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Nondestructive evaluation of cracks
in conducting magnetoelastic materials

D. GAFKA (WARSZAWA)

THEORETICAL ANALYSIS of the alternating current flow around the crack appearing in the loaded
material is given. The effective conductivity near the crack has been found to be nonhomogeneous,
50 the phenomenon of accumulation of the charge appears there. The charge density of accumu-
lated charge near the crack is given. The potential drop has been calculated taking into account
the effect of load (stress intensity factor) of the material for three basic modes of a cracked body:
opening, sliding, and tearing. The nonhomogeneous conductivity tensors are reported for all modes.
The analysis is based on general rotationally invariant nonlinear magnetoelastic equations (energy
balance equation, Clausius - Duhem formula, and Gibbs function expansion). Bilinear constitutive
relations for large quantities of the bias (loading) have been given and linear, but parametric con-
stitutive formulas for small-field variables (superposed over the bias, for example current) have
been derived in the reference or intermediate frame. The obtained effective material tensors of
the biased magnetoclastic media, such as effective clastic, piezomagnetic, permeability tensors, as
well as effective conductivity, allow to treat any other small-ficld phenomena in the intermediate
frame in the same manner as the linear phenomena for the free (unbiased) media with the only
change of material parameters.

1. Introduction

THERE ARE MANY METHODS of nondestructive testing (NDT) and evaluation (NDE)
of materials. One of them is the ultrasonic technique, when acoustic waves are
applied to the material under testing to get information about possible cracks or
defects. The other can be magnetic technique, which is based on the distribu-
tion of magnetic field around the crack. Recently however, the potential drop
technique has gained much interest of many researchers [15, 18, 27, 28]. Briefly,
the technique involves application of a constant current to a cracked specimen
or structure and the measurement of the potential drop across the crack. As the
crack increases the effective electrical resistance of the material, the potential
drop between two points on both sides of the crack rises. By monitoring the po-
tential drop due to the crack and comparing it with a reference value of potential
drop measured elsewhere far from the crack, the crack depth can be determined.
The method can be used with either a direct current (d.c.) or an alternating cur-
rent (a.c.). The older of these two techniques is the d.c. method, which is simple
and relatively cheap. Some studies associated with development of the a.c. poten-
tial drop (ACPD) technique for detection and measurement of surface cracks in
metals have been reported, for example, in [15, 16, 27]. A method for evaluation
of the stress intensity factor for a 3-D surface crack by means of the a.c. potential
drop technique was proposed in [25]. An advanced a.c. potential drop technique
has been developed in [26] for nondestructive inspection of a crack.
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All of these works are based on experimental techniques of evaluation of the
crack size. The purpose of this paper is to give the theoretical derivation of the
potential drop on the crack when the a.c. current is applied to the loaded, cracked
magnetoelastic body in general. It is well known that the region very near to the
crack or defect tip, regardless their origin, exhibits extremely large deformation
and mechanical stress. Both fields are singular (tend to infinity, theoretically) at
the end of the wedge, which can be the model of the defect. This explains why
the linear magnetoelasticity for ferromagnetic conducting materials is not valid
and can not be used near defects. Therefore, this work is based on nonlinear
thermodynamics for magnetoelastic bodies [1-15] to derive constitutive relations
for the material under large bias. This is the subject of the first few sections. Next,
the proper relations derived are applied to the ACPD NDE problem for three
basic modes of loading of the cracked body.

2. Basic definitions

What follows here, we start from general phenomenological, thermodynamic,
nonlinear and rotationally invariant formulation. The theory is given for nonpolar-
izable, but conducting magnetoelastic solid, taking into account magnetostriction
and piezomagnetic effects for wider use. The material is assumed to be anisotropic
but homogeneous. Nonlinearity is reduced to quadratic terms only, as they play
the most important role in nonlinear phenomena of coupling between predefor-
mation and small-field vibration (bilinear model).

Two basic configurations are used. The reference frame is associated with
material Cartesian coordinates, X;, I = 1,2,3, which are denoted always by
capital letters and indices as well as every quantity given in this frame. The
second is the actual configuration associated with spatial Cartesian coordinates,
zi, 1 = 1,2,3, which are denoted by small letters and indices as well as every
quantity given in this frame. Full advantage of well-known relations and tensor
variables will be taken in the paper [2, 14, 20, 21, 22]:

¢ mapping of the material point

(2.1) z; = 2, (X, 1);

¢ motion gradient

U'.‘,‘
2.2) Fg=2ix = o=, J=detF #0;
X
o displacement gradient tensor
(2.3) H=VU=F-I,

where I is the identity tensor, and Uy = dp2; — Np;
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« Cauchy strain tensor B
(2.4) G= 257

« Lagrange strain tensor

(2.5) 5= %(c == %(H +HT + HTH);
« velocity gradient tensor
(2:6) L=V
o rate of strain tensor t
(2.7) D=3(L+ Ly,
Also, the electric strength in the actual frame will be denoted by e; = —¢; (¢

is electric scalar potential), conduction current by j;, magnetic induction vector
by b; = €;;rak; (ay is the magnetic vector potential), and magnetization vector
by m;. Then, the Maxwell stress tensor in the actual frame can be written as [10,
20, 21, 22, 31]
td =+ 1™,
(2.8) t:-:,fc = Ep€iej — O.SE(}Ekckﬁ,'J' 3
!:.':.Im — “Lobibj - ?n,'b}‘ — % (ﬁbkbkéii — 21?'}*!)&-50‘) :

which is split above into two parts. Electric permittivity is denoted by ¢y and mag-
netic permeability is yg. The electric part (}/¢ is symmetric, because of absence
of polarization, but the magnetic part t}/™ is not symmetric as well as the total

