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Double-diffusive convection in compressible fluids 
with suspended particles in porous medium 

R. C. SHARMA (SHIMLA), TRILOK CHAND (NALAGA RH) 

and V. K. BHARDWAJ (SHIMLA) 

THE ooum.E-DIFFUSIVE convection in compressible fl uids wi th suspended particles in porous me-
dium is considered The suspended particles are found to have destabilizing effect whereas stable 
solute gradient, rotation and compressibili ty have stabil izing effect on the system. The medium 
permeabili ty has a destabilizing effect in the absence of rotation but has both stabilizing and 
destabil izing effects in the presence of rotation. The stable solute gradient and rotation are found 
to introduce oscillatory modes in the system which are non-existent in their absence. 

1. Introduction 

THE PROBLEM of thermosolutal convection in flui ds in a porous medium is of im-
portance in geophysics, soil sciences, ground-water hydrology and astrophysics. 
The development o f geothermal power resources holds increased general interest 
in the study o f the properties of convection in porous media. The scientifi c im-
portance of the fi eld has also increased because hydrothermal circulation is the 
dominant heat transfer mechanism in the development of young oceanic crust 
(L ISTER [3]). G enerall y it is accepted that comets consist of a dusty "snowball " o f 
a mixture of frozen gases which, in the process of their journey, changes from solid 
to gas and vice-versa. The physical properties of comets, meteorites and interplan-
etary dust strongly suggest the importance of porosity in the astrophysical context. 
A mounting evidence, both theoretical and experimental, suggests that D arcy's 
equation provides an unsatisfactory descrip ti on of the hydrodynamic conditions, 
particularly near the boundaries o f a porous medium. BEAVERS et al. [10) have 
experimentally demonstrated the existence of shear wi thin the porous medium 
near surface, where the porous medium is exposed to a freely fl owing fluid , thus 
forming a zone of shear-induced fl ow field. The D arcy's equation however, cannot 
predict the existence of such a boundary zone, since no macroscopic shear term is 
included in this equation (JOSEPH and TAO [11 ]) . To be mathematically compatible 
with the Navier - Stokes equations and physically consistent with the experimen-
tally observed boundary shear zone mentioned above, Brinkman proposed the 

in troduction o f the term ｾ＠ \l2V in addit ion to - ( :
1

) V in the equatio ns of fluid 

motion. The elaborate statistical justification of the Brinkman equations has been 
presented by SAFFMAN (12) and LUNDGREN (13]. STOMMEL and FEDOROY (14) and 
LrNDEN [2] have remarked that the length scales characteristic of double-diffusive 
convecting layers in the ocean could be suffi ciently large for E arth's rotation to 



http://rcin.org.pl

630 R.C. SHARMA, T R ILOK CIIANO AND V.K . B HAROWAJ 

become important in their fo rmation. Moreover, the ro tation of the Earth distorts 
the boundari es of a hexagonal convection cell in a flui d fl owing through a porous 
medium, and the distortion plays an important role in the extraction of energy in 
the geothermal regions. B RAKKE [1] explained a double-diffusive instability that 
occurs when a solution of a slowly diffusing pro tein is laid over a denser solution 
of more rapidly diffusing sucrose. NASON et al. [5] found that this instability , which 
is deleterious to certain biochemical separations, can be suppressed by rotation in 
the ultracentrifuge. SCANLON and SEGEL [6] have studied the efiect of suspended 
particles on the onset of thermal convection. 

The conditions under which convective motions in double-diffusive convec-
tion are important (e.g. in lower parts of the Earth's atmosphere, astrophysics 
and several geophysical situations) are usually far removed from the considera-
tion of a single component fluid and rigid boundaries and therefore, it is desirable 
to consider a fluid acted on by solute gradient and free boundaries. The com-
pressibility and suspended particles are important in such situations. SHARMA and 
SHARMA [7] and SHARMA and VEENA KuMARI [8] have considered the thermoso-
lutal convection in porous medium under varying assumptions of hydrodynamics 
and hydromagnetics. 

