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Stability of the wall jet formed by the impingement 
of a single-phase jet 

i. B. OZDEMiR (iSTANDUL) 

THIS PAPER DESCRIDES a theoretical investigation of the possibility that the large structures of the 
wall jet flow formed after oblique impingement of an axisymmetric jet were generated by the 
flow instabilities, so that the experimentally reported discrete frequencies were synonymous with 
instability modes. The wall jet fl ow was triple-decomposed into a time-independent, pseudolaminar 
motion defined by the time-averaged velocity fi eld, upon which incoherent and coherent turbulent 
fluctuations were superimposed. Solution of the inviscid, one-dimensional fl ow equations with 
large coherent structures, whjch were modell ed by spatially evolving waves, was given in detail 
and revealed that the distribution of the radial fluctuation intensity and the frequency of large 
structures compare well with the experiments j ustifying the deterministic nature of the coherent 
motion. 
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amplitude modulation functions, 
real-valued frequency, 
complex amplitude of the rotati ng vector defined in Eq. (4.2), 
nozzle-to-pla te distance, 

V-1. 
real-valued azimuthal wavenumber, 
paramete r defined in Eq. (3.2), 
coherent pressure flu ctuation, 
incoherent pressure flu ctuation, 
instantaneous value of pressure, 
time-averaged value of pressure, 
total power associated with frequency /, 
radial coordina te defined from geometrical impingement point, 
wetted radius defined in Eq. (2.3), 
Reynolds number, 
parameter defined in Eq. (3.1 ), 
time, 
components of coherent velocity flu ctuations in three directions, 
components of incoherent velocity flu ctuations in three directions, 
components of instantaneous velocity fi eld in three directions, 

components of time-averaged velocity field in three directions, 
maximum of the time-averaged radial ve locity component, 
coordinate normal to the plate, 
wall distance at which time-averaged radial velocity 
attains half of the maximum value, 
superscript refers to nondimensio nal form of variables. 
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Greek Symbols 

a complex-valued wavenumber, 
a; imaginary part of a, 

ar real part of a , 
{3 real-valued circular frequency (2lr f), 
'I parameter defined in Eq. (3.1 ), 
"Y half-cone angle of the inflowing jet, 
,\ wavelength of the educed coherent structures, 
v kinematic viscosity of the air, 
4J azimuthal coordinate, 
(} density of the air, 
u parameter defined in Eq. (3.2), 
8 angle of impingement, 
( parameter defined in Eq. (3.2), 
r parameter defined in Eq. (3.2). 

1. Introduction 

i.B. 0ZDEMiR 

THE RADrAL WALL JET formed after impingement of an axisymmetric jet on a flat 
surface has been of interest in many engineering applications, including heat o r 
mass transfer to or from the flow, and the interaction between the pressure waves 
radiating from the plate and coherent structures of the inflowing jet. In response 
to these enquiries, time-averaged fl ow fields have been explored for normal im-
pingement usually in the vicinity of the stagnation region, but knowledge of the 
downstream evolution of the fl ow has remained elusive. Recently, the radial wall 
jet has attracted particular attention in terms of instantaneous patterns of large 
structures (Ho and NOSSEIR [1 , 2], LANDRETH and ADRIAN [3]) whose charac-
teristic dimensions are commensurate with the width of the wall jet and lead to 
the time-averaged flow field with higher turbulence intensities (POREH, TsuEr and 
CERMAK [4]) than in aerodynamic boundary layers. b zoEMiR and WHITELAW [5] 
investigated the downstream evolution of the time-averaged and instantaneous 
flow fields of a radial wall jet formed after oblique impingement of an axisym-
metric jet, and showed that the symmetry of the toroidal vortices (DIDDEN and Ho 
[6]) was distorted as impingement deviated from normal, resulting in a complex 
cluster of concentric yet asymmetric toroidal vortices. 

