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Double-diffusive convection in compressible fluids
with suspended particles in porous medium

R.C. SHARMA (SHIMLA), TRILOK CHAND (NALAGARH)
and V.K. BHARDWAJ (SHIMLA)

THE DOUBLE-DIFFUSIVE convection in compressible fluids with suspended particles in porous me-
dium is considered. The suspended particles are found to have destabilizing effect whereas stable
solute gradient, rotation and compressibility have stabilizing effect on the system. The medium
permeability has a destabilizing effect in the absence of rotation but has both stabilizing and
destabilizing effects in the presence of rotation. The stable solute gradient and rotation are found
to introduce oscillatory modes in the system which are non-existent in their absence.

1. Introduction

THE PROBLEM of thermosolutal convection in fluids in a porous medium is of im-
portance in geophysics, soil sciences, ground-water hydrology and astrophysics.
The development of geothermal power resources holds increased general interest
in the study of the properties of convection in porous media. The scientific im-
portance of the field has also increased because hydrothermal circulation is the
dominant heat transfer mechanism in the development of young oceanic crust
(LisTER [3]). Generally it is accepted that comets consist of a dusty “snowball” of
a mixture of frozen gases which, in the process of their journey, changes from solid
to gas and vice-versa. The physical properties of comets, meteorites and interplan-
etary dust strongly suggest the importance of porosity in the astrophysical context.
A mounting evidence, both theoretical and experimental, suggests that Darcy’s
equation provides an unsatisfactory description of the hydrodynamic conditions,
particularly near the boundaries of a porous medium. BEAVERS ef al. [10] have
experimentally demonstrated the existence of shear within the porous medium
near surface, where the porous medium is exposed to a freely flowing fluid, thus
forming a zone of shear-induced flow field. The Darcy’s equation however, cannot
predict the existence of such a boundary zone, since no macroscopic shear term is
included in this equation (JosepH and Tao [11]). To be mathematically compatible
with the Navier - Stokes equations and physically consistent with the experimen-
tally observed boundary shear zone mentioned above, Brinkman proposed the
It—L) V in the equations of fluid
motion. The elaborate statistical justification of the 113rinkman equations has been
presented by SAFFMAN [12] and LUNDGREN [13]. SToMMEL and FEDOROV [14] and
LiNDEN [2] have remarked that the length scales characteristic of double-diffusive
convecting layers in the ocean could be sufficiently large for Earth’s rotation to

introduction of the term g—VZV in addition to — (
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become important in their formation. Moreover, the rotation of the Earth distorts
the boundaries of a hexagonal convection cell in a fluid flowing through a porous
medium, and the distortion plays an important role in the extraction of energy in
the geothermal regions. BRAKKE [1] explained a double-diffusive instability that
occurs when a solution of a slowly diffusing protein is laid over a denser solution
of more rapidly diffusing sucrose. NASON et al. [5] found that this instability, which
is deleterious to certain biochemical separations, can be suppressed by rotation in
the ultracentrifuge. SCANLON and SEGEL [6] have studied the effect of suspended
particles on the onset of thermal convection.

The conditions under which convective motions in double-diffusive convec-
tion are important (e.g. in lower parts of the Earth’s atmosphere, astrophysics
and several geophysical situations) are usually far removed from the considera-
tion of a single component fluid and rigid boundaries and therefore, it is desirable
to consider a fluid acted on by solute gradient and free boundaries. The com-
pressibility and suspended particles are important in such situations. SHARMA and
SHARMA [7] and SHARMA and VEENA KuMARI [8] have considered the thermoso-
lutal convection in porous medium under varying assumptions of hydrodynamics
and hydromagnetics.

Keeping in mind the importance in geophysics, astrophysics and various ap-
plications mentioned above, the thermosolutal convection in compressible fluids
with suspended particles in a porous medium, in the absence and presence of a
uniform rotation, separately, has been considered in the present paper.

2. Formulation of the problem and perturbation equations

Consider an infinite horizontal, compressible fluid-particle layer of thickness
d bounded by the planes z = 0 and z = d in a porous medium of porosity ¢
and permeability k;. This layer is heated from below and subjected to a stable
solute gradient such that steady adverse temperature gradient 3(= |d7T'/dz|) and
a solute concentration gradient §'(= |dC'/dz|) are maintained.

