-b wo—bl dw 2w - b)zs + (w — b)?
1-u} _a(w + 2w)
2(wp — b)(w — b)? wgw3 )

We use Eq.(3.3) to eliminate ugs and obtain

[w + wo — 2b ug ] ds 1 2 2a[(wp — b)w — 2bwy)
s+ = 8 — .
w—b wy — b wiw3

dw 2w —0b)
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Hence, (4.10) holds if and only if

2a[(wo — b — 2bwg]

(4.14) s%(w; wg, ug) = 53
u‘ow

The right-hand side is positive for

2bwy
wo — b

T >

only.

Inserting (4.14) into Eq.(4.5) we find easily that it has one double solution
w = W, the third one is given by (4.12). The proof is complete.

Let (wq, ug) be given. The Hugoniot locus H (wg, up) is defined as the set of
all states (w,u) € D which satisfy (3.2) for some real s. For any (wy, ug) and
w > b, if D(w;wg,ug) > 0, H(wg,ug) consists of two branches 4 (wg, ug), and
each of them is defined by

H i (wg,u) = {(w, u): u = uy— s+(w;wp, uo)(w — wo)},

where

i _ w—b ug \/—
(18] s (w; wo, uo) = w+ wy — 20 [ w—b % D(w,wo,uo)] ’

Of course, (wq, ug) € Hy(wg, ug) N H_(wq, up). However, there can be other
states (w,u) belonging both to H 4 (wo,ug) and H_(wog, ug). As it is seen from
(4.16), it occurs if D(w;wg, ug) = 0, w # wg. Then H (wq, ug) forms loops. Also,
let us notice that the Hugoniot locus can be disconnected.

The shapes of the Hugoniot loci for a few values of wg, ug, and a are shown
in Figs.2 and 3. Figure 2 presents them for the case when the domain of hy-
perbolicity is connected. As we can see, the curves can be either connected or
disconnected. In the latter case they can form loops, and enter the domain of
ellipticity where the speed of sound is complex.

In Fig. 3, four examples of the Hugoniot loci are given for the case of discon-
nected domain of hyperbolicity. The ineresting thing is that they can traverse the
domain of ellipticity. Also, loops to the right (Fig.3b) or to the left (Fig.3d) of
the point (wy, up) can be formed. In Fig.3c the point (wy, ug) belongs to the do-
main of ellipticity. In this case, the Hugoniot locus consists of three components:
the left-hand branch, the sole point (wyg, ug), and the right-hand branch.

We have to add that these do not exhaust all possible interesting situations.

We establish two auxiliary results.
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F1G. 2. The Hugoniot loci for some values of wy, ug. The domain of hyperbolicity is connected. a) a = 1.65, wg = 1.7, ug = 0.25;
b) a = 1.65, wo = 1.95, up = 0.25; ¢) a = 1.65, wy = 2.25, up = 0.25; d) a = 1.65, wy = 2.3, ug = 0.25.
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FiG. 3. The Hugoniot loci for some values of wg, ug. The domain of ellipticity is connected. a) a = 1.9, wo = 1.7, ug = 0;
b)a =19, wy =18 up=0;¢)a =19, wy = 2.5, up = 0; The cross x denotes the position of (wy, ug) in the domain of ellipticity.
d)a = 1.9, wg = 6.5, up = 0.
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ProprOSITION 4. Let s = s(w; wy, ug) be a solution of Eq. (3.3). Then

@17  (w—wg) {22’5: ;’)2 2 a4 (wu_osb)z

_[ 1-ud +a(w+2w0)}

2(wo — b)(w — b)? w%w:"

=_{(w—b)2+(w0-b)2 2, uo.s(wg—b)d{ 1—u} 2&]}'

2w-b2  (w-b? |2w-bZ w3

Proof. Let £ be the left-hand side of (4.17). We have trivially: £ = £ — 0,
and substituting the left-hand side of (3.3) for zero we obtain the right-hand side
of (4.17). The proof is complete.