It is known (Ho and HuERRE [7]) that the evolution of vortical structures in 
laminar and turbulent shear layers is governed by essentially the same dynamical 
processes, so that the concepts of hydrodynamic stability can be applied to turbu-
lent shear layers. Inflectional instability o f the shear layers has taken a great deal 
of attention, as for example GREGORY, STUART and WALKER [8] and STUART [9], 
because disturbances generated near the point of infl ection could dominate the 
fluctuations and propagate at a speed smaller than the corresponding velocity at 
the inflection point. Ho wARD [10] and TsuJI et al. [11] argued that the number of 
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distinct unstable disturbances associated with the inflection points could not ex-
ceed the number of neutral modes. The roll-up of travelling instability waves into 
the periodic array of vortices in a plane mixing layer was studied by MrcHALKE 
[12] and MICHALKE and HERMANN [13] in that the evolution of disturbances in 
the basic flow direction seemed to be better modelled by spatially growing dis-
turbances and, when the width of the flow region varied considerably, quantities 
controlled by the history of the flow development required an additional scaling 
parameter to account for the coordinate stretching (BotJrHIER [14], GASTER [15], 
CRIGHTON and GASTER (16]). 

The purpose of the present study was to examine the possibility that the large 
vortical structures observed by OzoEMiR and WHITELAW [5] in their radial wall jet 
were generated by the flow instabilities, so that the discrete frequencies measured 
were synonymous with instability modes. The conjecture that the wall jet flow was 
not so obviously nonlinear gave impetus to the present linear analysis and should 
not be far from reality, since the array of vortices observed was discrete and 
no nonlinear vortex interaction processes, such as vortex pairing or tearing as 
described by HussAIN [17], were observed. 

2. Equations for coherent structures 

It can be envisaged that large scale motion of the wall jet was caused by deter-
ministic instability waves which were, together with stochastic background fluc-
tuations, superimposed on the pseudolaminar flow defined by the time-averaged 
velocity field. Therefore, since the wall flow was temporarily stationary, an instan-
taneous quantity can be decomposed into a time-independent mean, a coherent 
and an incoherent turbulence quantities (HuSSArN [17], HuSSAIN and REYNOLDS 
[18]) and, in cylindrical coordinates, the instantaneous velocity vector can be given 
as (see Fig. 1, for the coordinate system and the flow domain) 

r 

FIG. 1. Schematic of the flow configuration. 

Ur(r,</>,z,t) = Ur(r, </>,z) + u-r(7·,</J,z,t) + ｵｾＨｲＬ＼Ｏ＾Ｌ ｺ ＬｴＩＬ＠

(2.1) U,p(r, </>, z, t) = u,p(r , </>, z, t) + ｵｾＨｲＬ＠ </> , z, t) , 

Uz(r, </>, z, t) = U z(r, </>, z) + Uz(r, </>, z, t) + ｵ ｾ ＨｲＬ＠ </>, z, t), 
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with the pressure field 

P(r, cp, z, t) = P(r, cp, z) + p(r, f/J, z , t) + p'(1·, cp, z, t), 

where the over-bar, tilda and prime refer the quantities for the mean flow, the 
coherent (wave motion) and incoherent (random) turbulent fluctuations, respect-
ively. Note that, based on the surface flow visualisation experiments (5), the mean 
azimuthal velocity, U ,p, was assumed to be zero. Provided there is a large differ-
ence between the length scales of the coherent and incoherent motions (STRANGE 
and CRIGHTON (19]), the incompressible Navier- Stokes equation can be used 
with the triple-decomposition to yield nonlinear equations for the wave motion 
(OzoEMiR (20]). Linearisation of such equations implies that the space-time evol-
ution of one wavenumber associated with a given eddy size will not afTect that of 
the others so that the coherent structures develop independently. Although the 
question often arises as to the extent of validity of linearised theory, MICHALKE 
(12) points out that the error due to the lin earisation of the disturbance equations 
is larger for higher disturbance frequencies than for lower ones. This justifies the 
present linear analysis since the frequencies measured in the wall jet were fairly 
low. 

Provided that the deterministic motion is associated with the discrete part 
of the spectrum accessible by the modal equations, the coherent components of 
fluid motion can be represented by instability modes even though the set is not 
complete (BETCHOV and CRIMrNALE (21 ], DRAZ IN and R EID (22]). For the present 
analysis, disturbances travelling and evolving in the basic fl ow direction were 
of interest and, since the growth rates obtained from a stability calculation for 
temporally growing disturbances cannot be transformed lin early with the phase 
velocity into spatial growth rates (MICHALKE (12]), solutions to the linearised 
equations can be assumed of the form 

(2.2) 

