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Two-dimensional tensor function representations
involving third-order tensors

Q.-S. ZHENG (BEUING)

AMONG THE PHYSICALLY possible infinitely many material symmetries of all kinds in a two-dimen-
sional space, there exist eight kinds, i.e., the isotropy C oo, hemitropy Coo, two symmetries Cy and
(', in the oblique system, C'y,, and C, in the rectangular system, and C3 and C3,, in the trigonal
system, that can be characterized in terms of tensors of orders not higher than three. In this paper,
the complete and irreducible representations relative to these eight symmetries are established for
scalar-, vector-, second-order tensor- and third-order tensor-valued functions of any finite number
of vectors, second-order tensors and third-order tensors. These representations allow to obtain, in
the case of two-dimensional problems, general invariant forms of the physical laws; in particular,
the constitutive equations involving thrid-order tensors.

1. Introduction

RECENTLY, the complete and irreducible representations in two-dimensional space
were established by ZHENG [7] relative to every kind of material symmetry for
scalar-,vector- and second-order tensor-valued functions of any finite number
of second-order symmetric tensors Aj,...,Ay (denoted by A,), second-order
skew-symmetric tensors Wy, ..., Wp (denoted by W¢) and vectors vy, ..., vas (de-
noted by v,). In contrast to these general results, complete and irreducible rep-
resentations for tensor functions involving tensors of order higher than two are
much less well understood (Pennisi [4], ZHENG [9], ZHENG and BEeTtTEN [10],
BerTEN and HELIScH [1]). In particular, the problem of constructing of general,
complete and irreducible tensor function representations which contain any fi-
nite number of third-order tensor agencies Ty,...,T; (denoted by T)), even for
L = 1, is still open, although its importance can be seen in many modern physical
contexts (cf., PENNISI [4]).

ZHENG and BoeHLER [11] have described and classified the physically possible
infinitely many material symmetries of all kinds in two dimensions (and also in
three dimensions). Among them, there are eight symmetries that can be charac-
terized in terms of vector(s), second-order tensor(s), and/or third-order tensor,
as shown below in Table 1.

In this paper, notation is based on the following conventions. We denote by
1 the second-order intensity tensor, € the permutation tensor (a second-order
skew-symmetric tensor), R(6) the rotation tensor of angle 6, a and b two unit
orthogonal vectors, Ry, the reflection transformation in b direction, and

(1.1) P=a®aa-(a®b@b+b®a®b+b@baa).
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Table 1. All kinds of two-dimensional material symmetry that have structural tensors
as vector(s), second-order tnsor(s), and/or third-order Lensor.

system Schoenflies symbol | generators of symmetry group | structural tensors
oblique Cy R(0) =1 a, e (ora, b)

(o) R(r) = -1 M, e
rectangular | C), Ry=a®@a—-b®b a

Cy, = orthotropy R(7), Rp M=a®a-b®b
trigonal Cs R(2r/3) P e

Ca R(27/3), Ry P
circle Cw = hemitropy R(@) (0<8 <2 €

Cocu = isOtropy R(#), Ry (0 <8 < 2x) 1

The operators ®, -, :, and : mean tensor, scalar (or dot), double dot and triple
dot products, respectively. Components of vectors and tensors are referred to an
orthonormal frame, say {e;}, lower-case Latin indices (i, j, k,...) range from 1 to
2, repeated indices are summed from 1 to 2, and the abbreviations e;; = ¢; ® e;
and e;;; = e; ® e; ® e; are used. The prefix tr indicates trace.

A tensor H is termed as irreducible, if it is a completely symmetric and traceless:

(1.2) Hijkon = Hjig.q = Hijioa = ... = Hijk.i, Heomk.d = Ok 5

where 0. ; corresponds to the zero-tensor of the relevant order. It is well known
that any irreducible tensor H in two-dimensional space has only two independent
components (e.g. 111 and Hyyy.1). In particular, the relations among the
components of an irreducible third-order tensor T are:

(1.3) T =Taa = Toy = T, Twa=Tin=Tm=-Tm.