PropoOSITION 5. If (w,u) € H(wp, up), then
(4.18) [s(w; wo, ug) — A+ (w, u)] [s(w; wo, ug) — A—(w, u)]
_ (w — b)2 + (wg — b)z_ by sug(wo — b) [ 1-u} Za]

2w—-0b2 " (w-b2 |2w-b2 uwd

where A4 (w,u) are the solutions of (2.10)

bty = 3 (5t B

Proof. Setting u = ug — s(w — wy) in Eq. (2.10) we obtain

(4.19) Ao, )+ A_(w,u) = -0 20

and

s2(w — wo)?*  sug(w — wp) B [ 1-— u} Za]

() APl S ST - (=lF |Ho-tF

Equation (4.18) is an immediate consequence of these identities. The proof is
complete.

LemMaA 9. Let D(w;wg, ug) > 0.

i) If (w,u) € Hi(wy, up), then

d8+ . i dS+
(w— WQ)E >0 (respectlvely 1 (w — w) Tu < O)

if and only if

' A_(w,u) < s4(w;wp, up) < A4 (w,u),
(respectively: s (w; wo, ug) < A-(w,u) or s4(w;wp, ug) > A4 (w,u)).
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ii) If (w,u) € H_(wo, up), then
ds_ 5 ds_
(w - wO)E >0 (respectlvely : (= wO)E < O)
if and only if s_(w; wp, ug) < A—(w,u) or s_(w;wg, ug) > A4(w,u)

(respectively: A_(w,u) < s—(w; wy, ug) < A4(w,u)).
Proof. Owingto (4.13), (4.17), and (4.18) we have

(4.21) w+w0—2b3+ ug ]d_s _(s—/\+)(s—,\~).

w—b w—>b] dw w — wy

But on H 4 (wy, ug)

+ wy — 2b
= wwi) S + wu_o ;= \/ D(w; wo, ug) .

Therefore on H 4 (wq, ug)

\/ D(w; wo, up) (w — wO)% = —(s4+ — A_)(s+ — A3).

Assertion i) is an immediate consequence of this identity. To prove ii) we use

D(w; wp, up) (w — wo)% = (s— — A)(s=- — Ag)

on H_(wg,ug). The proof is complete.
Lemma 10. If

(4.22) L s(wso, w)|,__=0,

then s(w; wo, ug) = A+(w,w) or A_(w,u), where (w, ) € H(wp, ug).

Conversely, if for some w = @ # wq with (@, %) € I (wg, up), D(W;wo, ug) > 0,
and s(w; wg, ug) = A+ (W, W) or A_(w,w), then (4.22) holds.

P ro o f. The first part of the Assertion is a consequence of (4.20) and the
Assumption. Conversely, if s = A4 or s = A_ then ds/dw = 0, since D > 0. The
proof is complete.

Lemma 11. Let (w,u) € H(wq, ug). Then
du _ 1 - X_ Ay

dw 2 Ao+ Ay’
$——>—

(4.23)

where s = s(w; wp, up); A+ = Ax(w,u).
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P r o o f. Differentiating
u = ug — s{w — wp)

we obtain

d 1s
ﬁ = —(w — wo)

Next, making use of (4.21) we get

— s.
dw

‘wo—'bz (1)
d'll,__ w_bS +S(w—+/\_+A+)—A_/\+

dw .

Applying (4.19) we obtain (4.23). The proof is complete.
LemmAa 12. Let D(w;wg, ug) > 0, and let

d
E:U—s(w, wo, u0)|w=w— 0.

Then

i) s(w; wo, up) attains a local minimum at @, provided that (w — wg)r-VA < 0
at (w,n);

ii) s(w; wo, up) attains a local maximum at @, provided that (w — wg)r- VA > 0
at (w, ).