Ur = Ar(z ) exp{ i(ar- {3 t + mf/J)} + (*) , 

u,p = A,p(z) exp{ i(ar - {3t + mf/J)} + (* ), 

Uz = A .. (z)exp{i(ar- {3 l + mf/J)} + (*), 

p = Ap(z)exp{i(ar- {3l + mf/J)} + (*) , 

where ( *) refers the complex-conjugate term, Ar, A z, Aq,, and Ap are the ( com-
plex) amplitude modulation functions of u,., Uz, uq,, and p, respectively. {3 is the 
real-valued circular-frequency (21r f) and a is the complex wavenumber defined as 

a = ar + ia; , 

where ar is the spatial wavenumber (27r /.X), and ai is the rate of spatial evolution 
of a given component. It should also be pointed out that the curvilinear coor-
dinate, cp, introduces a direction which can permit the evolution of the discrete 
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azimuthal modes of instability similar to the helical modes of the axisymmetric 
shear layer (STRANGE and CRIGHTON (19), PI.ASCHKO (23), COHEN and WYGNANSKI 
[24]). Indeed, the azimuthal instability modes of the wall jet flow could be a con-
tinuation of the helical shear layer structures of the inflowing jet which were, 
in some cases, known to survive after impingement (WIDNALL and TSAI [25], 
LuGT [26]) leading to large correlation between the wall jet and inflowing jet 
turbulence. The above formulation, therefo re, accounts for the presence of the 
spinning modes (with azimuthal wavenumber, m ) which, in some cases, have been 
as unstable as the axisymmetric modes (COHEN and WYGNANSKI [24]). 

Since the stability of the flow is a local characteristic, the radial velocity maxi-
mum, U r,M(r, 4>), has to be selected as the velocity scale, and the wall distance, z, 
is assumed to scale with the half-velocity thickness, z0.5• It was shown by OzoEMiR 
[27] that the azimuthal symmetry of the wall flow was distorted due to the angled 
impingement of the inflowing jet and, there fore, it was necessary to take into 
account the azimuthal variation of the radial spreading. However, transforming 
the distorted coordinates of the wall jet flow of the angled impingement to those 
of the normal impingement, which can be treated analyti cally by the cylindri-
cal coordina te system centered at the geometrical impingement point, required 
knowledge of the function relating the azimuthal and radial coordinates, which 
is difficult to deduce from the contour plots of surface pressure, as for exam-
ple OzDEMiR and WHITELAW [5] (their Fig. 2.6). Here a heuristic approach was 
followed in which the radial distance from the geometrical impingement point, 
r, is assumed to scale with a so-call ed wetted radius, rw(B, 4>), which varies azi-
muthally as 

(2.3) rw(B, 4> ) = Il { sin(B cos 4>) + cos(B cos 4> ) tan(B cos(l 80 - 4>) + 1)} , 

where 1 is half the cone angle of the spread of the inflowing jet and was taken 
as 15 degrees from the flow visualisation pictures. The distributions of rw are 
shown for () = 0 and 20 degrees in Fig. 2 and assumes elliptical shapes with 

01 0/ 

01 01 Ql 

01 01 

FIG. 2. Polar plot of the azimuthal distributions of the wetted radius for the impingement angles 
of B = 0 and 20 degrees. 
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increasing distance to the geometrical impingement point along the <P = 180-
degree direction as impingement deviates from normal. 

Further simplification of the formulation occurs when Reynolds number is 
large so that the viscous effects become very small , fin ally leading to 

continuity: 

(2.4)1 . *A* zo.s A* i1n" zo.s A* dA; _ 0 za r + - - r + "' + -d - ' 
r*rw r*rw ｾ＠ z 

r-momentum: 

(2.4)2 _ '{3*A* . ·=-u A* zo.s ( u; {)U r ,M 8Tr,. ) A* 
t T + ZQ T T + - a + a r 

Tw Ur,M 1' * r* 

zo.5 ( Tr,. {)U r,M 8Tr,.) A* =-u dA; 8Tr,. A* . *A* _ O 
+ r*r U ｾ＠ + [) A-. <I> + z dz"' + Dz• z + w P - ' 

w r,M 'P 'P 

cl>-momentum: 

(2.4)3 
- · lA* 

- i{3*A* + ia*YJ* A* + Urzo.s A* + u•':.___j_ + im*zo.s A*= 0 
<I> r <I> r*rw </> z dz* r*rw P ' 

z-momentum: 