Keeping in mind the importance in geophysics, astrophysics and various ap-
plications mentioned above, the thermosolutal convection in compressible fluids 
with suspended particles in a porous medium, in the absence and presence o f a 
uniform rotation, separate ly, has been considered in the present paper. 

2. Formulation of the problem and perturbation equations 

Consider an infinite horizontal, compressible flui d-parti cle layer of thickness 
d bounded by the planes z = 0 and z = d in a porous medium of porosity c: 
and permeability k1. This layer is heated from below and subjected to a stable 
solute gradient such that steady adverse temperature gradient {3( = ldT I dzl) and 
a solute concentration gradient {J'( = ldC I dz l) are maintained. 

Let f2, J.l, p and V( u , v, w) denote respectively the density, viscosity, pressure 
and filter velocity of the pure fluid ; Vd(x, t) and N (x, t ) denote filt er velocity and 
number density of the particles, respectively. If g is acceleration due to gravity, 
J( = 61r eve:' where c:' is the particle radius, V d = (l , r, s ), x = ( x, y, z) and 
A1 = (0, 0, 1), then the equation of motion and continuity for the fluid are 

(2.1) 12 [f)V 1 ] (J.l 2 J.l ) ]( N - -+ - (V· 'V ) V = - \lp - egAJ + - \7 -- V+ - (Vd- V) , 
c: at c: c: k1 c: 

(2.2) (c: :t + V·\7) 12 + e\l·V = 0. 

Since the distances between particles are assumed to be quite large compared 
with their diameter, the interparticl e relations, buoyancy fo rce, Darcian force and 
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pressure force on the particles are ignored. Therefore the equations of motion 
and continuity for the particles are 

(2.3) 

(2.4) 

Let c,, cp, Cpt. T, C and q denote respectively the heat capacity of fluid at constant 
volume, heat capacity of fluid a t constant pressure, heat capacity o f particles, 
temperature, solute concentration and "efi ective thermal conductivi ty'' of the 
clean fluid. Let ｣ｾＬ＠ ｣ ｾ Ｑ＠ and q' denote the analogous solute coeffi cients. When 
particles and the fluid are in thermal and solute equilibrium, the equations of 
heat and solute conduction give 

(2.5) 

(2.6) 

aT 
[gc,£ + £> 3 C3 (1 - £)] Bt + gc,(V•'\J)T 

+ mN Cpt ( £ :t + v d' '\J) T = q'\J
2
T, 

｛ ･｣ｾ ﾣ＠ + ･ ｳ ｣ｾ Ｈｬ Ｍ £)] ｾＺ＠ + ･｣ｾ Ｈｖ ﾷ＠ '\J)C 

Ｋ ｭ Ｎ ｎ｣ｾ Ｑ＠ (£ :t + Vd·'\J) C = q'"J2C, 

where £> 3 , c3 are the density and heat capacity of the soli d matrix, respectively. 
S PIEGEL and V ERONIS [9] have expressed any state variable (pressure, density 

or temperature), say X, in the fo rm 

X = Xm + Xo(z) + X'(x, y, z, t), 

where X m stands for the constant space distri bution of X, Xo is the variation in 
X in the absence of motion, and X'(x, y, z , t) stands for the fluctuations in X 
due to the motion of the fluid . Foll owing SPIEGEL and V ERONIS [9], we have 

T (z) = - (3z +To, 
z 

p(z) =Pm - g jCem + eo) dz , 
0 

e(x ) = em [1 - a(T - Tm) + a ' (C - Cm)+ a"(p- Pm)] , 

a = - ( ｾ＠ ;f) , a' = ( ｾ＠ Ｚｾ Ｉ＠ , a" = ( ｾ＠ ｾｾ Ｉ＠ . 

Thus Pm. em stand for the constant space distribution of p and e and To, eo stand 
for the temperature and density of the fluid at the lower boundary (and in the 
absence of motion). 
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Since density variations are mainly due to variations in temperature and solute 
concentration, Eqs. (2.1)-(2.6) must be supplemented by the equation of state 

(2.6') g(z) = !lm [1 - o:(T - Tm) + o:'(C- Cm)]. 