Here, @ = ug — s(w; wo, up)(W — wg), r = ry(w,u) is the right eigenvector of
the matrix Ml corresponding to Ay respectively, and A = A, or A_ according to
whether s = Ay or s = A_.

P r o o f. Differentiating (4.21) and using the Assumption we get

d*s 1 dAy dA_
(23—/\_—)\4,.)@ = m (3_/\_)E+(S—/\+)d_w .
Let s = A4, then the above reduces to
d2s 1 dAy
dw? w—wy dw

But, making use of (4.23) we obtain
d/\+ _ 3/\+ + 0)\.{.. du _ a)‘+ A\ ()/\+

dw ~ dw ddu dw ~ ddw T odu

Hence, at w =w

= r+'V)\+ s

d

23 _
dw?
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Similarly, if s = A at w = @, then

dzs_ 1 Y
dw?  w—wy o

The proof is complete.

ProrosITION 6. Given w,, w;, w; with (w;, w) € D, then (wy, w) € H(w,,u,),
and

(4.24) s(wi; wr, ur) = s{we; wy, up)
where
(4.25) Uy = up — s(wyy wy, w)(w, — wy),

provided that s(w;; wi, u;) exists.
Proof If(w,u)€ H(w,,u,) then
u = u, — s(w; wy, u)(w — w,).
Setting here w = wj, and using (4.25) we get
U= u — [s(wr;whu;) — s(wp; wy, u,‘)] (w, — wy).

It follows from the above that it is sufficient to show that (4.24) holds in order
to have (w;,vw;) € H(w,,u,). We introduce the shorthands s; = s(w,;w, ;)
and s, = s(wy; w,,u,). These quantities satisfy Eq. (3.3) with w = w,, wg = wy,
ug = w, and w = wy;, wy = w,, g = u,, respectively. Substituting (4.25) into the
equation for s,, and using Eq. (3.3) for s; we obtain

2 . 2w — si(w, — wy)] 3w — w, — 2b 2 2u8) _
s; + ;. — sy — = (.
w, + w; — 2b w, + w; — 2b wy, + wy — 20

This equation has two real solutions, one of them is given by (4.25). The proof
is complete.

ProrosITION 7. Given w, wg, ug wWith (wg, ug) € D. Then
(4.26) s (w; wg, —ug) = —sx(w; wo, up).
P r o o f. Equation (4.26) is an immediate consequence of (4.16) and the
identity
(4.27) D(w; wy, —up) = D(w; wp, ug).
The proof is complete.

The graphs of the shock speed as a function of the specific volume w are given
in Fig. 1 for a few values of a, b, wg, and u,.
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5. Travelling waves in the model Navier-Stokes equations

Within the Euler equations, the shock wave is a jump discontinuity propa-
gating along the line z — st = 0. Let (w;,w) and (w,,u,) be the given states
to the left and to the right of the line of discontinuity. They have to satisfy the
Rankine - Hugoniot relations. However, it is not enough to accept such a jump
as physical. It is well known that some additional conditions have to be im-
posed. Various ideas were used to formulate such additional admissibility criteria
[10-48].

We remind that our principal task is to investigate different approximations
to the model kinetic equations of [56], and the Euler equations (2.1) are the last
but crucial term in the sequence. Hence no freedom of choice of admissibility
criteria is left to us, and we have to turn to the next order approximation, i.e. to
the Navier - Stokes equations.

The Navier - Stokes equations read

@ 3‘11_0
ot oz
5.
oD 0y e e (,20)
5t azp(w,u —EBI M =)

where t, z, w, u, and p(w, u) are the same as previously, but ey is the coefficient
of viscosity, ¢ > 0 is a parameter, and g = p(w,u) is given by

1 — u? + 2b%w?p*(w)
8w?p

(5.2) u(w, u) =

w
, e(w)= —.