Maxwell stress tensor /. The term —m;b;, which causes the asymmetry, can be
added to the mechanical Cauchy stress tensor, t (nonsymmetric), and then they

? "J
both will become symmetric as well as the total stress tensor
- = M _ ,ms Ms
(2.9) tiy; =15+t =60+ 150,
where
1 1 1 :
E?;s = £gei€e; + —blbj —3 ("’—_Df’kf'-'k + — Dby — ?—m-kbk) iz,
Ho Ho
(2‘10) ms m
!f.il' - t'.J. —_ THI'bJ' :

The constitutive equations will be derived not in the actual frame, but in the
reference frame like in [1, 5, 6, 7, 11, 13, 20, 21, 24, 29]. Next, the straightfor-
ward substitution of the sum of the bias and small-field quantities will be done
to get a small-field variables, parametric constitutive equations with coeflicients
depending on large quantities of the bias. At the end, we will get new effective
material constants for magnetoelastic conducting body upon initial external stress
or magnetic field. It can be said that these effective tensors describe the nonlinear
coupling between the solid itself and predeformation or initial magnetic field.
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3. Nonlinear thermodynamic formulation

We will start our considerations from the first and second law of thermo-
dynamics, which are reproduced here for completeness. The global balance of
energy states that the change in time of the kinetic energy K and the internal
energy £ must be equal to the work W done upon the body by external forces
and heat Q delivered to the body [8, 9, 10, 14, 20, 21, 22]:

(3.1) K+&=w+a

In the isothermal conditions, the local balance equation, equivalent to the above,
for magnetoelastic conducting body can be written as [20, 21]

(3.2) 0t = u(:.'"LT) +jee—msb

(notation remark: vector z corresponds to its Cartesian coordinates z;, where
z = j,e,m,b..).

For purposes of this paper it is more convenient to use instead of the internal
energy density €, the scalar state function known as a Gibbs function, which can
be obtained from ¢ by the Legendre transformation

1
(3.3) Y=€e+ —m-+b,
2
so we can use local energy balance in the form
(3.4) ot =tr (t'” LT) +j-e+bem.

The axiom of entropy (second law of thermodynamics) states that the time rate
of the total entropy of the density 7 is never less than the entropy supply in the
body (for the case of no influx through the boundary). In the isothermal conditions
(or neglecting the change of temperature) for the simple and admissible process
of magnetoelastic conducting body, the local law can be expressed in the form of
Clausius - Duhem inequality written below for the Helmholtz free energy function
¥ = 1) — nf, where @ is the temperature [8, 12, 20]

(3.5) — oV +tr(t”‘LT)+j-c+b»?h > 0.

The internal energy ¢ will be rotationally invariant if it is expressed in terms
of material measures of strain, magnetization, and electric field. We choose La-
grange strain tensor S, Eq.(2.5), and axial magnetization vector in the reference
configuration [20]

(3.6) M; = JFj'm;j,
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as well as electric field in the reference configuration [20]
(37) E;=€J'FJ',I

as independent variables. Then, the magnetic induction and conduction current
in the reference frame can be expressed for completeness as follows

(3.8) Br=bjFy, Ji=JF;j;.

To get the Gibbs function in a form ¢ = (5, M, F), Eq. (3.4) must be rearranged
to involve new variables. Differentiation of S and M in time gives

(3.9) S=FTDF, s =MF'-mL+mV-L.
Then
(310)  od =u(t"LT)+JT-E+bMF —bemL+b-mV-L
; w T
=t ((:m —bm+b. -m.r)f,”‘) +JTE+tr (i’u’t! F“T)
v Ll T
tr (™ +b-mDLT) + JT - E+tr (bM F‘IT) :
LT can be now decomposed into LT = D — 2, where 2 = 0.5(L — L) is the

rate of rotation tensor always skewsymmetric, so the product of (t™* + b«ml)
and (2 is always zero. We get then

Gal) o =t (™ +b-mI)DY+ JT - E +tr (w} TF“'T) ,

and with help of the inverse of the first of Eqgs. (3.9)

(312) ot =tr((" - mb+ b-n::.f)l-'“'}“‘lT.S-')+J;,7- E+tr (m} TF"IT).

The last equation rewritten in components is

(3.13) o9 = FRF S kL - mib FR Ft Sk + mibisi; F Fip Sk
+JT1E; + b;MgF3L.

4. Reference frame constitutive equations

To find constitutive relations we decompose the total derivative é’! into terms
associated with independent variables:
dvr dSiL I dM g A dE g
= = + —
0Skp dt IMy  dt dE, di

(4.1)

http://rcin.org.pl
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Multiplying Eq. (4.1) by —p and adding to Eq. (3.13) side by side one can obtain
m =1 1——1 - Od; o
(4.2) (0 FRFpt = mib FRLF + mubibi F3l Fipt — 055, ) Skt
- Y\ - dv
+ (b F7} - —) A +
( Fi e Iy — ™ Ex +JTEr =
Additionally, the Clausius-Duhem inequality (3.5) gives

a .
(4.3) (zmr V' — mibi PRl Fipt + mubibi; Fl B! — 905"’ )5;\-[,

1) K

= Y v
(bﬂ;\ Qdﬁf )ﬂ}\ Q(JL,!\ Lf\ + JT Ey > 0.