We can decompose any third-order tensor D into an irreducible third-order tensor
T and three vectors D;ye;, Dje;, Dyie; in the form:

(1.4) Tk =4Dijk — 3Duk — Dii — Dyn)éi; — 3Dt — Dju — Duj)éix
—(3Din — Diit — Dyi)bji

where é;; denotes the Kronecker symbol. An elementary method of reducing
tensors of any order to sums of irreducible tensors is described by SPENCER [6]
and HANNABUSS [3].

In view of (1.4) we further postulate that the third-order tensors T, (i.e.,
Ti,...,Tr) are all irreducible. In this paper, we determine the complete and
irreducible representations relative to the eight symmetries in Table 1 for scalar-,
vector-, second-order tensor- and third-order tensor-valued functions of A,, W,
v, and T,.
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2. Isotropic representations in different cases

In order to provide compact procedures of determining complete and irreduc-
ible tensor function representations relative to the eight symmetries given in Table
1, we derive in this section representations with respect to different cases of the
variables A,, W, v,, Ty. The method employed here is described by ZHENG [7, 8].

It is profitable to introduce the following abbreviations and relations:

tA =T:A= T,-J-kAjke,-
= (Tiner + Toner)(An — Az) + 2(Toner — Tine2)Ar,
th =T Z(V@V) = ﬂjkrja:ke,-
= (Tiner + Tanex)(af — 23) + 2(Tarer — Tinier)z 122,
T"=Tw= T"J’k:):ke,'j
(2.1) = (Tinz1 + Tanza)(en — ex) + (Tanzr — Tinzz)(en2 + €21),
T:S = TiiSkijei;
= 2(T1S1m + TannS210)1 + 2(T1inS2in — TannSin)(erz — en),
TW = T, Wieix
= [Tin(enz2 + e + €11 — e222) + Toni(er2 + €212 + €221 — €111)]Wha,
and
T:S = Ty Sije = 4TS + TannSan),

(22)  (x-t)% + (x-et,)? = (T:T)(x-x)*/4,
(tas Ata)? + (ta- €A ta)? = (T:T)*[2tr A% — (trA)*]*/64,

where T and S denote any two irreducible third-order tensors, and A, W and
v any second-order symmetric tensor, second-order skew-symmetric tensor and
vector, respectively. Let D be any third-order tensor. The symbol {D} denotes as
a set of the following three tensors:

(2.3) D;jieijk , D;jiejki , Dijkekij,
and (D) is the summation of the above three tensors, that is,
(2.4) (D) = Dgel€ssn + e + Gij):

2.1. Representations when there exists a non-zero vector v among v,

We can choose an orthonormal frame {e;} so that v = vye; with v; > 0. Thus,
we can write
Vv =y, V=, Vo ¥, = V1 (v, # v),
(2.5) vRv, 1 = €11, €22, V‘Aava eral‘} Acxll1 A0-229

vavav, {vd 1} = e, {en}, vetl = Thanr -
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In this paper, the notation .A = B means that B is uniquely determined by .A. It is
evident that the alternative of +e; does not affect (2.5). Thus, the undetermined
quantities remain

Vo2, Aa12, Werz, Thants e; ezt ey; €222, {en12}.

If all vy, Aa12, Werz, and Tho11 equal zero, we do not need to determine
e, €12 £ €71, {e112} and ey. Otherwise, keeping (2.5) in mind, we consider the
following cases 1-4.

Case 1. Wy, # 0 for a tensor W among W,. We alternate te; so that Wi; > 0
and then give

UW2 = Wy, Wy=e, v Wy,=vn (v, #V),
vRIWVv+WvRv=epn+ e, ve A Wv= A2,
(2.6) W= ep—ep, trWW; = Wepp (We # W),
(vRveaWy) (or Wy@Wv@Wy), {WvRl}=en, {e2},
veWty  (or v-WtY) = Ty

Case 2. up # 0 for a vector u among v,. We can select +e; so that u; > 0
and then have

u-u= up, u= e, urv, = Uy (v, # v, u),
VRIuXu®v=eprxey, v-Au= A2, veWeu = Weqp,

(veveu) (or u@ueu, if v #3ud), {(uel}=em, {en},
u-ty  (or u-ty, if u% %= 3uf) = T\o11 -

2.7)