A travelling wave solution to (5.1) is a solution of the form

T — st

(5.3) (w, u)(z,t) = (w0, u)(2), = — € R,
where s = const is the wave-speed, such that
(5:4) im (@, 8)(2) = (wr, w),
(5.5) liToo(-@,ﬁ)(z) = (wr, ur),
and
Lood
(5.6) Jim (@, 2)(z) = (0,0).

A discontiuous solution (3.1) to Egs. (2.1) is said to be admissible, if Eqgs. (5.1)
admit a travelling wave solution (5.3) - (5.6) for sufficiently small € > 0.
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We substitute (5.3) into (5.1), perform one integration with respect to z, use
the limit conditions (5.4)—(5.6), and obtain

(5.7 U= —s(w—w),
du - 2,
(5.8) e = —s(d - w) + p(d, @) - plwi, w),
as well as
sw, +u, = sw; + uy,
(5.9)
—su, + p(wy,u,) = —su; + p(wy, w).

Equations (5.9) have the form of the Rankine-Hugoniot conditions (3.2),
which were discussed thoroughly in the preceding sections.
Using (5.7) to eliminate % from Eq. (5.8) we arrive at the problem:

find a solution to

di _

(5.10) sﬁd—f + fi(@)=0, ¢EcR,
such that

(5.11) lim @(z) = w, lim () = w,,
(5.12) im @'(€) = lim_@'(§) = 0,

where the prime ’ denotes d/dz, and where

(5.13) filw) = s*(w — wy) + p(w, u — s(w — wy)) — plwy, w),
(514) f[(w() = f,(w,.) =0

and g = pu(w,u; — s(w — wy)). The subscript [ in f; is used to mark that f(w) is
related to the left state (w;, w;) which is treated as given. We have

LemMMA 13. Problem (5.10)-(5.14) has a unique solution if and only if
fi(w) < 0 between w; and w, for s(w, — w;) > 0,
fi(w) > 0 between w; and w, for s(w, — w;) < 0.

Proof. If w, > w, then we must have w'(z) > 0. Hence, if s(w, — w;) > 0,
then sw'(z) > 0, therefore f(w) has to be negative between w; and w,. The
second case is analyzed in a similar way. The proof is complete.

THEOREM 1. The problem (5.10)—(5.14) has a unique solution if and only if:

i) for s(w, — w)) > O, the chord joining (wi, p(wi, w)) to (wy, p(w,, u,)) les
above the graph of p(w,u; — s(w — w;)) between w; and w,;
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it) for s(w, — w;) < O, the chord joining (w;, p(wi, w)) to (wy, p(w,,u,)) lies
below the graph of p(w,u; — s(w — w;)) between w; and w,.

Proof Rewrite f(w) < 0 in the form p(w, u — s(w — wy)) < s*(w — w;) +
p(wy, u;). The case of f(w) > 0 is analyzed similarly. The proof is complete.

This theorem reminds the similar ones of [18] or [19] for the isothermal case.
The essential difference between the latter case and that of ours is that in the
isothermal case p does not depend on s. Therefore changing s we change only the
slope of the Rayleigh line, i.e. the chord joining (wy, p(w;)) to (w,, p(w,)), and the
graph of p(w) remains intact. In our case, when changing s we change not only the
slope of the Rayleigh line but the graph of p itself, since p = p(w, w; — s(w — wy)).
Hence, the use of this very intuitive theorem is a little bit troublesome in the case
under consideration.

The assertions of Lemma 13 and Theorem 1 were essentially independent
of the specific form of p(w,u). If p(w,u) is given by (2.3), then we can obtain
analytical criteria for existence of the travelling waves. Namely, we have

Lemma 14. Let p(w, u) be given by (2.3). Then, there is a unique solution to
(5.10)-(5.14) if and only if:

i) for s > O:
2 2
wj (w—10)
o » <
(5.15) (s + w+ w; — 2(’)) (w + w; — 2b)2 Dy ) s 0
between w; and w,;
ii) for s < 0
2 2
w (w—10b)
: { - D(w; >
(5.16) (s Fe== = 2()) (0 + o = 2)2 (w; wp,u) > 0

between w; and w,, where D(w;wy, ;) is given by (3.4).