Formulas (4. 2) and (4. 3) must hold for arbitrary nonzero independent time
variations SM,, M I, and E;\ so both can be written separately as

Y
4.4 5= i
(8.4) e R
and
, ?
ti; = eFikF; bosﬁ’ + mibj — mybibij
4.5
) b =i
| Bl l!\ (-)IU(!\
or
m = 0bijmi Fii -
IIJ QF:[\ jLols + em; FJ!\ 81! e Ij””!i'[\ (‘).'"lf‘l'\"
(4.6)

LR
9 1K (.}AIII\ =

bi

The remaining constitutive relation, on the basis of (4.4), reads
4.7) J = J(S, M, E),

as the Thomson effect was neglected (homogeneous temperature distribution was
assumed). Because the form 7 E must be positive definite (see inequality (4.4)),
the continuity condition at the thermodynamic equilibrium must be fulfilled

(4.8) J(S,M,E)=0 for E;=0,
what gives the linear representation in terms of E;

(4.9) Jr=21(S, M)Ey,
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where ¥ must be the second order symmetric material tensor. Now, neglecting
the Hall effect in the above relation and involving the isotropic representation of
X due to the only independent variable S, one can find

(4.10) Y=ol +0,5+ 05,

where three fundamental invariants of tensor $ have been used. The first term is a
natural (unbiased) media conduction term, whereas two next terms are due to the
deformation of the solid. Coefficients o, oy, o2 have to be found experimentally.

There are still three quantities Lt b;, m; in constitutive equations (4.5), (4.6)
given in the actual frame (spatial coordinates). It is obvious that if we want to
apply constitutive relations to practical problems, where we study the dynamical
behaviour of a nonlinear elastic body of finite extent, it is much simpler to have
these quantities convected to the reference frame (material coordinates). Then it
will be easier to write the boundary conditions concerning either the mechanical
displacement or the stress, and the magnetic induction on the fixed surface in the
reference frame instead of the deforming surface in the actual configuration.

So, it is worth to introduce briefly the reference frame quantities [20, 21]:

« mechanical Piola- Kirchhoff stress tensor

(4.11) = JF; s
¢ Maxwell Piola-Kirchhoff stress tensor
(4]2) 1;\; ?r‘\!m T'Uc' =JF -I!;:—.:’
e total Piola - Kirchhoff stress tensor
(4.13) Ti; =17 + T = JFG g
After substituting the second equation of (4.5) into the first of Egs. (3.8) and
using the conservation of mass equation in the form
(4.14) of =Jo

(where o is the mass density in a natural state, when the body is acted upon
neither by force nor by magnetic field), one can obtain

(4.15) By=o oM

With the help of the first equation of (4.5) and Eq.(4.11), one can express the
mechanical Piola-Kirchhoff stress tensor as
/) ( i)
011,, b F My 2P o
()L‘)”, OM;; DMy~

Equations (4.9) with (4.10), and (4.15) and (4.16) stand for the constitutive rela-
tions in which every quantity is related to the reference frame.

(4.16) TJ = 8,47 = " Fir + 0" Fjx M,



74 D. GAFKA

5. Bilinear expansion of Gibbs function

To obtain explicit forms (not with partial differentiation) of constitutive re-
lations, we should expand the Gibbs thermodynamic function in terms of its in-
dependent variables in the reference frame. The expansion is cut after the third
order terms to get constitutive equations in a bilinear form. Linear and quadratic
terms of constitutive relations play the most important role in describing non-
linear phenomena in magnetoelastic solids [20, 21, 23]. The other, higher order
terms can be neglected.

Let us introduce the commonly accepted expansion [20]

1 1
(5.1) QFﬂ’ == 5"3”;\';.5“5;\'1. + ECIJR'LMNS.’JSKLSMN

1
+§fMIJKLﬂ'IMSJJSKL + faaraMu S+ By S MM,
1 1
+§P‘MNJMM M, + gﬂnmh' M MM, ,

where ¢, ,,, is the elastic tensor of the second order, ¢, ., ,, is the elastic tensor
of the third order, f,,,, is the piezomagnetic tensor of the second order, f,,, .
is the magnetoelastic tensor of the third order, u,,, is the permeability tensor
of the second order, u,,,, is the magnetic anisotropy tensor of the third order,
and B, ., is the magnetostriction tensor of the third order (the contribution of
exchange energy is neglected as it is an effect by one order higher than that taken
into account).

Of course, in general the following symmetry conditions must be fulfilled [23]

Cruxe = Cuxe = Criix = Cruin
Crokemny = Corxemn = Cronrmn = Croxinm = Crrromn = CunkLia
Suars = Faaars
(5.2) Sursxe = Funxe = Fraronwe = Faukcnrss
Hun = Hyas
Hane = Bymp = Fpnars
b =B = Bynrs

MNIJ NMIJ

so we have only 21 independent coefficients of ¢ ,,.,, 56 of ¢, .., v n» 18 Of £, 5
63 of fyr;s1s 6 Of iy n, 10 Of 1, , and 36 of B,,,,,, what together gives 210
independent material constants of magnetoelastic media in the bilinear theory
(45 in a linear one). But if the solid has some symmetry points or axis or planes,
what always happens, the number of material constants to be given is reduced
further and usually is much less than 210.