Let p, u, p and V(u, v, w) denote respectively the density, viscosity, pressure
and filter velocity of the pure fluid; V4(Z, t) and N (Z,t) denote filter velocity and
number density of the particles, respectively. If ¢ is acceleration due to gravity,
K = 6rpve’ where &' is the particle radius, V, = (I,r,s), T = (z,y,2) and
A1 = (0,0,1), then the equation of motion and continuity for the fluid are

e[V 1 ] (/l 2 ;L) KN
: ===+ =(V- = —Vp— pg\ SV == |V _
(2.1) < [01 +E(V V)V p— 0gX| + 5\7 I + - (Va-V),
(2.2) (e% + V-V) o+ oV-V=0.

Since the distances between particles are assumed to be quite large compared
with their diameter, the interparticle relations, buoyancy force, Darcian force and
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pressure force on the particles are ignored. Therefore the equations of motion
and continuity for the particles are

JdV4

(2.3) mN |5 + %(vd.v)vd = KN(V-V,),
(2.4) E%]%{ + Ve(NV,) = 0.

Let ¢y, ¢p, €51, T', C and g denote respectively the heat capacity of fluid at constant
volume, heat capacity of fluid at constant pressure, heat capacity of particles,
temperature, solute concentration and “effective thermal conductivity” of the
clean fluid. Let ¢, ¢, and ¢’ denote the analogous solute coefficients. When
particles and the fluid are in thermal and solute equilibrium, the equations of
heat and solute conduction give

(2.5) [ocoe + 0sc5(1 — €)] %_1: + 0¢,(V-V)T

+mNcy, (5% + V,pV) T = qVZT,

ac y
T + 0c,(V-V)C

(2.6) [oche + psci(1 — )]

+mNcl, (% + vd-v) C = ¢'ViC,

where p;, ¢, are the density and heat capacity of the solid matrix, respectively.
SpIEGEL and VERONIS [9] have expressed any state variable (pressure, density
or temperature), say X, in the form

X =X, + Xo(2) + X'(z,y,2,1),

where X,, stands for the constant space distribution of X, X is the variation in
X in the absence of motion, and X'(z,y, z,t) stands for the fluctuations in X
due to the motion of the fluid. Following SpieGEL and VERONIS [9], we have

T(z) = -pz+ T,
p(2) = pm — g](am + 00)dz,
0
Q(IL‘) = Om [l - Q(T - 71111) e C’I'(Cv - Cm) + CY”(P - pm)] 3
__(13_0) af_(lf?_@) au_(l?ﬁ)
g o)’ ) 00C)’ odp)
Thus p,,, o stand for the constant space distribution of p and p and Ty, g stand

for the temperature and density of the fluid at the lower boundary (and in the
absence of motion).
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Since density variations are mainly due to variations in temperature and solute
concentration, Egs. (2.1)-(2.6) must be supplemented by the equation of state

(2.6") 0(z) = om [1 = a(T —Ty) + a'(C - Cp).

Let éo, ép, 0, v, V, V4 and N denote the perturbations in fluid density p,
pressure p, temperature 7', solute concentration C', fluid velocity (0, 0, 0), particles
velocity (0,0, 0) and particle number density N, respectively. Then the linearized
perturbation equations, under the Spiegel and Veronis assumptions, are

10V 1 69) (u 5 y) ILN()
-—=-—Vép—g|— | N+ |-V"- — (Va—V)
[ vor g(gm ! € ky ‘ ’

e Ot m Om€
V.V =0,
IVy
mNQ—V— K No(V—Vy),
at
(2.7)
ON
Ea— + V. (NogVy) =
(E + he)— = ([3 - —) (w + hs) + kY24,
ot £
(E'+ h’E)%} = f'(w + h's) + kV?.
Here ,
QSCS -/ ch
= — EF'=e+(1-c¢ 2
H=a (1 E)Qm('u ‘ (1 )QmCL ’
/ : r ]
R b I e
Cy Cy Om OmCy OmCy
and

b0 = —pm(ab — o'y).

Using d, d*/k, x/d, pvx/d?* SBd and B'd to denote the length, time, velocity,
pressure, temperature and solute concentration scale factors, respectively, the
linearized dimensionless perturbation equations become

* 1 1
(2.8) pl—lg‘t(; = -_V*p* + RN — Sy N\ + (EV*Z - F) V' +w(V; - V),

(29) V.V =0,

0 > >

(2.10) ('rat‘ + 1) V=V,
(8M
at~

2.11) + v v*) 0,
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0* -
(E+ he)g? B l(w* + hs*) + V29",
2.12
( ) / ! 07‘ * ! = 1 x2_ x
(E +h£)-b—t;=(w +hs)+XV ;
where
Kk _ B _ & _ gapBd* _ go'3d?
P_d—i’ 6_77 pl""'Rs R= e " 5= vt *
_EN _ K Nod? _ mK _mNy _ _ K
M—FO, wmeet T=op f= e and A=,

and starred (*) quantities are expressed in dimensionless form. Hereafter, we
suppress the stars for convenience.

