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Porous media at finite strains
The new model with the balance equation for porosity

K. WILMANSKI (ESSEN)

THE pURPOSE of this work is the presentation of the governing equations describing the two-com-
ponent porous material as the mixture with the additional field of the porosity. The additional field
equation for this field is proposed. The governing equations are formulated in the new Lagrangian
description. The constitutive relations under arbitrary elastic deformations of the skeleton are
proposed. Various simplified modcls and their basic properties such as the propagation of sound
waves are discussed. The work should be of interest for scientists working on continuum mechanics
(problems with the frece boundary), on numerical methods in continuum mechanics and on the wave
propagation as the method of diagnosis of media with microstructure.

1. Introduction

THE THEORIES of porous materials have been developed primarily within the frame
of soil mechanics. For granular soils (e.g. sand), clays and rocks, various engineer-
ing models were proposed to describe the flow of water or other fluids through
the pores. The extensive literature concerning this subject as well as the intro-
duction into the nomenclature of porous media can be found, for instance, in the
excellent classical book of J. BEAR [1]. The connection of continuous models of
porous materials with the modern theory of mixtures is explained in the review
article of R.M. BoweN [2].

R. DE BoER [3] presents in his major historical paper not only many details
concerning the pioneering works of Terzaghi, Fillunger and some other engineers,
who have contributed to the practical soil mechanics but he discusses also some
new tendencies in the theories of porous media. Another practical aspect of these
theories stems from combustion problems of granular materials which describe
the behaviour of solid fuels. The review article on this subject has been written
by S.L. Passman, J.W. Nunziato, E.K. WaLsH [4]. Much less has been done on
the subject of multicomponent continua with large deformations of solids. Large
elastic deformations which appear, for instance, in foams damping the sound
waves or some filters in the chemical industry, were investigated experimentally
but very little has been done from the continuum-mechanical point of view. Large
plastic deformations, which accompany almost any loading of sands, are still de-
scribed by means of the one-component models and, for instance, the influence of
the changes of porosity is usually entirely neglected. Even the problems of large
static deformations with the small dynamical disturbance (e.g. diagnosis of soils
by propagating sound waves) are understood much better from the experimen-
tal standpoint than through some theoretical description. As an example, let us
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mention a very competent book of T. Boursig, O. Coussy, B. ZINSZNER, [5] who
give the account on the wave experiments on porous materials but describe them
theoretically by means of the old model of Biot in which the multicomponent
character of the medium is accounted in a very poor and deficient manner.

The purpose of the present work is the presentation of the mechanical two-
component model of the porous materials in which the skeleton may undergo
arbitrary large elastic deformations, the fluid is inviscid but it may interact with
the skeleton in an almost arbitrary way, and the porosity can change according
to its own field equation. The irreversibility of processes in such a model follows

_from the diffusion and from the pore relaxation.

In the next section we present the necessity of the formulation of additional
equations in the theory of porous materials when compared with the usual theory
of mixtures of the same number of components. The third section is devoted to
the brief presentation of the new consistent way of description of porous materi-
als when the reference configuration of the skeleton is chosen as the reference for
all other components as well. Apart from the advantages of this Lagrangian de-
scription in cases of large deformations, it is also a very convenient starting point
for the numerical investigations of the model of porous media. In the fourth
section we present the family of fields and field equations for this Lagrangian
description of the two-component porous medium with the elastic skeleton and
an ideal fluid component. The fifth section is devoted to the thermodynamic
restrictions imposed on the constitutive relations assumed in the section four.
The sixth section limits further the constitutive relations by the assumption of
isotropy. One of the most important and rather surprising, very restrictive results
follows in this section for the flux in the balance equation of porosity. In the
seventh section we discuss some possibilities of further restrictions of constitut-
ive relations by simplifying the way in which the components interact with each
other. These simplifications are motivated by experimental results for rocks and
granular materials.

The presentation of the model is supplemented in the eighth section with the
discussion of the dynamic compatibility conditions and their connection with the
boundary conditions for the porous medium. The most important part of this
section concerns the conditions for the case of the free outstreaming fluid which
yields the necessity of the additional scalar boundary condition describing the
free boundary.