Let bg, bp, B, ,, V, Vd and N denote the perturbations in fluid density g, 
pressure p, temperature T, solute concentration C, fluid velocity (0, 0 , 0), particles 
velocity (0, 0, 0) and particle number density No, respectively. Then the linearized 
perturbation equations, under the Spiegel and Veronis assumptions, are 

(2.7) 

Here 

1 av 1 ( b g ) ( v 2 v ) K No --. =--Vbp-g - >..1+ - V- - V+ --(Vd- V), 
c 8t !lm !lm c k1 LJmc 
V· V= 0, 

mNo ｡ｾ､＠ = K No(V - V d), 

8N 
c7ft +V· (NoVd) = 0, 

(E Ｋｨ ･ ＩｾＺ］＠ (a- :P) (w + hs) + ｾｶ Ｒ ｯＬ＠

(E' + ｨＧ｣Ｉｾｾ＠ = f3'(w + h's) + KV 2,. 

f! sCs 
E = c + (1 - c)--, 

LJmCv 

f! c' 
E ' = c + (1 - ｣ Ｉ ｾ Ｌ＠

(!mCv 

h = j Cpt ' 
Cv 

c' 
h' =! ___El:_ 

I ' CV 

f = mNo , 
(!m 

q 
K.=--, 

f! mCv 

q' 
K'=--

ｦＡｭｃｾ＠

and 
bf! = -em(a B - a'1 ). 

Using d, d2 / K, K/ d, f!VK/ d2, {3d and /3' d to denote the length, time, velocity, 
pressure, temperature and solute concentration scale factors, respectively, the 
linearized dimensionless perturbation equations become 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

P11 ｾｾＮＺ＠ =-V* bp*+ RB*)q - s,·>"l + Ｈｾ＠ V *2
- ｾＩｖＪＫ＠ w(Vd- V*) , 

V*· V*= 0, 

( T ｡ｾＮ＠ + 1) Vj = V* , 

( BM + V*· V*d) = 0 
8t* , 
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(2.12) 

where 

ao· c - 1 
(E +he) at• = -----c;-(w* + hs*) + "V* 2B*, 

(E' + ｨＧ ･ ＩｾｾＺ＠ = (w* + h's*) + ｾＢｖＪ Ｒ Ｍｹ ＪＬ＠

G = Cp/3 , 
g 

ev 
PI= -, 

n. 
R = gerf3d4 

' VK. 

ger' {3' d4 
S=:::.____;_-

vn.' 

633 

eN K Nod2 mn. mNo n. 
M = - w = r = - - f = -- = rwp and A = -

No ' {!mVe ]( d2 ' em n.' ' 
and starred ( *) quantities are expressed in dimension less form. Hereafter, we 
suppress the stars for convenience. 

Eliminating Vd from Eq. (2.8) with the help of (2.10) and then eliminating u, 
v , bp from the three scalar equations of (2.8), and using (2.9), we obtain 

[L1- L2 ＨｾＢｖ Ｒ Ｍ ｾＩ｝＠ "V2w == L2(R"VIB- S"Vi-r), 

(2.13) L2 [( E +he):t - "V
2] o = Ｈ ｇｾ

Ｑ
Ｉ＠ (r:t +II)w , 

L2 [(E' + h'e)!_ - 2_ "V2] 1' == (r !__ + II') w 
at A at ' 

where 

Ll ==p}! (r : t22 +F:t) ' 

a2 a2 a2 
"V

2 
== ax2 + ay2 + az2 , F = f + 1, If == h + 1, JI' == h' + 1. 

Decomposing the perturbations into normal modes by seeking solutions in the 
form of functions of x, y and t 

(2.14) [w, B, -y] == [W(z), G(z), F(z)] exp(ikxx + ikyy + nt), 

where n is, in general, complex, and k == (k; + ｫｾＩ Ｑ Ｑ Ｒ＠ is the wave number of 
disturbance. 