Moreover, we want to get constitutive expressions in the form like the form
below:
(5.3) T=TH,M,E), B = B(H,M),
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where M, H, E are material quantities in the reference frame, so the following is

now substituted to (4.15) and (4.16)
(5.4) §= % (H+HT+H"H), F=H+I,

and [20, 21]

F'=I1-H+HTH + O(H%),
(5.5)

J=1+1trH+ %(tr H)? - %tr(HTH) + O(H?),

where @(H™) denotes the remaining terms of order higher or equal than n, which
are to be neglected next. After substitution of Egs. (5.4) and (5.1) into Eq. (4.15)
one can obtain
} 1 1
(56) Bl‘ = f_l.‘\‘.[.“’}\'[. + iffh'LM'NSKL SMN : & -u!J ﬁf} + EP"IJK AIJ ﬂf.‘\
1 1
+ ZB}\'L!J AIJ S!\'L = f}KL IIKL + EIH\'L}?ML I{M‘.‘\' e Ef}KL.MN [!KL IIM'N
1
ity My + St MMy + 2By, Mo Hiy + O(H?) + O(M H?).

After neglecting higher order terms and changing indices we have:

. 1 :
(5.7) By = fig Hpr Y0, M, + 3 (ffh'L,'LI’N + f“cNéMI.) HKLHMN
1
+§#:,mﬁ'11 M. + 3B, M H:

After substitution of Egs.(5.4) and (5.1) into Eq. (4.16) one can obtain

T ¥ 1
(5‘8) ?;_; = (‘SJL * IIJL)(C.‘L‘UN'SM'N i ECIL.\«fo‘R‘qM‘Ns’PR
+f.M."L ‘4‘151 * fﬁIILf’R nf.\f 'SIPR o BJLMNﬂiLf A’!N)

+ [(8,, + H, )M, — (6,, + H, )M ] (281\'1.MNS.UN*ML + freranSun
1 1
+§fh‘MNJ’HSMNSPR + e M, + E-HJ\'LM‘&JLAIM)'

Using the first of equations (5.4), the above formula can be simplified as follows

o 1 1
(5.9) T, = criunHuy + 3¢ Bogllpy + =

3C1amn 2C:JMNPHH
+B, jpan My My + frg  Mye + fyripnMyHpp + €1 pn Hyn H
i Mual i * @(H}) + O(ﬂi\fz) + Fonii M Byn F B M M;

_6u(fKMN Mty = g M, Mrn) + O(M HZ) + O(HMz)-

MN "”PH
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Next, on the basis of Egs.(2.8), (4.15), (5.4) and (5.6), the magnetic part of
Maxwell Piola - Kirchhoff stress tensor can be found as:

(S'IO) T,fm = "[(‘Su\' + ![H\')‘ﬁ‘ff - (‘Su + Hu)‘“h’](2BM.MNSMNA1L

1 1
+femunSun + EfJ\'MNPRSMNSPR +p M, + i:“m,mr M, ‘F‘Im)
= —LonunM Hyy —p;, MM, + 6, ,(fropgn M Hyyy + ey M M)
+O(MH?) + O(H M?),

and on the basis of Egs. (2.8), (3.7), (4.12), and (5.6), the electric part of Maxwell
Piola - KirchhofT stress tensor can be written as;

_ 1
mMe _ 5 pMe _ 11 S o @ pelp
G.11) TMM=g TMe= 8, P (EUFU E,F3 By - 560F; E, F LL:S,”)

0 L™
= Jb, ,e0F, E, (F;‘F;‘ Fl- %F;‘ij‘ F:h_‘)
=38,,60E, E, (6,“,6&1‘6)}‘. - %5},5@“‘.) + O(HE)
=eoE, B, (auom - %aL,ﬁJ,\,) = %cQEL (8,6, + 6,46, —6,,8,,).

So, the total Piola - KirchhofF stress tensor 7', , = T;hf + 17, after disregarding
higher order terms and changing indices, is now

. 1
(5'12) Ff.f = C-’..“'\'F. ]!!\_L + ((‘ff.ﬂfj\'é.fh' + ;(‘;JNI,bJ\II\' + pf.!f\‘Lﬂf}\') )’{f\'f. ]{.\fN’
F Snen s ¥ Farrswer) My H ey + fyr s My + By y My My,

1 ;
+;"O(5n{.5u( + 6,6, — éijél\'L)EJ',Eh"

Additionally, substitution of Eq. (5.4) into Egs. (4.9) with (4.10) gives the coinci-
dent formula for the conduction current,

(5.13) Jr = (o6, + gh!IIJ)E‘TJ ) o' = o).

Two constitutive relations (5.7) and (5.12) can be simplified more by the intro-
duction of new tensors

) 1
=c 0 4 + SR LMN

CroKLMN rean O T i('ux:. MK

(514) fMJ’J.‘\'L = j.\”f,éJI\' + f{’\H.H\'L 3

{IJ!\'L . 0'550 (“’u,hu\' T 6”\'6JL - éh’!.“f..f)'

http://rcin.org.pl
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Then

TIJ' = C!JKL ![J\'L i EIJ.‘\‘LM'\!‘ hf!\'l. !‘! MN + I\HJ’}\I A! L’I\J’

+fM.'J' HJ + B;‘JM’N AI ﬂf + IJ'.H\LLJ\ EL ?

5.15
G1) B, =pu,,M, +1

5/ by M My + 2Bp, M, H,,

1~
+3 f”\ LM'N]‘,I\'L !‘!,\IN + ff!\'L!fh'L .

There are less symmetries for the new third order tensors, because they contain
the geometrical contribution to elasticity, piezomagnetism and electrostriction,
respectively (I is only the geometrical electrostriction, since the material one was
neglected for magnetoelastic solids in (5.1)). It is as follows:

Crowimn = Crurimny = CIJMNKL,

(5'16) f.\”.”\'l. = fMJ'H\'I. = f.'lfh‘LIJ?