As an example of applications of the model we present in the ninth section
the analysis of the propagation conditions for the sound waves. It is shown that
the model indeed describes all these waves which are observed in reality. We
present as well some possibilities of the application of this model to the diagnosis
of porous media. The tenth section contains one of the possible linear models
following from the general formulation. It is shown that quasi-static solutions of
some boundary value problems for such a linear model are identical with the
corresponding solutions of soil mechanics.
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2. Closure problem: constitutive relations vs. differential equations for volume
fractions

The main difference between the classical theory of mixtures of fluid-like com-
ponents (miscible components) and the theory of porous materials (immiscible
components) is connected with the existence of additional fields - a sort of in-
ternal variables — for the porous material, which describe the volume fraction
of each component in the total microscopic control volume. For the A differ-
ent components these volume fractions must satisfy the obvious normalisation
condition

(2.1) Z n® =1,

where n® denotes the volume fraction of the a-component, 1 < a < A.

This relation is sometimes called the saturation condition. This name stems
from the soil mechanics in which the porous materials with pores partially filled
with water are frequently considered. In such cases the air is not accounted for
as the third component and the medium is considered to be not fully saturated.
The sum of volume fractions of the solid and of the water is smaller than one. It
is quite obvious that it is not necessery to do so in the construction of the model.
Particularly in processes of phase transitions such as the evaporation (drying
processes, cavitation) the role of the gaseous phase is important. This gaseous
component cannot be left out of the model even if its kinematics is identical with
this of the fluid component.

It is easy to see that, in contrast to the classical theory of mixtures of miscible
components, a theory of porous materials requires additional field equations. The
continuum models of miscible components have been constructed by means of the
partial balance equations of mass, momentum and energy for each component.
In the Eulerian description these laws together with apppropriate constitutive
relations were sufficient to yield the field equations for the partial mass densities
0%, the partial velocities v* and the partial temperatures @“. These balance laws
are also used in models of the immiscible components but we have to supplement
the theory with relations for the volume fractions.

A few solutions of this problem have been proposed. They can be divided into
two classes:

1) additional constitutive relations are introduced,

2) additional differential equations in the form of either evolution equations
or balance equations are proposed.

The simplest example of the model of the first class is the model proposed by
R.M. BoweN [6]. Its prototype can be found in the papers of J.J. VAN DEEMTER
and E.R. van DER LaAAN [7] as well as of J.O. Hinze [8]. Also the work of R.S.
Sampaio and W.O. WiLLiams [9] is based on the similar notions. In this model
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it is assumed that the volume fractions are proportional to the corresponding
partial mass densities

oo
(22) n —QO'_R, ISQ’SA,

where p*f are constants. These constants are called true mass densities and the
corresponding components are called incompressible. In the Bowen’s model this
notion of incompressibility has nothing to do with the usual incompressibility of
one-component continua. The classical incompressibility is the constraint requir-
ing the sustaining reaction forces (e.g. reaction pressure). Such reaction forces do
not appear in the Bowen’s model. There is however a reaction force due to the
saturation condition. Namely the relations (2.2) specify all volume fractions in
terms of partial mass densities but they cannot be arbitrary due to the constraint
of the saturation condition (2.1). This model has been extensively applied. How-
ever the recent results concerning in particular the boundary value problems for
dynamic processes and the relaxation properties seem to indicate that the model
has many very serious physical flaws.

Another model of the same class has been introduced by J.L.W. MORLAND
[10]. He has assumed the constitutive relations describing the volume fractions.
The model presented in the paper [11], concerning the two-component porous
material belongs as well to this class. In the latter paper the saturation condi-
tion reduces the number of independent volume fractions to one. The additional
constitutive relation has been proposed in a quite general form

(2.3) 7(C) = 0,

where 7 denotes the arbitrary scalar function and C denotes the collection of all
constitutive variables of the model. The thermodynamic considerations as well
as the construction of the boundary value problems for such a model have been
presented in the above mentioned paper. No practical applications have been
made as yet.