Eliminating B, 1' between Eqs. (2.13) and using expression (2.14), we obtain 

(2.15) [L 1 + f;- ｾ Ｒ Ｈ ｄ Ｒ Ｍ k2
)] [n2

- k2
- n(E +he)] 

· [D 2
- k2

- An(E' + h'e)j(D 2
- k2)W 

== ( G ｾ＠ 1
) (rn + Il) Rk2 [n2

- k2
- An(E' + h'e)] W 

- A(rn + H')Sk2 [n2 - k2
- n(E +he)] W, 
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where 

R.C. SttAFU.tA , TntLOt< CHAND AND V.K. B II AHDWA J 

L2 = rn + 1 and 
d 

D = dz · 

3. Principle of exchange of stabilities and oscillatory modes 

Let 

(3.1) and [ 
L2 L2 2 2 ] 

X = L1 + P - -;CD - k ) U. 

In terms of X, the equation satisfied by W is 

(3.2) [n2 - k2 - n(E +he)] [n2 - k2 - >.n(E' + h'e)] X 

= k2 (G; 1) R(rn +H) [D2 - k2 - >. n(E' + h'e)] W 

->.k2S(rn + H') [n2 - k2 - n(E +he)] W. 

Consider the case of two free surfaces having uniform temperature and solute 
concentration. The boundary conditions appropriate for the problem are 

(3.3) G =F=O at z = 0 and 1. 

Multiplying Eq. (3.2) by x·, the complex conjugate of X , integrating over the 
range of z and using the boundary conditions (3.3), we obtain 

(3.4) /1 + n [(E +he)+ >.(E' + h'e)] /2 + >. n2(E + he)(E' + h'e)h 

where 

= k2 (G; 1
) R(rn + II) ( Lj + i) [/4 + >.n(E' + h'e)ls] 

- >.k2 S(rn +If') ( Lj + ; ) [/4 + >. n(E + h'e)Is] 

ＫｫＲｾｩ＠ [ (G; 1) R(rn + II) - >. S(rn + H')] h 

+k2 >.n ｾｩ＠ [ (G; 1) R(rn + H)(E' + h'e) - S(rn + II')(E +he)] l7 , 
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(3.5) 

1 

h = j (ID2 Xl2 + 2k21DXI2 + k41XI2)dz, 

0 
1 

h = j (IDXI2 + k21XI2)dz, 
0 

1 

h = jCIXI2)dz, 
0 

1 

I4 = j CIUI2)dz, 
0 

1 

Is = j (IDWI2 + k21WI2)dz, 
0 

1 

h = j (IDUI2 + k2IUI2)dz, 
0 

1 

h = j (ID2WI2 + 2k21DWI2 + k4IWI2)dz. 
0 

The integrals I 1 - h are all positive definite. 
Putting n = ino, where no is real, into Eq. (3.4) and equating imaginary parts, 

we obtain 

(3.6) n5= ｻ｛Ｈ ｅ Ｋｨ ｴＺ ＩＫＭ｜Ｈ ｅ ＧＫｨＧ ｴＺ Ｉ ｝ｉ Ｒ Ｋｫ Ｒ ｛Ｈ ｇｾ Ｑ ＩｒＨｾｾ＠ + r;) 
(H'F rh')] [ (G 1) ] -,\S Pt + p I4 + -\k2 S (E + ht: )H'- ; R(E' + h't: )H 

. (; + ｾＷＩ＠ + T :2 [ ( G ｾ＠ 1 ) Rh - ,\ S h'] h} 
I { ,\k2 [ - (G ｾ＠ 1) R(E' + h't: ) { ｲＨｊｰｾ＠ h) + ｾ ｽ＠

+ S (E + ht: ) ｻ ｾ Ｈｊｐ ｾ＠ ｨＩＫｾｽ＠ lI s + ｫＺｾ
Ｒ＠

{ (G ｾ＠ 1
) R- -\S} I4 

+ k
2

:

2 

,\ [ - ( G ｾ＠ 1
) R(E' + h't: ) + S(E + ht: )] h}, 
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or 

(3.7) n0 = 0. 