Proof. Using (2.3) we write

_(w—w)w + w - 2b w 2
filw) = 2(w —b) [(S + w+ wy — 2())
(w - b)? ,
_mD(w,wg,ul) :

From this identity and with the use of Lemma 13 we obtain easily (5.15) and
(5.16) by considering separately four cases of s > 0, w, — w; > 0, etc. The proof
is complete.

Let us notice now, that the necessary condition for (5.15) to hold is D(w; wy, ;)
> 0 between w; and w,. Hence, (w,,u,) has to belong to the same component
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of H(wi,w) as (wi,w;) does. Next, (5.14), means that s satisfies Eq.(3.3) with
(wo, wo) = (wi,w;) and w = w,. Thus, s = s(w,; w;, w;) Therefore we can rewrite
(5.15) as follows

(5.17) s—(w; wr, w) < s(wrywi, wy) < s4(w; wy, up)

between w; and w,.

This is a generalization of the Oleinik - Liu condition [10, 13 -15] to the present
problem.

Summing up we have

CoroLLARY 2. If the wave speed s = s(w,;w,u;) is strictly positive, then
(5.10)-(544) has a unique solution if and only if

i) (wy, u,) belongs to the same component of H (wy, w;) as (w;, w;) does;

ii) the Oleinik - Liu condition (5.17) is satisfied.

On the other hand, let us notice that if s < 0, then the case when D(w; wy, u;)
takes negative values is not excluded and (w,,u,) and (w,w) can belong to
different components of H (wy, u;). If so, then s (w; w;, w;) becomes complex for
some values of w between w; and w,. Consequently, the Oleinik - Liu condition
is violated.

This asymmetry can be understood on physical grounds. Namely, if s > 0,
then the left-hand state (w;,w;) is the state after the wave, and the right-hand
state (w,, u,) is that before the wave, whereas if s < 0, the situation is opposite.
We can see that by treating the right-hand state (w,,u,) is given. Then, instead
of (5.7) we have 4 = u, — s(w — w,), and Eq. (5.10) is replaced by

: Ji

(5.18) spir (B)—— + f,() = 0,
dz

where u,(w) = p(w,u, — s(w — w,)) and

(5.19) fr(w) = *(w — w,) + p(w, uy — s(w — w,)) — p(wy, u,),
(520) fr(wl) = fr(wr) = 0.

Instead of Lemma 14 we have

Lemma 15. Let p(w, u) be given by (2.2). Then, there is a unique solution to
(5.11), (5.12), (5.18)-(5.20) if and only if

i)fors>0

Up 2 (w — b)?
& & 3 Wry Uy 2
(5.21) (S+w+w,—2b) (w + w, = 25 (Wi ) 20

between w; and w,;
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ii) for s < 0

Uy 2 (w - b)?
] + - D(w; wy,ur) <
) (s w+ w, — 2()) (w + w, — 20)? (w;wr, ur) < 0

between w; and w,.
We have also

CoroLLARY 3. If the speed s = s(w;;w,,u,) is strictly negative, then the
problem (5.11), (5.12), (5.18)-(5.20) has a unique solution if and only if

i) (wi, u;) belongs to the same component of / (w,,u.) as (w;,, u,) does;
ii) the Oleinik - Liu condition in the form

(5.23) s—(w; wr, uy) < s(wp;wy, w) < s4(w;wy, uy)

holds between w; and w,.

LemMa 16. Conditions (5.15) and (5.21) are equivalent, as well as (5.16) and
(5.22) are.