(2.4)4 _ "{3*A* . ·=-u A* zo.s ( u: DU r,M DV: ) A* 
t z + ta r z + - [) + a r 

Tw U r,M r* 7' * 

zo.s ( V: DU r,M DV:) A* u· dA; D7J; A* dA; _ O +-- ---- + -- + -+-- +--r*r U {) A-. {) A-. <I> z dz* {)z• z dz* · w r,M 'P 'P 

Letting A; = Y1, A; = Y2, A; = Y3, A; = Y4, and rearranging, the following set 
of first-order ordinary differential equations can be obtained 

dY1 _ 1 { '{3*Y . ·=--u y zo.s ( Tr,. 8U r,M 8Tr,.) y - - ｾ＠ t 1 - ta 1 - - ｾ＠ - - + - - 1 
dz• U r r w U r M 8r* 8r* 

z ' 

Z0.5 ( V: {)U r ,M au;) }' {)U; y . •v} 
ＭＭＭ ｾＭＭＭＫＭＭ 2---3-tCt .J4 

r*rw Ur,M 8 4> 84> az· ' 

(2.5) dY2 _ 1 { .
13
.,1 . ·u·v Tr,. zo.s y im* zo.s v} 

- - =; t I 2 - ta r 12 - -- 2 - 14 , 
dz* U r•r r•r z w w 

dY3 . • zo.s im* zo 5 - = -ta Y1- --Yl- · Y 
dz* r*rw r*rw 

2
' 
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(2.5) dY4 _ "{3* Y . • u•y zo.s ( u: 8U r,M 8U: ) y 
- - t 3 - tO: r 3 - - =--- --- + -- 1 
dz* r U 8r• 8r* w r,M [cont.] 

_ zo.s ( U: 8Ur,M + 8U: ) y
2 

r*rw Ur,M 8</> 8</> 

=-- ( . * zo s i m* zo s ) 8 U: + Uz w Y1 + -·-Y1 + . Y2 --
8 

Y3. 
r*rw r*r w z* 

Note that when U: -+ 0, Eqs. (2.5)1,2 have singularities which were introduced by 
disregarding the terms in Re-1• The singularity due to diminishing value of U: 
occurs at the wall (z* = 0) and can occur at an interior point if there is a local 
vertical flow reversal within the fl ow domain. Indeed, the vertical fl ow reversal in 
radial wall jet was fir st observed by LANDRETH and ADRrAN [3), and there is a clear 
evidence that flow reversal becomes stronger in oblique impingement (OzoEMiR 
and WmTELAW [5]). The difficulties associa ted with the singularity are discussed 
in detail by O zoEMiR [27) and here the emphasis is given to one-dimensional 
mean fl ow for which the equations have no singularity. If the basic fl ow fi eld is 
assumed to be locally parall el so that u; is the only velocity component of the 
undisturbed wall jet, with u: = 0 everywhere, the set (2.5) further simplifi es to 

(2.6) 

dY3 
dz• 

dY4 
dz• 

. *Y zo.s }-' im* zo.s }' = - tO' 1 - -- 1 - 2' 
r "1'w r·rw 

with Y1 and Y2 defined as 

, 7 _ { ZQ.5 ( u; 8Ur,M o7J*,.) }-' o7J*,. 1, · •v } 
.l 1 - -- =--- --- + -- 2 + --. 3 + tO: I 4 

r*rw U r,M o</> o</> 8z• 
1 

(2.6') 
.13 • . *U* zo.s ( u; oUr,M ou; ) ' 
t - tO: - - =----- + --

T Tw U r,M Or" OT* 

y2 = (i m*zo.5y4) /(i /3*- ia·u;- u;zo.s) . 
r*rw r*rw 

3. Mean flow, boundary conditions and solution procedure 

In order to obtain the full transverse eigensolution at each radial position, the 
coefficients of the modal equations, which are functions of the mean flow par-
ameters, are required. The streamwise development of the mean flow, therefore, 
a!Tects the evolution of the instabilit y modes, which has been considered with 
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multi-scale expansions defining the divergence of the mean flow (GASTER [15], 
CRIGHTON and GASTER [16), PI..ASCHKO [23]) and, since the local mean velocity 
profiles are the results of the nonlinear interactions, an implicit nonlinearity is 
imposed on the solutions. In the present analysis, mean flow parameters and 
their variations were provided in the form of empirical relations (OZDEMiR and 
WHITELAW [5]) as representatives of the pseudolaminar motion upon which the 
perturbations were superimposed. The mean radial velocity profiles nondimen-
sionalised by the local maximum were simil ar at large radial distances 

(3.1) 

(see also Table 1) with the streamwise evolution represented by 

(3.2) 

Table 1. Variation of 11 and s. 