In the absence of stable solute gradient, Eqs. (3.6) and (3.7) become 

(3.8) 

or 

(3.9) 

2 
_ (aS-) (E + hc)l2 + k2

R {P! 1 
H F + ｾ ｽ＠ ! 4 + ｾｒｨｨ＠

no- -
k2r 2 Rp! 1 !4 ' 

no= 0. 

Since the integrals are positive definite and no is real, it follows that no = 0 and 
the principle of exchange of stabilities is satisfied, in the absence of stable solute 
gradient. In the presence of stable solute gradient, the principle of exchange 
of stabilities is not satisfied and oscillatory modes come into play. The stable 
solute gradient, thus, introduces oscill atory modes which were non-existent in its 
absence. 

4. Dispersion relation and discussion 

When instability sets in as stationary convection, the marginal state will be 
characterized by n = 0 and Eq. (2.15) reduces to 

(4.1) ｛ ｾ＠ - ｾＨｄ Ｒ Ｍ k2
)] (D2

- k2
)
2W = (C; 1

) k2 RJ!W - >.k2 S H'W. 

Considering the case of two free boundaries, it can be shown that all the even 
order derivatives of W vanish on the boundaries and hence the proper solution 
of Eq. ( 4.1) characterizing the lowest mode is 

(4.2) W = vVo sin 1r z , 

where Wo is a constant. Substituting the solution (4.2) in Eq. (4.1), we obtain 

(4.3) 

If Re denotes the critical Rayleigh number in the absence of compressibility and 
Re stands for the critical Rayleigh number in the presence of compressibility, 
then we find that 
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Since critical Rayleigh number is positive and finit e, so G > 1 and we obtain 
a stabilizing effect of compressibility as its result is to postpone the onset of 
double-diffusive convection in a fluid -particle layer of porous medium. 

It is evident from Eq. ( 4.3) that 

(4.4) 

dR = _ (___2__) (1r2 + k2)2 
dP G - 1 k2 11 p2 

and 

(4.5) dR ( G ) H ' 
dS =A G - 1 11 . 

The medium permeabili ty and suspended particles have thus destabilizing 
effects, whereas the stable solute gradient has a stabil izing effect on the ther-
mosolutal convection in compressible fluid s wi th suspended particles in a porous 
medium. 

5. Effect of rotation 

In this section, we consider the same problem as that studied above except that 
the system is in a state of uniform rotation !1(0, 0, f2 ). The Coriolis force acting 
on the particles is also neglected under the assumptions made in the problem. 
The linearized nondimensional perturbation equations of motion for the fluid are 

- I au a 1/ 2 ( 1 2 1 ) 
Pi 8t = - ax op + w(l - u) + TA V + [ V - p u , 

(5.1) - 1 av a I / 2 ( 1 2 1 ) 
P1 at = - a/P + w(r - v)- TA u + [V - p v, 

- 1 aw a (1 2 1) 
p1 7ft = - azop + w(s -w)+ RB-S1+ [ V - P w, 

h 
4122d

4 
• h d ' . I b . " . d w ere TA = - 2- 2- 1s t e no n Imens1ona num er accountmg 10r rotation, an 

£ V 
Eqs. (2.8)-(2.12) remain unaltered. 

E liminating V d(l , r, s) with the help of (2.1 0) and then eliminating u, v, op 
between Eqs. (5.1), using (2.9) we obtain 

(5.2) ( 
L2 L2 2) 

2 
2 2 a2

w 
L 1 + P - [V \1 w + L2 TA 0 z2 

( 
L2 L2 2) 2 = L2 L 1 + p - [V V 1(RB - AS1 ). 
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Eliminating() and"' between Eqs. (2.13)2,3 and (5.2) and using expression (2.14), 
we get 

(5.3) [n2
- k2

- n(E + h[ )] [D 2
- k2

- >..n(E' + h'[ )] 

• [ { Lr + i- ｾ Ｒ Ｈ ｄ Ｒ Ｍ k2
)} 

2 

(D2
- k2

) + ｌｾｔａｄ Ｒ ｝＠ W 

= { Lr + i- ｾ Ｒ Ｈｄ Ｒ Ｍ k2
)} k2 

[ (G ｾ＠ 1
) { D 2

- k2
- >..n(E' + h'[ )} 

•(rn + H)R- >.. {D2 - k2 - n(E + ht:)} (rn + H')s]w. 