Case 3. Az # 0 for a tensor A among A,,. By alternating +e, we can arrive
at A;; > 0 and

trA? = A;,, A= ep+ e, trAA, = Aoz (As # A),
2.8) Av= e, VoAV, = vy (vo # V),
VRAV—AVRV=epn—ey, ve AWev = Wy,
(v A), {Ave1} = em, {en2}, vo il = Than -
Case 4. Th; # 0 for a tensor T among T). Choosing +e; so that 7517 > 0
can follow

T:T= To, tV = e, Voett v (Ve #E V),
T = epp + €31, vethe = H{A:T") = Asn2,
vREt—t'Qv=>en—e, Ve Wet" = Weya,

T, {t'®@1} = ex, {ei12}, T:Ty = Than (T #T).

(2.9)
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2.2. Representations when all vectors v, equal zero, there exists a tensor A among A, which has
two distinct principal values, and there exists a non-zero tensor T among Tx

By selecting +e; and +e; as orthogonal principal directions of A, we can
express A = Ajje;; + Axpey and then we have

trA, trA2 = Ay, Ay, 1, A= e, e,

(2.10)
trAs, trAA, = Aanr, Aa22 (Aa # A)

Note that choices of t+e; and of +e; do not influence (2.10). Since T is a non-zero
irreducible third-order tensor, without loss of generality we can suppose that
Ty11 > 0 by alternating e; and e, and choosing te;. It follows

(2.11) T:T, th- A = Ty, T2,.
For the remaining undetermined quantities:
Voi » Aa12y, Werz, Tainr; € e1z Loey sk (,7,k=1,2),

we consider the following cases i—iv.

Case i. Wy # 0 for a tensor W among W¢. We choose +e; so that Wiy > 0
and then we have

trwz = Wy, AW = Ty, A, Wt = e,
AW-WA=ep+ey, tAAW= A, (A, #A),
(2.12) W=ep—en, UWW= Wy o (We #W),

T, TW, {A@1}, (W*®1} = e,
T;T,\, tr (T . T\)W = ,11,\,']1 (T\ # T)

Casg ii. Ty117To11 # 0. Alternating +e; can yield T2;; > 0 and then

T:T, A AP =Doy, & AP=e,

At = e+ e, A= AL (Al #A),

(2.13) ARQAr —AA QA = en + e, AW = Wy,
T, A®A), {1}, {At®1} = e,

T:T,, t""\At} = T\ (Tx #T).
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CASE iii. T31; = 0 and By # 0 for a tensor B among A,. Selecting +e; so
that By; > 0, we have

trB2 = By, th, B =g,
B=ey+en, trBA,= A,z (As # A, B),
(214) AB—-BA= e — e, tl’ABW& = ngz y

T, T(AB-BA), {t*®1}, {E®1}= e,
T;T,\, tr (T i T,\)AB = T (T,\ # T).

Case iv. T51; = 0 and S3;; # 0 for a tensor S among T). Selecting +e; so
that 5511 > 0 can follow,

TES, S:S= S11, S21, tA, sh = e,
A(T:S)—(S:T)A = ejx + 1,
tr(T:SAA, = Auz (As # A),
T:S—-S:T=e;p— ey, tr (T : S)We = Wy,
T, S8, {lA®1}, {SAQDI} = €k,

(2.15)

T:T\, S:Ta=>Twuii  (Ta#T, 8).

2.3. Representations when all v, are null vectors, all A, have not two distinct principal values,
and there is a non-zero tensor T among Ty

Since A, have not two distinct principal values, we can express them as A, =
(trA,)1/2. Tt is known from Table 2 of ZHENG and SpENCER [12] that any rotation
tensor R(yp) leaves 1, ej2 — ex, A, = (trA./2)1 and W = Wepa(en — e21)
unaltered. Then, we have the following transformation relations

(e + 1€7) — exp(tip)(e; + we7),
{(e1 + 1€2) ® 1} s exp(Lre){(e; + 1e7) @ 1},
(2.16) (e — ex) + ez + e1) — exp(£i2p)[(enn — ex) + €12 + €21)],
(e1n1 — (e122)) + e({e112) — €222)
— exp(£3¢)[(e111 — (e122)) + ({en12) — ex)],

where : = /(—1) is the unit imaginary number. Thus, we can rotate {e;} until
Ti11 > 0 and 1317 = 0, and then give