1/J (") : 

'1) 

s 

0 

1.42 

0.54 

90 
1.38 

0.52 

180 

1.32 

0.54 

which fits the experimental data (Fig. 3 and Table 2). 
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fmlsl 
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f!l = 0° - - -1--- Ill = 180° 

0020 0 10 rlm l 008 018 

FIG. 3. Variation of the maximum of the mean radial velocity along the line of incidence. 
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Table 2. Parameters of Eq. (3.2). 

if> (0) : 0 180 

( 0.015 -0.015 

p 0.49 0.22 

T 1.26 1.15 

(1 0.045 0.078 

The set of first-order differential equations requires a condition to be specified 
for each equation to obtain the transverse eigensolution. The vertical velocity 
component at the wall should be zero due to the impermeable plate and, thus, 

(3.3) at z* = 0. 

The eigensolution is defin ed over a semi-infinite interval [ z* = 0, z* = oo] 
with the upper boundary occurring at in fi nity but, for numerical purposes, it was 
replaced by a finite interval in which the condition at ｺ ｾ＠ = oo was assumed to 
occur at some finite ｺｾ＠ = ｺｾ Ｌ＠ so that the domain of the transverse eigensolution 
was forced to coincide with that of the mean Oow where u; = 0 and the pressure 
attained the ambient value, i.e., 

(3.3') at z* = ｺｾＮ＠

The eigenvalue problem defined in Eqs. (2.6) includes two coupled fir st-order 
linear ordinary difTerential equations. The solutio n was sought for the eigen-
values, a, and the corresponding transverse e igensolutions, Yk(z* , a), given the 
mean-Oow parameters and the values of f3 and m. The solution procedure was 
similar to that of KELLER [28] with the reformulation of the equations, resulting 
in a nonlinear two-point boundary value problem. In order to avoid the grow-
ing solutions during the integratio n through the entire domain (BETCHOV and 
CRIMINAL E [21 ]), the length of the domain of integration was divided into two 
in which a parallel shooting algorithm was used with the integration proceeding 
to an intermediate point by launching initial guesses from both ends of the in-
terval and a matching of the solutions at the midpoint. The computations were 
performed on a DEC 5000 workstation in double precision and iterations for the 
multidimensional Newton-Raphson root finding technique concluded when the 
discrepancy vector was within some specifi ed accuracy (typically 10- 15). 

4. Numerical results and comparisons with experiments 

For the first ten azimuthal modes and temporal frequency from 0 to 100Hz, 
the set of inviscid equations (2.6) was solved along the line of impingement at 
radial positions where the experimentall y observed vortices were most apparent 
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and the mean radial velocity achieved the similar form. The nondimensional 
amplification rates at r I r w = 2.274 along the 4> = 0 degree direction, Fig. 4 a, are 
negative for all the waves considered, indicating decaying characteristics. Except 
for the axisymmetric (m = 0) and the fir st three helical modes (m = ± 1, ±2 
and ±3), the curves show simil ar trends where - ai zo.s fir st increases with f and 
tends to a constant value which is lower for higher helical modes. For these 
four exceptions, there is a slight peak at around 7.5 Hz before the subsequent 
fall to a constant level, indicating a narrow range of frequencies at the lower 
end of the spectrum with the least damping relative to the other waves. It is 
interesting to note that the axisymmetric and the first helical modes have almost 
the same frequency response, which is consistent with the findings of COHEN and 
WYGNANSKI [24]. In order to trace the evolution of the waves, with attenuation 
occurring in the streamwise direction, the calculations were repeated for r I r w = 
3.324 and the results of Fig. 4 b show simil ar trends but, as would be expected, 
the least damped wave was shifted to a lower frequency, f = 3.1 Hz. This is 
consistent with the measured spatial evolution of the one-dimensional spectrum 
of radial fluctuation component of 6 zoEMiR and WHITEI..AW [5] in which a discrete 
frequency of 3.25 Hz was dominant at the same radial positi on. The results show 
that an increase of the width of the shear layer with the corresponding decrease 
in the mean energy along the streamwise direction, is accompanied by a negative 
amplification rate, i.e., attenuation with a continuous shift of the least attenuated 
instability waves towards lower frequencies. 