Proof Let L denote the left-hand side of (5.15) and (5.16), and let £,
denote the right-hand side of (5.21) and (5.22). Since s = s(w,; wy, u;), then using
Eq. (3.3) with w = w,, (wyg, ug) = (wy, ;) to eliminate w;s from £, we obtain

w — W, s 2a[w(w.w; — bwy; — bw,) — bwyw,]
L= ————— s — : .
w+ w —2b wrwfw?

Similarly, using the fact that s = s(w;; w,, u,) (cf. Proposition 6) we can write

w — w) {52 _ 2a[w(w,w — bw; — bw,) — bw;wr]}

w+ w, —2b w2wiw?

L, =

Let £ < 0; then either

2 2a[w(w,w; — bw; — bw,) — bww,]

a) w-w,<0 and ui? >0,
l%r
or
2a[w(w,w; — bw; — bw, ) — bwyw,]
w—w, >0 and - < 0.
A "= wiwiw? -

Let us consider «). The inequality w < w, implies w; < w < w,. Hence
w — wy > 0. Therefore (5.21) holds. In the case /), it must be w; — w < 0, and
again we obtain (5.21).

If £, > 0, then we proceed similarly and obtain (5.15). The proof is complete.
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To unify our considerations we introduce the following definitions:

(w;, u;) for s> 0,
(way ua) =

(wr, ur) for s <0,
(wr, u,) for s> 0,
(wi, u) for s <0,

(wp, up) = {

and call (w,, u,) the state after the wave, whereas (ws, u;) the state before the
wave.
We have

THEOREM 2. Equations (5.1) admit the unique travelling wave solution (5.3)—
(5.6) if and only if

i) (wp, up) belongs to the same component of H(wg, us) as (wq, ug) does;

ii) the Oleinik—Liu condition:

$— (W wa, ug) < s(Wh; Wa, Ug) < 84 (w5 Wa, Ug)

is satisfied for every w between w, and wy.

This theorem is a compilation of Corollaries 2 and 3, and as such it needs no
proof.

6. Shock-wave structure

The problem (5.10)-(5.14) with p(w,u) given by (5.2) and u given by (5.7)
admits an explicit solution. To determine it we perform some transformations and
substitutions. Let w,, w;, w; be given, and let s denote the shock-wave speed, i.e.
s = s(wr; wy, up).

First, from (5.2) and (5.7) we obtain

4
(6.1) fi(w) = m > A
where

Ay = bz(l — (u + swl)z),

A = ~2b[1 — (w + swi)? — bs(u + sw,)],

(6.2) Ay = 1— (u + swy)? — 4bs(wy + swy) — b2s?,
Az = 2s (u; + s(w + b)),
Ay = 2% — &2,
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Hence, ji(w) is a rational function. Also, fj(w) is such. To show this we make use
of (2.3), (5.7), (5.13), and (5.14) and obtain

(w—w)w—w,) | 2 o 2a(ww, —bw — bw,) 2ab
= w+ ;
2w?(w — b) wiw? Wy,

(6.3) filw) =

Using (6.1), (6.3) we rewrite Eq. (5.10) in the explicit form

4
E A;w;
=0

. dw = —4sd
64 0 — Wi — ) — Tew R e
where

_ a(ww, — bw; — bw,)

65 B szwlzwg ’
(63) _ 2ab

T SLww,

are constants.

Equation (6.4) can be easily integrated. The result depends significantly on
the sign of

(6.6) W =j-a?

Casel. W > 0.

Under this assumption, the equation fi(w) = 0 has exactly two real solutions
w = w; and w = w,. Hence, the general solution of Eq. (6.4) is

(6.7) Alnw+ Bln|w — w|+ Cln|w — w,| + %Dln(w2—20w+ﬁ)

+ £ arctan — ra 4sz + integration constant
— —F— = —4s2 ,
B —a VB - a?
where
A
A=
pwjw,
B = An —wdAy
(w, — w)(w? — 2aw; + )’
C = Al —w Apy
(wr — w)(w2 - 2aw, + )’
w; + w
Ay = A4w1w,(w; E ‘w,.) + Azww, — A} — Ap : z .

wiw,
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Ap
ww,

Ay = —A4(w,2 + wyw, + w?) + As(w; + w,) + Ay —

D=A-A-B-C,
E = Ay(w + w,) + A3 + 2aA + BQ2a — w) + CQa — w,).