(2.17) T:T= T, T = e111 — (e122), T:Ty = Tan (Tx # T)

From (2.16) we can see that R(27/3) leaves ej;; — (e122), (e112) — €222 and T
unaltered, but it varies e;, e;; — €2, €2 + €2; and {e; @ 1} so that they do not
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need to be determined in view of the isotropy condition. In other words, we only
need to determine

Wazs T, @a—ea, (e2)—em.

If there exists a non-zero tensor W among W, or there is a non-zero tensor S
among Ty, we select te; so that Wy, > 0 or S3;; > 0, and then we write

trW2 = Wi,, W= epn—ey, trww§ = W£12 (WE # W),

(2.18)

TW = (6112) — €122, tr (T H S)W{ = Than1 (TA # T),
or

SES=>52“, T:S—S:T= en—ey, tr(T:S)W5=>W512,
(2.19)

S = (e112) — e, S:Ty=Taon (Ty#T, S).

Otherwise, if all T211 and Wy, equal zero, we do not need to determine ej2 —ey;
and (8112) — €222

2.4. Representation when all vectors v, and third-order tensors T, are equal to zero

Since the central inversion — 1 leaves tensors of even orders unaltered but
changes the sign of tensors of odd orders, the isotropy condition requires that any
isotropic vector- and third-order tensor-valued functions of second-order tensor
A, and W; should be only a zero-vector and a third-order zero-tensor, respect-
ively. The complete and irreducible representations for scalar- and second-order
tensor-valued functions of A, and W; can be seen, for example, in Tables 2, 4
and 5 of ZHENG [8].

3. The complete and irreducible tensor function representations

The complete and irreducible representations were established by ZHENG [8]
for scalar-, vector-, second-order symmetric and skew-symmetric tensor-valued
functions of A,, W, v, with respect to all kinds of symmetry, particularly, to the
eight symmetries shown in Table 1. With these known results and the representa-
tions derived in the preceding section, we determine in the sequel the complete
representations for the eight symmetries shown in Table 1. The irreducibility of
the derived representations is verified in the next section.

3.1. Representation for isotropy Coou

The complete representations for isotropic tensor functions of A,, We, v,
and T) can be obtained by considering all the cases in Secs.2.1-2.3 i.e., from
(2.5)-(2.19), as summarized in Tables 2 and 3.
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Table 2. Irreducible function bases.

Coou | tTA, tr A%, trAB, tr W2, trABW, tr WV, vev, Coo | trA, tr A%, trAB, tr ABe, tre W,
veAv, veAWv, veu, ve Au, ve Wu; TET, vev,ve Av, ve Aev, veu, veeu;
A A B, TA AW, vert', ver?, veWeY, T:T, A AtS, PoAeth, vo ",
ust', T:S, A« As®, tr (T: S)AB, tr (T : S)W veet', TS, tr(T: S)e

Cs, |trA, trA?, p*+ApA, trAB, p*+ Bp?, tr w?, Cy |trA, pPeAp?, pte Aep®, traB,
preAWDPA tTABW, tr WV, vev, vepY, v+ Ay, trABe, treW, vepY, veep",
vept veWp', veAWY, veu, usp, ve Wu; veAv, veAev, veu, veeu,
TiT, PiT, pre AtA, tr (P: T)W, v 1, ve (4, PIT, tr(P:T)e

ve(P:T)u, tr(P:T)AB, T:S
Cy |trA, trA? rMA, trAB, r W2, trMAW, trWV, [ [trA trMA, trMAge, treW,

vev,v*Myv, veAv, ve MWy, veu, veMu, veAu, veMv,veMev,veu, veeu;
veWu; T:T, Me MM, MeaM, MomwiM, T:T, MMM, M. MetM,
vet',vetM vetd vewtM T8, M. MM, vetM veetM T:S, tr(T:S)e

tr (T : S)MA, tr (T : S)W
Ch |trA, trA?, a+Aa, trAB, trw?, a-AWa, trWV, |C; |a+Aa, b-Ab, a+Ab, treW,
vev,asv,acAv, a* Wy, veu; T:T, 2+ ®, a~th, ary, bev;art® be t?

a Wit vet® T:S

In Tables 2 and 3, the following abbreviations are employed:

3.1) A=A, B = Az, W =W;, V=W,
' v=vga u=y,, T=T,\§ S=T;La

witha,d=1,...,Nanda< ;&(=1,....M and £ < (; p,o = 1,..., P and
p<oj;and A, u=1,...,L and A < pu.