The wavenumber-frequency spectra of Fig. 5 reveal that the wavenumbers are 
positive in the frequency range, where - ai zo.s has a maximum, and that a phase 
reversal occurs for the axisymmetric and some helical modes ( - 6 ::; m ::; 6), 
so that negative wavenumbers at large frequencies indicate upstream moving 
waves. The least attenuated waves move downstream with a positive phase velocity 
and indicate convection of the coherent turbulence along the mainstream with 
a decay quantified by the rate of attenuation of the waves. The relatively higher 
attenuation of the upstream moving waves is interesting in that the propagation 
of disturbances from the edges of the wall jet cannot interfere with the turbulence 
structure of the wall flow, and this is consistent with the fact that wall jet is not 
dependent on the conditions downstream, but affected by the initial conditions 
of the inflowing jet even at large radial distances. It is clear that if different 
frequencies were dominant at different wall distances, a transversal (vertical) 
eigensolution structure with a phase reversal occurring at a certain wall distance 
could lead to a situation which would be simil ar to the spatial phase reversal 
observed by SATO [29] . 

An attempt was made to compare the calculated distribution of the one-sided 
power spectrum of the radial flu ctuation intensity for axisymmetric structures 
(m = 0) with that of measurements at 1)1·w = 2.274 and 3.324 along the 4> = 0 
degree direction. From the Eq. (2.2)1, with a = ar + iai, space-time variation of 
the radial fluctuation that would be measured with a probe fixed at a point in the 
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Eulerian coordinate, can be written as 

(4.1) Ur = [Ar (z)exp ｻｩ｣ｾｲｔ Ｍ a;r + im<j>)}]exp(- i;Jt) + (*), 

where the term inside the bracket represents the complex amplitude of the vector 
rotating at a circular frequency f) so that 

(4.2) F(J) = Ar (z)exp{iarT- a;r + im<j>)} . 

As previously argued in Sec. 2, the complex conjugate term, ( * ), in Eq. ( 4.1) im-
plies that each component at a frequency f is matched by a component at - f 
which has equal amplitude so that, except for the case of f = 0, the total power 
associated with frequency, f, is given (RANDALL [30]) 

(4.3) 
IP'(J) = F(Jf = [Ar(z) exp {i arr- a ;r· + im4>)} ]

2 

2 2 

Since the eigenfunctions were determined except for the arbitrary multiplica-
tive constant, the axis for the power spectrum in Figs. 6 and 7 has an arbitrary 
scale. A remarkable feature is that the large peak at the outer layer diminishes 
as the wall is approached and shifts towards sli ghtly higher frequencies, and this 
is more evident in the contour plots. This trend is consistent with the measure-
ments of bzoEMiR [27], where it was attributed to the restriction imposed on the 
growth of the inner vortex close to the wall by the outer free shear layer vortices, 
and the calculated values o f the peak frequency are very close to those of the 
measurements particularly fo r r f r·w = 3.324. 

Figure 8 shows radial fluctuation intensities calculated from the one-sided 
power spectrum with f ranging from 0 to 100Hz for axisymmetric and spin-
ning modes, m = ± 1, ± 2, ±3, ± 4, ± 5, ± 6, ± 8, and ± 10 at a radial position 
r frw = 3.324, where the radial fluctuation intensity completed its evolution to· 
wards two-peaked profi le. By matching the amplitude o f the radial velocity fluc-
tuation component to the corresponding experimental value at the wall distance 
z• = 1.25, favorable agreement was found between theory and experiment for 
the whole vertical eigenstructure of the radial fluctuation intensity, with large 
magnitudes occurring near the outer infl ection point. The satisfactory agreement 
of the theoretical radial fluctuation intensity with the experiments was expected, 
since the slightly attenuated waves were known to correlate over a large distance 
of the order of the inverse of their damping ratio (LANDAHL [31 ]), and tend to 
dominate the non-wave-like disturbances and the whole turbulent fl ow field. The 
upper subfigure shows the relative contributions of difTerent spinning modes with 
respect to the axisymmetric mode, so that the first helical mode is almost as 
important as the axisymmetric mode and the contribution was almost negligible 
for m ｾ＠ 10. It is also of interest to no te that the calculations performed at the 
previous radial position, r / r w = 2.274, along the 4> = 0 degree direction yielded 
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FIG. 6. One-sided power spectrum of radial fluctuation intensity for axisymmetric structures 
m = 0, r /rw = 2.274 (U"; axis has arbitrary scale). 