Recently the much more sophisticated version of such a model is being inves-
tigated by J. BLunm and R. pE BoOER (see: [3, 12]). It is based on the semi-micro-
scopic considerations referring to the “true” components. The local configuration
of each component is assumed to be described by the so-called realistic deforma-
tion gradient F** which is mapping the material vectors of the a-component from
the reference configuration to the current configuration. These gradients are not
assumed to be integrable. However one assumes that there exists the supplemen-
tary gradient F*V which combines with the realistic deformation gradient into
the integrable partial deformation gradient F* of the a-component

(2.4) Fo = s,
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The constitutive relations are assumed to hold for the objective combination
of the realistic deformation gradients

(2.5) c*f=cfc), cCR=pHPR

In particular these relations define the constitutive relations for volume frac-
tions and the saturation condition becomes again the constraint. It has been
shown that in some particular cases this model describes the phenomena which
have been observed in the experimental soil mechanics. Moreover the model
seems to be an appropriate starting point for the description of anisotropic struc-
ture of pores. Nothing has been done yet in this direction.

It should be mentioned that the models of this class do not describe the
pore relaxation processes because the volume fractions are controlled by other
macroscopic deformation variables.

Within the second class of the models, the most commonly used one seems to
be that started by the M.A. GoopmaN and S.C. Cowin [13] who have proposed
an additional balance equation for a scalar quantity with a rather obscure phys-
ical interpretation. This equation is called the balance of equilibrated forces and
in various versions it has been extensively used to describe the two-component
granular materials (e.g. see: JJW. Nunziato, E.K. WALsH [14], D.S. DRUMHELLER,
A. BEDFORD [15], A. BEDFORD, D.S. DRUMHELLER [16], S.L. PassmMan [17], S.L.
PassMaN, J.W. Nunziato, E.K. WaLsH [4]). In particular the results for the com-
bustion problems (solid fuels) indicate that such a model is quite reasonable in
spite of its rather unclear microscopic foundations.

The same sort of the model has been investigated by J. BLunm, R. DE BOER
and K."WiLMarski [18]. They have considered the model with balance equations
for true mass densities p°*%. These were not assumed to be constant any more
as it was the case for the “incompressible” model of Bowen. The purpose of
this work was however solely to show that the incompressibilities in the Bowen’s
model, if considered in the same way as in the classical continuum mechanics,
yield the structure of the partial stress tensors which eliminates some flaws of the
original Bowen’s model. The local properties of this model have been investigated
in order to check the appearance of sound waves. It has been proved [19] that the
so-called P1- and P2- longitudinal waves may appear as required by experimental
observations if very specific constitutive restrictions on fluxes are satisfied.

Another type of the model in this class has been introduced by R.M. BOWEN
[20] who postulates the evolution equation for each volume fraction. This pro-
cedure is quite common in thermodynamic theories with internal variables (e.g.
macroscopic theories of mixtures with chemical reactions). It yields the sponta-
neous pore relaxation.

It should be mentioned that most of the above models admit large deforma-
tions of the skeleton. Although thése have not been investigated in the above
quoted papers, the problem has been recognized rather early. Some of its aspects
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were mentioned, for instance, in the early papers of J.E. Apkins [21] and A.E.
GRreeN and J.E. ApkiNs [22]. These works do not contain however any proposi-
tions concerning the changes of volume fractions. An extension of these works
under the Bowen’s “incompressibility” assumption has been proposed by J. Kusik
[23]. His work contains also many references connected with the problem of large
deformations.

In the present work we shall discuss in some details a new version of the
two-component model with the balance equation for porosity. It will be shown that
the model easily admits large deformations of the skeleton (the solid component
of the porous medium). Simultaneously it complies in the limit cases with the
early engineering models of soils and rocks. The semi-microscopic motivation
and thermodynamic details can be found in the paper [24]. A brief presentation
of these arguments is contained in the Appendix to this paper.

3. Lagrangian description

The continuous theory of mixture with fluid components relies usually on the
Eulerian description of the motion of components, similarly to the classical fluid
mechanics of the single component. In the case of one solid component such
as the skeleton of the porous medium this method is also possible but not very
convenient. Namely, to describe the large deformations of the skeleton in the
Eulerian way we have to introduce the deformation gradient F¥ of the skeleton
as the field in the space of actual configurations and then use the integrability
condition for this gradient as the additional tensorial field equation (e.g. see:
[25]). The attempts to use the mixed description — the Eulerian one for the fluid
components and the Lagrangian one for the solid components (see: R.M. BOWEN
[2]) — does not seem to be appropriate either. It yields certain basic technical
difficulties in the evaluation of the second law of thermodynamics and, most
important of all, it is not suitable for the analysis of the boundary value problems.
In the latter case, the field equations must be first transformed to the same
independent variables — either Eulerian or Lagrangian and this transformation
leads again to the technical difficulties apart from the fact that the problem can be
formulated in the uniform description from the very beginning. In addition, the
numerical analysis based on the finite element methods is simplified considerably
when we use the same reference configuration for all components to define the
spatial (Lagrangian) independent variables.