7 - ~

1JKL = EJH\‘L = lfJLh' :

The relations (5.13) and (5.15) stand for bilinear constitutive equations for
magnetoelastic solids even if the deformation or magnetization in the solid is
large.

6. Small-field constitutive equations

Constitutive formulas obtained in the previous section are written in the ref-
erence frame. Let us now suppose that the initial nonzero strain field, as a result
of external force or magnetic field, exists in the body at first. A small field is con-
sidered to be superposed on this state next. It means that we have now the third,
intermediate configuration of the body, in addition to the undisturbed, reference
configuration and the actual one. The material point identified by the material
coordinate X first moves to intermediate coordinate X} (X;) by a large initial
deformation, and next to z4(X;) by a small alternating vibration, for example.
So, every field quantity in the reference frame can be decomposed into two parts.
The first associated with the bias and the second, small one — with the small de-
formation in the body. Let the sign tilde denote the quantities associated with
the initial state of large deformation. We have then, in the reference frame,

(6.1) Z2t=7Z+27, where Z=TH,M,B.

Additionally, small-field electric strength and conduction current is supposed to
exist in the biased body, so

(6.2) Et=E, J'=J.

http://rcin.org.pl
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These total quantities must fulfill the constitutive equations (5.13) and (5.15), so

(6.3) TIJ +T, = {CJJ:\’LH:\'L +c unLMN” HMN + fMIJi\LM Hh:.

+fMIJﬁM * B—IJA'fNHMHN} + CIJJ\'LIIKL + E;JKLMN”J\‘LHMN
+EIJMNKLHKLEMN + fM'IJMM + fMIJf\'Lﬁ'{fM !ff\'L + fMIJKLHKLﬂ.fM
+BIJ'M"NMMMN + BJJMNﬂ{rNﬂ’fM + [‘EIJKLMNIIKLHMN
+-fMJJ}\'LﬂfM !'{KL + BIJMN ﬁ:fM MN T IIJ}\'LEKEL] 1
and
= TR | o e e
64) B, +B, = {#”MJ + sttysnc M, My + 2By, B, A,
1~ ~ o~ ~ 1 —

+§fnu,m\r Hy Hyy * fix. !IKI.} +p, M, + iﬁuh‘M}MK
M,M, +2B,,, ,H,.M,+2B

— | - -
+‘fucLMNHKLHMN + _fJ’MNKL Hh‘f_ HMN ¥ f”\‘LHh‘L

] ~
2#11}\ xeisMHyy

1
* M M + 2B, M, Hy, + f.'n.'.MN HMN]?

2 J’JJ\

and
(6.5) Ji=06,,E, + ol By + [o"H,,E,| .

The terms in the last three formulas have been regrouped so it can be said
that expressions in the first brackets are equal to the biasing quantities 7" and B,
respectively, while terms in the square brackets can be neglected because they
are second order terms of small-field quantities. After separation one can obtain
nonlinear constitutive equations for large initial state in the form

TIJ = cJJ}\'L}IKL + E!JJ\'LMNI?KL!IMN : ; fMIJ’HLﬂ'IM ]{KL
+fMIJ‘AfM’ + B!JJ\INAJM‘HJN 1

6.6) o 1w o L e
B, = p M, + E“JucMrJ My + 2By, M,y

1~ o =
+ = fff\LMN"!I\L}IMN + f!!\'f—]{!\‘.‘. ’

and the linear ones for a small-field superposed on this biasing state

TH == ?ljf LHM f.mg,; MM ’
(6.7) B, = pfiM, + [T H,,

- eff
J, = o E,,
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where effective tensors are of course dependent on the biasing magnetization and
displacement gradient (parameters)

eff - - 17 ra 3

Erwi = Cragr F 2¢, kv Hun + frrsci M
eff _ ra 7 T

f”u_ i -fJ’KL + fixoanHyn + 2By, M,

(68) . - .
*u?,r =, My + 2By, Hyy

ot =06, +oc"H,,.

1J

7. Loading of the cracked specimen

It is well known, that aside from ideally brittle materials, any loading of cracked
body is accompanied by inelastic deformation in the neighbourhood of the crack
tip due to stress concentration there. Usually three basic modes of loading are
distinguished [19]: Mode 1, called opening mode, Mode II, named sliding mode,
and Mode III, described as tearing mode. All of them with the Cartesian coor-
dinate system are depicted in Fig. 1. The stress concentrations around the crack

Ly

Mode | Mode II Mode IIT

Fi1G. 1. Basic loading modes for a cracked body.

for different modes are given in [19, pages 138-147] in the formulas, follow-
ing below, written in a polar coordinate system with the origin at the crack tip
(X, = rcos(f), X2 = rsin(f)). For Mode I the nonzero stress components are

Ty , 1 — sin(#/2)sin(36/2)
(7.1) Ty b = !2“ cos(6/2) 4 sin(#/2) cos(36/2)

Ty 1 + sin(#/2)sin(36/2)

;
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For Mode IT and Mode III they are, respectively

Ty ) —sin(6/2)[2 + cos(6/2) cos(26/2)]
(1.2) Tpp b = 2L ) cos(8/2)[1 - sin(8/2)sin(36/2)] %,
Ty Varr sin(#/2) cos(8/2) cos(36/2)

(73) T _ K [ —sin(6/2)
' Ts, V2rr | cos(8/2) |
It can be seen that for r = 0 the stress in all cases is singular, and approaches

infinity, but the stress intensity factors Ay, Ay, Ay are defined in such a way
that they are finite