The explicit analytic solution (6.7) was used to obtain a series of shock profiles
shown in Fig.4. The input data were so chosen as to receive results resembling
those of [4, 7]. Our Fig.4 is qualitatively similar to Fig. 10 of [4]. In particular,
we see that so-called impending shock splitting can be derived from our model
equations. The notion of “impending shock splitting” was first introduced in [4]
and refers to shocks having two inflexion points instead of one, what is usual.

10
v
5
L
o}
I~
2
T
06+
04
5 o
Qz 'y
25,
=3
a —
[
PRl

Fia. 4. Impending shock splitting. Normalized profiles V' = (w — w()/(w, — w¢) versus z x 1074,
a=05w =10,u, =0; ] —w; = 1.623,2 - w; = 1.653,3 — w; = 1.683, 4 — w; = 1.713,
5 - w =1.743.

We omit all details of how to choose the entry data to obtain such phenomenon
since it is fairly well done and explained in [4].

Case II. W <0.

Under this assumption the equation

w* — 2aw + =0

has two real solutions w_ < wy; what means that f;(w) has two additional zeros
w = w_ and w = wy, except the “old” ones w = w; and w = w,. The existence
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of shock connecting (wy, u;) to (w,,u,) demands w_ and w4 not to lie between
w; and w,. The result of integration of Eq. (6.4) depends however on additional
detailed relations between the zeros of f(w).

i) w # wy, w, # wg, wo < wy. In this case, the general solution of Eq. (6.4)
reads

Alnw+ Bln|lw - w| +Cln|jw—w,| + DIn|w —w_| + Eln|w — w4|
= —4sz + integration constant,

where now
A
A=t
ﬂwlwr
B=_ A — wi Ay
(w; — w,)(w,2 —2aw; + 3)’
5 Ay — weAp
(v — w, ) (w2 = 20w, + 3)’
w; + w
A = —Agww(wp + w,) — Asww, — Ay + AO;
W)Wy
2 2 Ag
Ay = Ag(wp + ww, + w;) + Az(w; + w,) + Ay — ,
WWw,
1
D= ——— [A4(w, +w, +w_)+ A3+ Awy + Blw; — wy) + C(w, — w+)],
W= = W4

E=A-A-B-C-D.

This case we illustrate with a series of expansion shock profiles presented in Fig. 5.
A shock wave is called expansion shock if the graph of p(w, w — s(w — w;)) lies
entirely above the Rayleigh line joining (wy, u;) with (w,,u,). Our Fig.5 can be
treated as a counterpart of Figs.3 and 7 of [4]. We can notice easily that the shock
thickness increases rather than decreases, with strength. Also this phenomenon
was discovered first in [4] and it is thoroughly discussed in the cited paper.

ii) Either w; = w4 or w, = wg, or both. In this case we have one-sided or
two-sided sonic shocks, i.e. shocks moving at the speed equal to the characteristic
speed before or after the shock, or else all three of them are equal. In a situation
like that, the asymptotic states of the shock are achieved algebraically rather than
expenentially and shock thickness is much greater than in the previous cases. This
is very similar to what is discussed in detail in [6]. Therefore we omit a discussion
of the case.

Summing up, we can say that our model equations produce results qualita-
tively similar to those obtained within the framework of the true Navier - Stokes
equztions.
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04 |

0 L

5 3 7 T [
z <107
F1G. 5. Rarefaction shocks. Normalized profiles V = (w — wi)/(wr — wi) versus z x 107%;
a=05w=10,4,=051-w; =652 -w =725 3-w =8.0.
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