The most natural choice of such a reference configuration is the configura-
tion of the skeleton for which its deformation gradient is the identity. Then the
description of the deformation and of the kinematics is Lagrangian as in the
nonlinear mechanics of solids. It remains to clear the question how to describe
the fluid components in such a reference. This question has been answered in
[11] (see also [26] for many details) where the two-component porous material
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has been considered. We present here briefly these results limiting the further
considerations of this work to the two-component porous materials as well. The
extension to the cases of larger number of components is straightforward.

Let us begin with the motion of the skeleton. In the Lagrangian description
it is given by the function of motion

(3.1) X = XS(X,t), x € E3, XehB,

where x denotes the current position of the material point X of the skeleton, £3
is the three-dimensional Euclidean space of motion and B denotes the reference
configuration of the skeleton which, for the purpose of this work, can be identified
for instance with the real configuration of the skeleton at the instant of time
t = ty. Then the deformation gradient and the velocity of the skeleton are defined
as follows

OX.S

(3.2) FS(X,1) = Gradx°(X,1), x5(X,1) = -

(X, ).
In the case of the fluid component described in the Eulerian way, the kine-
matics is given by the velocity field defined on the current configuration

B.3) v =vF(x,1), x € X5(8,1).

It is rather obvious that the kinematics of the fluid is defined solely within the
domain of the current configuration of the solid (8, t). We are not interested
in the motion beyond this domain except for the phenomena appearing on the
boundary of the skeleton. This problem shall be discussed in the sequel. We
proceed to transform the relation (3.3) into the Lagrangian description of the
skeleton. Let us concentrate the attention on the material point of the fluid which
occupies the position x at the instant of time ¢. For the small time increment At
the position of this material point is given by the relation

(B4)  x(t + At) = x(t) + v (x(t), ) At = x(1) + F¥ (X, 1) AX + x5 (X, 1) At ,
where

X = X(t) = x7'(x(1), ),

(3.5)
AX = x5 N x(t + At),t + At) — x5 (x(2), 1).

The second part of the relation (3.4) follows certainly from the fact that the
material point of the fluid has changed the material point of the skeleton X with
which it had shared the position at the instant of time ¢ into the material point of
the skeleton X + AX, as indicated in the relation (3.5) (diffusion!). Consequently,
after easy manipulations in (3.4) we see that the image of the material point of the
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fluid in the reference configuration of the skeleton B moves with the following
velocity
AX

(3.6) XF = v (x5 (X, 1), ).

We call this velocity the Lagrangian velocity of the fluid component. It is obvious
that this velocity together with the velocity of the skeleton and with the deforma-
tion gradient of the skeleton, determines uniquely the usual Eulerian velocity of
the fluid component v¥'. Hence both ways of the description of kinematics of the
fluid component are equivalent. However the Lagrangian way has the advantage
that all fields are defined in the same domain B.

4. Field equations

We proceed to specify the basic fields of the two-component model and the
appropriate field equations. We limit our attention solely to isothermal processes.
Then the processes in the skeleton are described by the initial mass density ¢°
which is assumed to be constant (independent of the position in B — homogeneous
material) and by the function of motion % °(-, +). In addition to this vector field
for the skeleton, the process in the porous medium is described by the vector
field of the Lagrangian velocity X'¥'(,.) as well as the mass density of the fluid
component and the volume fraction of the fluid. We have to find the Lagrangian
representation for the last two fields.