An explanation of the redundancy of one of u-t" and v- t* may be required.
Without loss of generality, we set T = ej;; — (e122). Denote by (v,u) and (v,u)
two solutions of the equations

(3.2) vev, u-u, vot', u-t"; vou, u-t' = const.
Because of vev = v v and u- u = u- u, we may assume that v = cosfle; + sin fe;,

u = cospe; + sin ey, vV = cosfe, + sinfe; and U = cosipe; + sinFe;. The
equations v- t*, u- t, v- u, u- t" = constans yield immediately.

cos 36 = cos 36, cos3p = cos3p,

©3) cos(f — ) = cos(f — P), cos(20 + ) = cos(28 + P).

It follows that cos(d + 2¢) = cos(d + 2), i.e., v-t* = v.t". Therefore, v+ t" is
redundant.

In a similar manner we can verify the redundancy of one of t*-Bt* and
t8. AP, and one of (v@ v®u) and (u@uv).



Table 3. Complete and irreducible tensor-valued function representations.

vector-valued

Coor |V, Av, Wy; tA AtA, WA (Y Coo | v, ev; tA AEA

Cs, | p* Ap® WpA v, Wy, p"; Y Gy |v,ev; phept

Cy |V, Mv, Av, Wy, tM,MtM, lA,WtM C; |v,ev; tM,etM

Ci, |a Aa, Wa,v; t* Cy |ab

second-order symmetric tensor-valued

Cov | LALAW-WA vQV,VOAWV+WvQ@y, Co [1,A,Ae — €A, Vv®,
vRu+u®v;, A@th A(T:S)— (T:S)A VREV+EVRY

Cn |LAp*®p", AW-WA vov,P, Cs |1,A Ac—cA vov,
VOWv+Wvey; TN AP:T)—(P:T)A VREeEV+eEVQRY

Cyp |[LM,AMW-WMvVv,vRu+u®yv; C; |1,M, Me
T, MM, M(T:S)— (T:S)M

Cn |l,a®a A a@Wa+WaRa a®v+vea, T C, |la®a,b®b,a@b+b®a

second-order skew-symmeric tensor-valued

Cor |AB—BA, W, vRAV—AVRV,VQu—u®yv; Cx | €
ARAr AP O, vR'—t"®V, T:S—S:T

Ca [P *@APA—Ap @ p* AB-BAW,vp —p'Qv, |Cs |e
VRAV—AVRV,vRu—u®yv;, P: T-T:P

iCy, (W MA-—AM,vEMV-MvRVv,vQu—u@y; Cy |e
vatM Moy ("Mt —Mt"@t", T:S—S:T

Cn |[a®Aa—Aa®a, W,a@v—vQRa; a@t* —t?*®a |[C, |e

third-order tensor-valued

Coor |VOVEV, {vR 1}, (VR A), (AvR 1}, (vEVOWY), |Cx |VRVAY, (VRVREeV),
(Wye 1}, (voveu)y; T, (At*@A), {(t* @1}, {vel}, {evel}; T, Te,
{(At* @1}, TAB — BA), TW, (Wit @ 1}, {t' ©1} {Pe1}, {et*e1)

Cin |P,(Ap* @A), {p* @1}, {Ap* ®1}, PAB-BA), |G [P, Pe, {p*o1],

PW, (Wpr @1}, vovey, {val}, {p'@1}, (v&A), {epP @1}, {v@ 1)},
(Wyv@1)},PvQu—u®v), T, {t'®1}, {* ®1)} {eve 1)