(7.4) Ky = li_r%{\/ﬁf“zz]m},
(7.5) Ky = 1i_mo{\/ﬁf,zﬂ=n},

(7.6) K = 1%{@?32]ﬂ=n} :

For the simple isotropic, nonmagnetostrictive material (B,.,,, =0, f,,.,, = 0)
possessing the elastic tensor in the form [14]

7.7 Cronr = 200y 0, , + A0 6, ,

where p and A are Lamé constants, the corresponding nonzero displacements
near the crack tip can be written for Modes I, I, and TIT as [19]

Uy _ K1 [7 [ cos(8/2)[k — 1+ 2sin’(8/2)]
3<5) { U, } T2 \/;{ sin(0/2)[k + 1 — 2cos?(4/2)] } ‘
Uy _ Ku [T [sin(6/2)[x + 1+ 2cos?(8/2)]
{ U/ } T 2V 2m | = cos(8/2)[k — 1 - 2sin?(8/2)] |’

(7.10) {03} = 2‘1‘;“' \/; {sin(8/2)}.

where for Mode I and 1T either x = 3 — 4w for plane strain or k = 3—v)/(1+v)
for plane stress case, and v is Poisson’s constant. Taking into account the gradient
description in polar coordinates (two-dimensional) of the form

(7.9)

d J sinf @ 0 .0 cosf o d
L4 e B__—— - oy L] —-
(B1h) o= ——1"30" Bxz ot r B0’ %
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the displacement gradients can be expressed for Mode 1, I1, ITI, respectively, as:

cos(8/2)(x — cos @ — 2sin’ )

. K
(1.12) 0 = ‘-1‘7: —— | —sin(8/2)(s - cos? + 2sin’0)
mr U
sin(#/2)(k + cosé + 2cos*6) 0
cos(8/2)(x + cos@ — 2cos*d) 0],
0 0
T sin(6/2)(k + 2 + cosf — 2sin® 6)
~ _ Kn .
(7.13) H=-"——— cos(8/2)(x — 2 + cosd — 2sin* §)
4p 2
[ wr 0
cos(8/2)(k + 2 —cosf + 2cos*d) 0
—sin(8/2)(k — 2 — cosf — 2cos?f) 0|,
0 0
- 0 0 0
714y g =fm_1 0 0 0
o2

—sin(6/2) cos(8/2) 0

8. Current flow around the crack

Nondestructive testing (NDT) of materials is a group of methods used to
distinguish if the material given has some defects (cracks, dislocations) or not.
Nondestructive evaluation (NDE) is more advanced since it should give more in-
formation about defects (size, type, etc.). There are many experimental techniques
which can be used to get proper information: ultrasonic or magnetic methods, and
the potential drop technique (d.c. or a.c.), which is now gaining much interests
of researchers [15, 16, 25, 26, 28]. In these kinds of methods the specimen tested
is subjected to the current flow, which is assumed to form around the crack. It
is especially the property of the a.c. current which occurs mainly very near to
the surface. For the values of frequency f and conductivity large enough, the
penetration depth is small,

(8.1) §oe e

VTpaf
The path of the a.c. current is shown in Fig. 2.

If the specimen with crack is loaded, the large gradient of displacement (Sec. 7,
Egs. (7.12), (7.13), (7.14)) which exists near the crack can be regarded as the
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FiG. 2. A.c. current flow path around the crack.

mechanical bias for the current flow around the crack. Therefore, the conduc-
tivity near the crack is different from the natural (for unbiased material) one,
and should be calculated with respect to predeformation as it is given in Sec. 6,
Eq. (6.8). Substituting the gradient of displacement for different modes to the
definition of effective conductivity, it is easy to obtain o for Mode 1, 11, 111,
respectively

o + y1cos(8/2)(k — cosd — 2sin’ §)
82 o= _ysin(0/2)(k — cosf + 2sin®6)
0
yrsin(8/2)(k + cos@ + 2cos?8) 0
o + y1cos(8/2)(k + cos — 2cos?8) 0|,
0 o

o — yusin(8/2)(x + 2 + cosf — 2sin* )
(83) o™= qycos(8/2)(r — 2 + cosf — 2sin® 0)
0
vcos(0/2)(k + 2 —cos@ + 2cos?d) 0
o —yusin(8/2)(xk — 2 —cosd —2cos*8) 0 |,

0 Ie]
o 0 0
(84) o= 0 o 0/,
=y sin(#/2) ~ymicos(6/2) o
where
(8 5) h’[a"‘ K[;Uh e H[][Uh

o= 4 2rr’ = du 27’ nE= w2rr
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It is clear that the conductivity is a function of # and r, so the material near
the crack tip can be modeled as nonhomogeneous. In such a case the flow of
the current is no longer described by the formula 7;; = 0. To get the proper
equation, it is necessary to consider

(8.6) Tip =0 E,, + ”ff.; E,,
(8?) 'D;.I = (5“(£‘EJJ+E_IEJ),

and the Maxwell formula
(8.8) VxH=J+ jwD,

where H is the magnetic intensity field, D is electric induction field, and w = 27 f
is angular frequency of the a.c. current applied. Calculating the divergence of
both sides of the last formula, one can get the following equation

(89) t‘rj'lj = _]w{"»

where g is the charge density, and combining it with equations (8.6) and (8.7),
the following formula is obtained

. o _ .. -1
(8‘10) stﬂ(ﬁi.l' + (T‘;J e= U?J‘L“G‘*’?J'\'U;‘LIL :
The density of the charge, which is accumulated during the flow process near
the crack tip, can be expressed for large conductivity or not too high frequency
approximately as

(8.11) o~ 0,0

15g "

9. Alternating current potential drop

When the a.c. current is flowing on the surface of the specimen (see Fig.2),
the potential drop far from the crack, which can be observed by the probe on the
surface, can be simply calculated as

: I

(9.1) Al = R
where [ is total current applied to the specimen, [ is the distance between the
probe pins along X,, 5 = &d is the cross-section of a.c. current path (d is the
width of the specimen along X3), and o is the conductivity (scalar for the natural,
not predeformed state of the material).