Eliminating V4 from Eq. (2.8) with the help of (2.10) and then eliminating u,
v, 6p from the three scalar equations of (2.8), and using (2.9), we obtain

[LI—LZGVZ—;-))]V% Ly(RV38 — §Viy),

d G =1
(2.13) Lz[(E+hs),——V2]9=< . )('r%-&-ll)w,
L [(E’+h’ )— = 1v2] = (rg +II')w
K A ot ’
where
32 0 d ?* 9
- =1 - = 2 B ..
2 2 2
V2=5%+38_y2+%» F=f+1, H=h+1, H=K+1

Decomposing the perturbations into normal modes by seeking solutions in the
form of functions of z, y and ¢

(2.14) [w,8,9] = [W(2), O(z), I'(z)] exp(ikzz + ikyy + nt),

where n is, in general, complex, and k£ = (k2 + k;’*)l/ % is the wave number of
disturbance.
Eliminating 6, v between Eqs. (2.13) and using expression (2.14), we obtain

(2.15) By # % - %( 2)] [D? k% — n(E + he)|
< [D? = 1 = an(E + We)| (D - KW
= (%) (rn + H)RK? [D2 — k=B + h’e)] w

—A(rn + H')SK? [D? — k% - n(E + he)| W.
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where

Ly
[

pl_l(v'n2 + F'n),

Ly=mm+1 and D=—.

3. Principle of exchange of stabilities and oscillatory modes

Let

31 U=D*-W and X = [L1+’;j Lz(Dz—kz)]U

In terms of X, the equation satisfied by W is
(32)  [D? =K = n(E + he)] [D? = k2 = An(E' + W'e)| X
= i (GG ) R(rn+ H) [DZ k2 = An(E' + h's)] W

~ME2S(rn + H') [D? = k? = n(E + he)| W.

Consider the case of two free surfaces having uniform temperature and solute
concentration. The boundary conditions appropriate for the problem are

(3.3) W= DW =0, O=I=0 at =0 and 1.

Multiplying Eq.(3.2) by X*, the complex conjugate of X, integrating over the
range of z and using the boundary conditions (3.3), we obtain

(3.4) L +n[(E+he)+ MNE + he)| I + M*(E + he)(E' + he)l;
= k? (GG 1) R(rn + ) (L LZ) [Is + An(E’ + h'e)Is]

_A2S(rn + 1) (L‘{ L2) s + An(E + Ke)s]
13[;2 [(GG 1) R(rn + H) = AS(rn + H )] s

+k2AnL?2- [(%) R(rn+ H)YE"+ h'e) - S(rn + H')(E + he)] I,

where
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1
I = /(|D2X|2 + 22 DX+ KX P)dz,

1
h= [(DXP+ KXz,

1
Iy = /(|X|2)dz,
0
1
(35) = / (U )=,
0

1
= /(|DW|2+ KW P)dz,
) §
% = f(|DU:2 + KU P)dz,
0

1
L= /([D2W|2 + 2k DW | + KW P)d-.
0

The integrals I; — I7 are all positive definite.
Putting n = ing, where ny is real, into Eq. (3.4) and equating imaginary parts,
we obtain

(36) nd= {[(E + he) + ME" + he)| Lo + k? [(%) K (g_lF * %)

~A8 (};'IF 4 %")] Iy + K2 [S(E + he)H' — (G—G‘—l) R(E' + h’s)H]
(30 2) (55 mes] o)

/{,\kz [— (%) R(E' + h’e){ ¥ o) 9 %}

+S(E+h){ (fl )+FHIS+%{( )R AS}

%
k2r2) =
¥ ; [— (GG1>R(E’+h’5)+S(E+h5)] 17},
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or
(3.7) no = 0.

In the absence of stable solute gradient, Egs. (3.6) and (3.7) become

, (Gi_l) (E + he)l + k*R {p;’uF+ %}I4+ "'ZTTRMﬁ
B8 mo=- k2r2Rp7 I, '
or
(3.9) ng = 0.

Since the integrals are positive definite and ny is real, it follows that ny = 0 and
the principle of exchange of stabilities is satisfied, in the absence of stable solute
gradient. In the presence of stable solute gradient, the principle of exchange
of stabilities is not satisfied and oscillatory modes come into play. The stable
solute gradient, thus, introduces oscillatory modes which were non-existent in its
absence.