Cu |VOVOY, (vOM), {v@1}, {(Mv@ 1}, (v®A), C; | (v@M), (ev@M), {v®1},
{(Ave 1}, Wy M), (Wya1}); T, MM @ M), {ev®1l); T, Te, {M@1},
{Me1}, (MMe1}, TW, TMA - AM), {eMe1)
wiMe1), {t*e1)

Ch. |a®Ra®a {a®l},(a®A), {Aa®l}, (awa®@Wa), | |a®a®a, {a@l},

{Wa®l),(a@a@v), {val};T, {{*®1}

b®b@b,{b®1}

[667]
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3.2. Representations for hemitropy Co. ()

From the fact that € characterizes the group C' it follows that the hemitropic
functions of A, W, v and T may be considered as isotropic functions of A, W, v,
T and €. Noting that € is a non-zero second-order skew-symmetric tensor, from
(2.5), (2.6), (2.10) - (2.12), (2.17) and (2.18), by substituting € for W in (2.6), (2.12)
and (2.18), we obtain complete representations for hemitropic tensor functions
of A,, W, v, and T, as shown in Tables 2 and 3.

3.3. Representations for Cs,(P)

To determine the complete isotropic tensor function representations of A,
W, v,, T» and P, we consider the following cases instead of the cases in Sec.2.1.
First suppose that P;; = 0. We have the following invariants and form-invariants
instead of those in (2.5)-(2.9), respectively.

VeV, Vev,, VeAY, trA,, vep', P:Ty; v; vev, 1; P, {v@l},
trWz, VeWyv,, trWWe, v:A Wy, tr(P: T\)W; Wy;
vOWv+Wveyv, W, PW, (Wv@ 1},
u-u, uev,, ue-pte veWen, ve (P Ty)u; u;
(3.4) P vRu—-u@v, PvQu—-u@v), {ul},
trA?, trAA,, vg-pA, ve AWy, vetry; pM:
A; VRAV-AVRY;, (vRA), {pA®1},
T:T, v, (P:T)v, v-t*, tr(P: T)W, T:Ty;
£ T: BE:T-T:B: T, I &1}
Second, suppose that P51 # 0. Instead of (2.5) and (2.9), respectively, we have
VeV, Vev,, VoAV, trA,, vepY, Vet v VAV, 1; vOVRYV, {ve 1},
28 Vor P, vepte, veWep', PITy; pY; P vep' —p'@v; P, {p'®1).

Finally, from (3.4), (3.5) as well as (2.10) - (2.15), replacing T by P, we can obtain
the complete representations for tensor functions of A,, We, v, and T, under
C3,, as shown in Tables 2 and 3.

3.4. Representations for C3(P,€)
If there exists a non-zero vector v among v,, we can write, instead of (2.5)

and (2.6), the equations

(3.6)  vev,, veev,, v-p', veep', trA,, v-A,v, v-A eV, treW,, P:T),
tr(P:Tye; v, ev; 1, vRv, vRev+ev@y; g P, Pe, {v@l}, {evel},
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where the obviously redundant invariant v-v has been removed because of the
identity (v-v)® = (v-p")? + (v+ p*)? according to (2.2). Setting T = Pand W = ¢
in (2.10)-(2.12), (2.17) and (2.18) together with (3.6), we arrive at the complete
representations under C'3, as shown in Tables 2 and 3.

3.5, Representations for Cy, (M)

To determine the complete isotropic tensor functions of A,, W, v,, T) and
M, we consider the following cases instead of the cases in Sec. 2.1. First, suppose
that M, = 0. We have the following invariants and form-invariants instead of
those in (2.5) - (2.9), respectively.

VeV, Vev,, V- My, trMA,, trA,, v-tYy; v; M, 1; (voM), {v®d1},
trWz, VeWy,, trWW:, trMA,W, v‘Wt‘“,\; Wy;
MW-WM; W; (WyvaM), {(Wvg 1},
3.7 u-u, uev,, veAu, veWeu, u- My up vouzu®y; (ueM), {ue1},
trA?, veAv,, trAA,, trMAW,, vetry; Av;
A; MA-AM;(v®A),{Ave 1),

TIT, vpe tM, vetp,, ve WetM, TiTy; ™ T; MT'-T'M; T, {Me1).
Second, suppose that A, # 0. Instead of (2.5) and (2.7), respectively, we have

VeV, Vev,, Ve AV, Ve My, trA,, vot'y; v; vav, 1; vavey, {vel},

(3.8) trMA,, v-Myv,, v-MWv, v-tM; Mv; M;
vOIMy-Mveyv, (vM), (Mv 1}.
Finally, from (3.7), (3.8) as well as (2.9)-(2.14), replacing A by M, we can obtain

complete representations for tensor functions of A,, W, v, and T, under C5,,
as shown in Tables 2 and 3.