When the probe pins enclose the crack underneath, then the potential drop
is composed of two parts
(9.2) AU = AUy + AU..

http://rcin.org.pl
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The first component is the same as (9.1) because it comes from the separation
of pins in the probe, and the second one is the potential drop along the crack.
It is assumed here that the crack is modeled by the wedge in the X, direction
with the gap tending to zero (F; — F,). This means that the current is flowing
approximately along X'; with the constant density .7, = //5, so the electric field
is Iy = aff_ljl, and it differs from point to point since the effective conductivity
is nonhomogeneous. The total potential drop around the crack can be calculated
as

P, Py
IF o
(9.3) AU, = / Brax, = 5 [off ax,.
Py Py

The integration variable can be changed to polar, remembering that first it goes
forward and second time back along X,

w

(9.4) AUC=% / oS dr
“ 1o

w

1
+ -/O'ft;f dr

O==1 0

f=n
where w is the depth of the crack under the surface. To perform the integration
it is necessary to find ¢ for 6 = +r.

On the left-hand side of the crack, # = —n, the effective conductivity is sim-
plified as compared with Eqgs. (8.2), (8.3), (8.4) for Mode I, II, III, respectively
[ o —vi(k+1) 0
95) ofir,-m) = [mx-1) o« 0f,
0 0 a
[0+ yu(k + 1) 0 0
(9.6) " 0fM(r,—7) = 0 o+m(k-3) 0,
I 0 0 o
(o 00
(9.7) oMr,-7)=| 0 o 0
Ly 0 @

On the right-hand side of the crack, # = =, the effective conductivity is for Mode
I, TI, III, respectively

a ik +1) 0
(9.8) of(r,m) = | —m(x - 1) o 0
i 0 0 o
o — vk + 1) 0 0
(9.9) oM(r,7) = 0 o—m(k-3) 0],
I 0 0 o
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a
(9.10) ofr,my=1 0

0
0
=7 o

o 9 o

Now, o¢™" for # = 7 can be obtained for three different modes as follows:

Q=

-1
(9.11) off =
for Mode T and Mode III as well, whereas for Mode 11 it is different

- 1
9.12 OCﬂ ' - B
) 0= TG+ 1)

For Mode T and III, crf{f_l is constant, independent of r, thus the integration in
Eq. (9.4) is very simple and gives

_wa
T 0S8

just like the potential drop on the straight path of the length 2w. For the Mode

11, however, af{f'l is dependent on r through 7y, see formula (8.5), what can be
written explicitly for § = £x as

(9.13) AU,

-1 ¥
(9.14) AT =eF 7
where oy
o'tk + 1)
9.15 =
(>13) 4\ 2m
Then, the integral in Eq. (9.4) takes the form
(9.16) AU, = i [—\/i——rf'r -I-/—-\/F—dr \
S . o\r+ 7 / o1 —7
what after integration gives
2] .}_2 ol
C A ] — Y —_— —_— _—
(9.17) AU, 55 [u. + = In 72w IH :

It can be seen from the above that the potential drop consists of the term resulting
from the flow around the crack of the path length 2w, and the second one is the
result of the stress concentration near the crack tip, and is dependent on the ratio
of squared conductivity and its deformation sensitivity.

http://rcin.org.pl
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10. Conclusions

Since for Mode I, and II no influence of predeformation was found, so it can
be said that Eq.(9.17) stands for the potential drop on the crack for any kind of
load in general, which always can be decomposed into three basic modes. The
second term of the formula (9.17) is the correction of the potential drop due to the
load through stress intensity factor I’y for different material described by stress
sensitivity to conductivity o", conductivity itself o, and elastic parameters f, k.
The derivation of the potential drop was done for the isotropic elastic material,
its conductivity being sensitive to deformation. The coupling of the magnetic field
was neglected as well as the change of the penetration depth due to the change
of conductivity.

Following the form of the relations (6.8), the influence of the bias on the
magnetoelastic solids can have the important implications:

¢ The properties of the biased material can be changed so far as the natural
crystallographic symmetries are not kept the same for the biased state of material.

e The medium can become strongly piezomagnetic even if its piezomagnetic
natural state tensor is zero (or very small, what is common); the reason can be
the third order magnetoelastic term for very high strain, but mainly the magne-
tostriction in the magnetically biased solid (this is a stronger effect) — this is called
biased piezomagnetism.

e On the other hand the material having small permeability can become fer-
romagnetic, when large initial strain is assumed due to the same magnetostriction
effect.

¢ The conductivity can become even a nonsymmetric tensor (in general) in-
stead of its natural state scalar value.

Equations (6.6), (6.7) and (6.8) seem to be very useful to make a numerical
application. As we compare to the natural state case, we can see that the sole
change of material tensors from second order tensors given in tables to effective
tensors (6.8), which are dependent on the second and the third order tensors as
well as on the biasing quantities, is sufficient to consider the biased solid as an
unbiased one. We have to keep in mind to write the equations of motion and the
boundary conditions also in the reference frame. It is easy to find effective tensors
and use well-known methods or even numerical algorithms (developed earlier
for linear problems), and to solve also the nonlinear problems. These effective
parameters describe the nonlinear coupling between a crystal and predeformation
of a mechanical or magnetic origin.