very much the same fluctuation profile, although the measured fluctuation prot le 
was different. Since the vertical mean profil es were difierent at these two racLal 
positions, the results indicate that the mean radial velocity was dominant in the 
perturbed mean flow field but was not sufficient to describe the whole mean vor-
ticity field which was responsible for the generation of the fluctuations (STUART 
[32]). Thus, it appears that the evolution of the mean vertical velocity needs to 
be included in the analysis to account for local changes of the fluctuation distri-
bution when the streamwise component of the mean flow fi eld was similar. Also, 
contrary to the stability calculations of DREWSTER and GEBHART [33] for ｮ ｡ ｴｵ ｾ｡ ｬ＠
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FIG. 7. One-sided power spectrum of radial fl uctuation intensity for axisymmctric structures, 
m = 0, r /rw = 3.324 (ti; axis has arbitrary scale). 

convection over a vertical hot plate, the present profi les of radial flu ctuation in-
tensity do not tend to diminish very close to the wall. This is to be expected since 
the present results are based on simplifi cations of inviscid equations. 

Profiles o f the induced pressure flu ctuations, Fig. 9, reveal that the pressure 
fluctuations can attain a value of 63% at the wall. Again, the relative contribu-
tions of different azimuthal modes are simil ar to those of the radial fluctuation 
intensities. It is interesting to note that the radial velocity fluctuations exhibit far 
more structure than is displayed by the pressure fluctuations but, since pressure 
was not measured across the wall jet, it is difficult to be conclusive about the 
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FIG. 8. Radial velocity fluctuation intensity for f from 0 to 100Hz and m from 0 to ±10. 
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FIG. 9. Pressure flu ctuation intensity for f from 0 to 100Hz and m from 0 to ± 10. 

shape of the profil es. The azimuthal fl uctuation intensity, on the other hand, ex-
hibited a finit e value at the wall and this violation o f the no-slip condition must 
be due to that the flu ctuation intensity was predicted by lin ear, inviscid stability 
analysis of one-dimensional basic fl ow, whereas the measured intensity was gen-
erated by apparently two-dimensional viscous basic fl ow. For the same reasons 
the agreement between vertical velocity fluctuations and the measured ones was 
poor. 
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5. Conclusions 

The coherent turbulence characteristics of the radial wall jet were studied 
using discrete instability waves and linear analysis based on the assumption of 
a one-dimensional inviscid fl ow which was represented by time-averaged radial 
velocity. Calculations were performed in a region where the energy of mean flow 
was decaying so that the instability waves were attenuated with a phase reversal 
in frequency, in which the least attenuated waves were convected downstream 
while the others moved upstream. The trend of spectrum of the radial fluctua-
tion component was well predicted with the dominant frequency shifted towards 
higher values close to the wall, and a good agreement was found in the evolution 
of the spectrum of radial fluctuation intensity in that the spectral information was 
closely correlated with the decay of the mean fl ow energy. 

The shape of the calculated radial fluctuation intensity exhibited a trend with 
larger magnitudes at the outer infl ection point, consistent with the experimentally 
observed array of vortices. The success of the inviscid predictions was attributed to 
the fact that the large coherent structures of the wall jet were associated with small 
wavenumbers, far remote from the viscous subrange, so that viscous dissipation 
did not play any important role in their dynamics (TowNSEND [34]). However, 
the shape of the radial fluctuation intensity repeated itself a t difTerent positions 
despite the variation observed experimentall y, and this led to the conclusion that 
the observed variati ons in the shape of intensity profil es were caused by the 
influ ences of the other components of the mean flow field and particularly the 
mean vertical velocity, whose profi les varied with the radial coordinate, even 
though the radial velocity profiles were simil ar. In other words, the mean vorticity 
was the determining factor fo r the overall performance of the stability predictions. 
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