3.6. Representations for C2(M, )

Instead of (2.5) and (2.6) we have

(3.9) v-Mv, v-Mev, vev,, v-ev,, trA,, trMA,, trMA,e, N
veetMy, treW; v, ev; 1, M, Mg; ¢;
(voM), (eva M), {vidl}, {eval},

where the redundant invariant v.v is removed due to the identity (v-v)? =
(v+Mv)? + (v+Mev)? Setting A = M and W = ¢ in (2.10)-(2.12) together
with (3.9), we immediately obtain the complete representations under C3, as
presented in Tables 2 and 3.
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3.7. Representations for C,,(a)

Setting v = a in (2.5)-(2.9) yields immediately the complete isotropic tensor
function representations of A,, W, v,, T) and a; namely, the complete tensor
function representations of A,, W, v, and T, under Cy, as given in Tables 2
and 3.

3.8. Representations for Cj(a, €)

Settting v = a and W = € in (2.5) and (2.6) yields immediately the complete
representations with respect to C1, as given in Tables 2 and 3, where €a is replaced
by b because of ea = +b.

4. Proof of the irreducibility of the derived representations

To verify the irreducibility of the representations established above in Sec. 3,
we employ the technique developed by Pennist and Trovato [5]. It is obvious
that the representations in Tables 2 and 3 with respect to C;, Cy and C3 are
irreducible. With respect to Cw,, Coo, C3,, C2, and Cy,, the irreducibility of
all invariants, vector form-invariants, and second-order tensor form-invariants in
Tables 2 and 3 when T, = 0 has ben proved by ZHENG [8]; the irreducibility of all
additional invariants and form-invariants when non-zero tensors exist among T,
is verified in Tables 4 and 5, respectively; and the irreducibility of all third-order
tensor form invariants is confirmed in Table 6.

Table 4. Irreducibility of the function bases.

variables invariant variables invariant
CCX)U

T=0and P T:T T=P,v=uW=+4e veWwt'

T=P,A=1M theAl? T=P,v=bu=b+3a | u-t"

T=P+Pe, A=M, thep it T=P, S=+P T:S

B=M=++3Me

T=P+Pe,A=M, W=+ | t" AWt | T=P,S=Pe, A=+Me | t*-As?
T=P,v=za vet¥ T=P,S=Pe,A=M, trT:S)AB
B=M=+3Me
T=P,A=M,v=x=a vett T=P,S=Pe, W= e tr (T : S)W
Coo

T=0and P T:T T=P,v=+b veet'
T=P,A=4M Ao AA T=P,S=4P T:S
T=P+Pe,A=M tA+Aet® | T=P,S=+Pe tr (T : S)e

T=P,v=*a vet'




Table 4 [cont.]

variables invariant variables invariant
Cs
T =0 and Pe T:T T=Pe,v=+4b vet'
T=+P P:T T=Pe, A=M=+v3Me,v=a|vet?
T = Pe, A = +Me, prrAd T=Pe,v=au=azxV3b us(P: T
T=Pe, W= te tr(P: T)W [T =Peg, S =4Pe, T:S
T=Pe,A=M,B=M=V3Me | tr(P:T)AB
Ca
T=0and P+ Pe T:T T=Pe, A=4Me,v=a veth
T =P and Pe MMM | T=Pe, W=de,v=2a ve WM
T=R+Pe A=+M Mo A M T=P+Pe,S=+P+Pe) |T:S
T=P+Pe W=e tM.MWM | T=P+Pe, S =+(P-Pe tM. MM
T=P+Pe,v==x(a—b) vet' T=P,§=Pe A=1Me tr (T:S)MA
T=P+Pe,v=1(a+h) vetM T=P,S=Pe W= ze tr(T : S)W
Clu
T =0 and Pe ] T =Pe, W= ¢ a Wi
T==P ast* T=Pe, v=+1b vet?
T =Pe, A=4M asth T = Pe, S = +Pe T:S