Acknowledgement

This work was supported in part by KBN grant No. 3 P404 056 06.



NONDESTRUCTIVE EVALUATION OF CRACKS 87

References

1. A.C. Piexan, RS, RiviLy, Electrical conduction in deformed isotropic materals, J. Math, Phys., 1, 127-130,
1960.

2. W. PRAGER, Introduction to mechanics of continua, McGraw-Hill, 1961,

3. A.C. ErinGEn, Nonlinear theory of continuous media, McGraw-Hill, 1962,

4, 1L.W. Dunkin and A.C. ERINGEN, On the propagation of waves in electromagnetic elastic solid, Int. J. Engng.
Sci., 1, 461-495, 1963.

5. N.F. Jorcan and A.C. ERINGEN, On the static nonlinear theory of electromagnetic thermoelastic solids - 1,
Int. J. Engng. Sci., 2, 59-95, 1964,

6. N.F. Jorpan and A.C. ERINGEN, On the static nonlinear theory of electromagnetic thennoelustic solids - 11,
Int. J. Engng. Sci,, 2, 97-114, 1964.

7. H.F. TiersteN, Coupled magnetomechanical equations for magnetically saturated insulators, J, Math. Phys,,
5, 1298-1318, 1964.

8. A.C. ERINGEN, A unified theory of thenmomechanical materials, Int. J. Engng,. Sci., 4, 179-202, 1966.

9. M. Sokorowski, Theory of couple-stresses in bodies with constrained rotations, Springer-Verlag, 1970,

10. H. Parkus, Magneto-thernmoelusticity, Springer-Verlag, 1972,

11. Y. Pao and C. Yeu, A linear theory for soft femomagnetic elustic solids, Int. J. Engng. Sci., 11, 415-436,
1973,

12. D.G.B. EpELEN, Primitive thennodynamics: a new look at the Clausius-Duhem ineguality, Int, J. Engng. Sci,,
12, 121-141, 1974,

13. E. KirarL and G.F. Smrri, On the constitutive relations for anisotropic materialy - triclinic, monoclinic,
rhombic, tetragonal and hexagonal erystal systems, Int. J. Engng. Sci., 12, 471490, 1974,

14. W. NOWACKL, Dynamic problems of thenmoelasucity, Polish Scientific Publishers, 1975,

15. R.P. Wei and R.L, Brazit, An assessment of a-c and d-c potential systems for monitoring fatigue crack
growth, [in:] Fatigue Crack Growth Mcasurement and Data Analysis, 8.J. Hupak, Jr. and R.J. Bucal
|Eds.], ASTM STP, 738, 103, 1981,

16. D.H. MicHAEL, R.T. Waecuer and R, Couuns, The measurement of surface cracks in metals by using a.c.
electric fieldy, Proc. Roy. Soc. Lond. A, 381, 139-148, 1982.

17. S.W. MgEks, Piezomagnetic and elastic properties of metallic glass alloys Fegy Coyg By Siy and Fegy B3 5513 sC,
J. Appl. Phys., 54, 65846593, 1983.

18. W. Lorp, Electromagnetic methods of nondestructive testing, Gordon and Breach, 1985,

19. M. F. Kanminen and C. H. PoreLAr, Advanced fracture mechanics, Oxford University Press, 1985.

20. G.A. Maucin, Continuwm mechanics of electromagnetic solids, Elsevier, 1988,

21. A.C. Eringen and G.A. MauG, Electrodynamics of continua I, Springer-Verlag, 1989,

22. H.F. TiERSTEN, A development of the equations of elecromagnetism in material continua, Springer-Verlag,
1990.

23. E. KiraL and A.C. ERINGEN, Constitutive equations of nonlinear, electromagneto-elastic crystals, Springer-
Verlag, 1990,

24. G.A. Maucin and M. Sanir, Mechanical and magnetic hardening of ferromagnetic bodies: influence of
residual stress and application to nondestructive testing, Int. 1. Plasticity, 6, 573-589, 1990,

25. M. Saka, M. Nakavama, T. Kaneko and H, Apg, Measurement of stress-intensity factor by means of a-¢

26.

27.

potential drop technique, Experimental Mech,, 31, 209, 1991,

M. Saka, T. Kanexo and H. Ang, Evaluation of stresy intensity fuctor for a 3-D surface crack by means of
a.c. potential drop technigue, Trans, JSME(A), 57, 2222, 1991,

W.D. Dover, R. CoLLins and D.H. Micugl, Review of developments in ACPD and ACFM, British J. of
NDT, 3, 121, 1991,

http://rcin.org.pl



88 D. GAFKA

28. M. Saka, M. Naravama, T. Kaneko and H. ABg, Measurement of stress-intensity factor by means of ac
potential drop technigue, Experimental Mech., 31, 209-212, 1991,

29. D. Garka and J. Tant, Parametric constitutive equations for electroelastic crystals upon electrical or mechanical
bias, J. Appl. Phys., 70, 6679-6686, 1991.

30. D. Garxka and J. Tant, Sensitivity of swiface acoustic wave velocity in lithium niobate to electric field or
biasing stress, J. Appl. Phys., 73, 7145-7151, 1993,

31. J.S. Leg, G.A. MAuGIN and Y. SHINDO, Mechanics of electromagnetic materials and structures, AMD-Vol. 161,
MD-Vol. 42, 1993.

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received February 2, 1995.