4. Dispersion relation and discussion

When instability sets in as stationary convection, the marginal state will be
characterized by n = 0 and Eq. (2.15) reduces to

G—1
(4.1) % - %(1)2 — )| (D? - £¥)?W = (—-—) FERHW — AK2SH'W.

v
) §

Considering the case of two free boundaries, it can be shown that all the even
order derivatives of W vanish on the boundaries and hence the proper solution
of Eq. (4.1) characterizing the lowest mode is

4.2) W = Wysinrz,

where Wy is a constant. Substituting the solution (4.2) in Eq. (4.1), we obtain

G 1 ¥ + & 2 242 251
= - — 4+ 2 A
(G l)lr( e )(W +L)+/\k”5

ktH

If R. denotes the critical Rayleigh number in the absence of compressibility and
R. stands for the critical Rayleigh number in the presence of compressibility,

then we find that G
7= (%) n

4.3) R=
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Since critical Rayleigh number is positive and finite, so G > 1 and we obtain
a stabilizing effect of compressibility as its result is to postpone the onset of
double-diffusive convection in a fluid-particle layer of porous medium.

It is evident from Eq. (4.3) that

dR _ (GG ) (2 + k2)?

dP 1) BRRE °

(4.4) -
LT+ 2 4 22 4 0k2s

SR I

di G=1 k2H? ’
and

dR G \ H'

(4.5) 75 = A ( S 1)

The medium permeability and suspended particles have thus destabilizing
effects, whereas the stable solute gradient has a stabilizing effect on the ther-
mosolutal convection in compressible fluids with suspended particles in a porous
medium.

5. Effect of rotation

In this section, we consider the same problem as that studied above except that
the system is in a state of uniform rotation €2(0,0, 2). The Coriolis force acting
on the particles is also neglected under the assumptions made in the problem.
The linearized nondimensional perturbation equations of motion for the fluid are

_0u d 1/2 1 1
19¢ 0 _ lg2 1
P13 92 bptw(l—u)+T, (EV P) u,

dv d 1 1

) = - _ _ ‘1/2 Z
(5.1) P % 3y5p Fur —u) =TS ( \Y P) v,
pl_l% = —%61) +w(s —w)+ RO — Sy + sz - %) w,

2,74

where Ty = 3,2 is the nondimensional number accounting for rotation, and

Egs. (2.8)-(2. 12) remain unaltered.
Eliminating V4(I, r,s) with the help of (2.10) and then eliminating u, v, ép
between Egs. (5.1), using (2.9) we obtain

Ly L2 2) 5 *w

! —_N +
(5.2) (Ll ' i Viw LT,,OH
Ly

= I, (11 b — L"-vz) V(RO — AS7).
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Eliminating 6 and v between Egs. (2.13)3 and (5.2) and using expression (2.14),
we get

(53)  [D?= K= n(E + he)| [D* = k= Mn(E' + W)

2
{.L1 N %(D2 - kz)} (D* - K*) + L%TADz] w

(1o - - o[ (65) (- - )

«(rn+ H)R = M{D? - k? - n(E + he)} (rn + H’)S] W.

For the stationary convection, n = 0 and Eq. (5.3) reduces to

W

2
(5.4) (D?-k% {{%- Dz;’“z} (D? - k?) + T, D?

2 _ 12 =,
=kz{%_ D - k }[(GGI)RI{—ASII’] Ww.

Considering again the case of two free boundaries with constant temperature and
solute concentration and using the proper solution (4.2), we obtain from Eq. (5.4)

I N -
2l P
(7 +k)(P+ - ) o

G 1r2+k2 H'
] = AF—I|.
L (G—l) k2 1+7r2+k2 A
) P £
It is evident from Eq. (5.5) that
dR _( G ) r2(x2 + k?)
dTx \G-1 24 k2 ’
A (l+ w2+ k )kzﬂ
P £
2 4 1.2\2
LW (T2 + kY + 12Ty
G5 e (—G—)( 242\ s
2 oam T T \a-1)v 1 2+ , , |’
a5 kI
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Therefore the suspended particles have a destabilizing effect, whereas the ro-
tation and stable solute gradient have stabilizing effects on the system under
consideration.

Equation (5.5) also yields

dR _ ( G ) (72 + k%) | #%+ k2 72T,

6D F=\e-1) em |7 YT e
2
p(_+—)

o €

Y (1 72+ k%)°
— 1] = P e—
TA>(1+I2)(P E )

then dR/dP is possitive.

If ,
\(1 =2+k?
— e ——

< (1+5) (34 725)

then dR/dP is negative.

Thus the medium permeability has both stabilizing and destabilizing effects,
depending on the rotation parameter, on the thermosolutal convection in a com-
pressible fluid with suspended particles rotating in a porous medium.

If
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