Table 5. Irreducibility of vector- and second-order tensor-valued function representations.

variables form-invariant | variables form-invariant
vector-valued
Cor | T=P+Pe,A=M | t* T=P,A=MW=¢ |W
T=P+Pe,A=M | At} T=P,v=b t*
Co |T=P,A=M i T=P,A=M eth
Ca. T=Pe,v=a t¥
Chn |T=P+Pe M T=P,A=Me G
T=P+Pe MM T=P,W=c¢ wiM
Cn | T=Pe a t* T = Pe t*
second-order symmetric tensor-valued
Cov | T=P+Pe,A=M | " " T=P,S=Pe, A=M | A(T:S)—(S:TA
T=P+Pe,v=a | T
Cy, |T=Pev=a ) T=Pe,A=M AP:T)—(T:P)A
Cn |T=P+Pe Mo M T=P, 5="P¢ M(T:S)—(S: T)M
T=Pev=a i G
Cn | T=Pe s
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Table 5 [cont.]

l variables

form-invariant

variablcs

form-invariant

second-order skew-symmetric tensor-valued

Coov

CJU
Cu

Clu

T=P+Pe, A=M
T=P+Pe,v=a
T = Pe

T=P+Pe
T=Pe,v=a
T =Pe

A*RAr —AN
vt —t'®v
P+T =T:P

lM oM lM _ MIM ® lM

votM_ Mgy
aQt*-—1"Qa

@t T=P, S =Pe

T=P,S=Pe

T:S-8:T

T:S-8:T

Table 6. Irreducibility of third-order tensor-valued function representations.

variables form-invariant | variables form-invariant
icir =a VRVRY T=P+Peg,A=M T
v=a {(vel) T=P+Pe,A=M (AtA ® A)
A=Me, v=a (v® A) T=P+Pe,A=M {*e1)
A=Me,v=a {Ave 1} T=P+Pe, A=M At @1}
W=¢gv=a (v ve Wy) T=P+Pe, A=M, T(AB—-BA)
B =M+ \3Me
W=¢gv=a {Wyv@1} T=P, W=e TW
v=au=a+3b | (v@vau) T=PA=MW=¢ Wit @1}
T=P+Pe,v=a {tY®1}
o v=a VRVOY T=P,A=M T
v=a (vRv®ey) T=P,A=M Te
v=a {ve1} T=PFA=M {(*e1}
v=a {ev® 1} T=P,A=M {e* @1}
Cw | A=Me P A=M,B=M+3Me | P(AB — BA)
A= Me (Ap* ® A) A=MW=¢ (wpre1)
A=Me {(pP* @1} A=M+V3Me,v=a | (v@A)
A= Me {Ap* @1} W=¢gv=a (Wyv® 1)
W=e¢e PW v=au=a+3b Pv@u—-u®v)
v=Dh VEOVYRY T=Peg,A=M T
v=b {(ve1} T=Peg,A=M (*@1}
v=>b {p*®1} T=Pe,v=a {t"®1}
Cy v=a+b VROVRY T=P+ Pe T
v=a+b (ve M) T=P+Pe MM e M)
v=a+b {(vel} T=P+Pe (Me1)
v=a+b {Mv®1} T=P+Pe (MT™M @1}
A=Meg v=a (v A) T=P A=Me T(MA — AM)
A=Me,v=a {Ave® 1} T=P, A= Me {(t*e1}
W=¢v=a (Wv@M) T=P, W=§ T™W
W=¢v=a {(Wyve 1) T=P,W=¢ wiMe 1)
Cu A= Me a®a®a W=¢ {(Wa® 1}
A+ Me (a® A) v=>b (a@a®v)
A =Me {a@1} v=Db {v1}
A=Me {Aa@1) T=Pé T
W=e¢ (a@a®@Wa) | T=Pe {t' @1}
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