For the stationary convection, n = 0 and Eq. (5.3) reduces to 

(5.4) (D2
- k2

) [ { ｾ＠ - D'; k' }' (D2
- k2

) + TAD'] W 

= k2 
{ ｾ＠ - D

2 

; k
2

} [ ( G ｾ＠ 1
) RH - >..S H'] W. 

Considering again the case of two free boundaries with constant temperature and 
solute concentration and using the proper solution (4.2), we obtain from Eq. (5.4) 

(5.5) R = (__£_) 
G-1 

It is evident from Eq. (5.5) that 

(5.6) 

dR ( G ) H' 
dS = >.. G -1 n· 

H' 
+>..S-

H 
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Therefore the suspended particles have a destabilizing effect, whereas the ro-
tation and stable solute gradient have stabilizing effects on the system under 
consideration. 

Equation (5.5) also yields 

(5.7) 

If 

dR 

dP 

( k2) ( 1 11"2 + k2) 2 

TA> 1 + 2 p + ' 
7r c 

then dR/ dP is possitive. 
If 

( k2 ) ( 1 11"2 + k2) 2 

TA< 1 + 2 p + ' 
7r c 

then dR/ dP is negative. 
Thus the medium permeability has both stabilizing and destabilizing effects, 

depending on the rotation parameter, on the thermosolutal convection in a com-
pressible fluid with suspended particles rotating in a porous medium. 

References 

1. M.K. BRAKKE, Arch. Biochem. Biophysics, SS, 175, 1955. 
2. P.F. LiNDEN, Geophys. Fluid Dynamics, 6, I, 1974. 
3. C.R.B.I...IsrnR, Geophys. J. Roy. Astr. Soc., 26,515,1972. 
4. J.A.M. McDONNEl, Cosmic dust, John Wiley and Sons, Thronto, p. 330, 1978. 
5. P. NASON, V. SolUMAKER, B. HALsAll. and J. ScuwEDES, Biopolymers, 7, 241, 1969. 
6. J .W. Sc.ANLON and LA. SEGEL, Phys. Fluids, 16, 1573, 1973. 
7. R.C. SHARMA and K.N. SIIARMA, J . Math. Phys. Sci., 16, 167, 1982. 
8. R.C. SHARMA and V. KUMARI , Japan J. Industrial Appl. Math., 9, 79, 1992. 
9. E.A. SPIEGEI.. and G. VERONIS, Astrophys. J., lJl, 442, 1960. 

10. G .S. BEAVERS, E.M. SPARROW and R.A. MACNUSON, J. Basic Engng. Trans. ASME, D92, 843, 1970. 
11. 0 .0. JOSEPH and LN. TAO, Zeit. Angew. Math. Mcch., 44,361, 1964. 
12. P.G. SAFFMAN, Stud. Appl. Math., SO, 93, 1971. 
13. T.S. LuNDCREN, J. Fluid Mech., 51, 273, 1972. 
14. H. SroMMEI.. and K.N. FEOOROV, lCIIus, 19, 306, 1967. 

DEPARTMEJIIT Ot' MATHEMATICS, COVT. COLLEGE. NAI..AGARII, 

DEPARTMENT Or MAT IIEMATICS, ST. BEDES COllEGE. Sill M lA 

ood 

DEPARTMENT or MATIIEMATICS 

HIMACIIAL PRADESII UNIVERSITY, SIIIMI..A, INDIA. 

Received September 20, 1995. 