The usual current mass density of the fluid component ol (x, ) satisfies the
following mass conservation law

d o
(4.1) VP CxX5(B,1): E/g{ de=0
P
where P, is material with respect to the motion of the fluid. It has been assumed
that there are no mass sources which could appear in the case of the exchange of

mass between components. The above relation can be easily written in the image
on the reference configuration B of the skeleton. Namely

V'PCB'E/ de=/a£—)‘vdn+f Fx'F . Nds =0
Ty _P ot = ’
aP
(4.2) P
dv = J5 Vv,

where

4.3) of =J%F, JS=detF5, P=x5"YP,1),
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and dP denotes the boundary of the set P, material with respect to the fluid
component. The presence of the surface integral is certainly connected with the
fact that the image of fluid on B changes in time according to the field of the
Lagrangian velocity of the fluid component.

It remains to introduce the representation for the volume fractions. It can be
done, for instance, by the consideration of the true mass densities defined by the
relations (2.2). If these are going to have the meaning of the mass densities then
they have to transform in the same way as o’ in the relation (4.3), i.e.

(4.4) o = SR 5 uF =

where of® and pf'® denote the reference value and the current value of the true
mass density of the fluid component, respectively. The implication in the relation
(4.4) follows, certainly, from (4.3). Consequently, we have the following relation
for the volume fraction of the skeleton

(4.5) nP=1=n=n?, n=af.

In the above relation the saturation condition for the two-component porous
medium has been used. The volume fraction of the fluid component n* is fre-
quently called the porosity of such a medium and it is denoted by =, as indicated
in (4.5). According to the above choice of the transformation rules preserving
the geometrical meaning of the volume fractions, the porosity in the Lagrangian
description is identical with that in the Eulerian description.

The above considerations yield the following set of fields which must be de-
termined by the mechanical model of the two-component porous medium

(4.6) X, 0= {o" nx" X"} e vt Xes,

where V3 is the eight-dimensional vector space of values of the fields.

For these fields we have to formulate the field equations. As usual we shall
make use of the conservation laws. Obviously, the conservation of mass of the
solid component is identically satisfied in the Lagrangian description. The local
conservation of mass of the fluid component follows easily from the equation
(4.2). We obtain

o
4.7) 92" | DivePXF = 0.
ot

The balance laws of momentum for both components are not conservation
laws due to the interaction of components in the relative motion (diffusive force).
We write first the integral form of these laws. Namely

d [ o < . e
I/gbx'b dv = fP'hNds + /(p" + 0°b®) dv
P oP P
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for VP C B - material with respect to skeleton,

(4.8) i/g x’de—ngFNds-{*f(p+QFbF)dv
ap

for VP C B — material with respect to fluid,

where PS and PF denote the partial Piola-Kirchhoff stress tensors related to the
reference configuration of the skeleton. They are related to the Cauchy stress
tensors of the current configuration by the relations

(4.9) P’ = °TF T, PP = PTIRT,

TS and TF being the partial Cauchy stresses in the skeleton and in the fluid
component, respectively.

The vector p* denotes the momentum source (diffusive force) resulting from
different velocity fields of the components. These, in reality, two sources for two
momentum balance equations differ solely in sign as required by the continuum
theory of mixtures.

The vector N is the unit vector orthogonal to the boundary P and oriented
outwards.

In any regular point of the domain B, the above balance laws yield the fol-
lowing local equations

QS Bx”’
ot

E(QFX'F) + Div(e"xF @ X'F — Py = —p~ + p"b".

— DivP® = p* + 0°b°,
(4.10)

These equations and the mass balance for the fluid component (4.7) form
the basis for the formulation of field equations if supplemented with constitutive
laws. However we are still missing one equation for the eight fields (4.6). This is
the closure problem which we have presented in Sec.2. As indicated already we
solve it by adding the balance equation for the porosity n. The semi-microscopic
motivation of this equation can be found in the paper [24] and in the Appendix. In
the present work this equation can be considered on the purely phenomenological
footing (see as well: [27]). Namely we assume

on

(4.11) 5 tDvI=v,

and call J the flux of porosity and v the source of porosity. Their physical meaning
shall be presented in the sequel (see, also: [27, 28]).

In order to formulate the field equations we have to introduce the constitutive
relations for the following constitutive quantities

(4.12) Z = {J, v, FS-1pS pS-1pF FSTp*} :
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where the Piola-Kirchhoff stress tensors were multiplied by the deformation
gradient for the objectivity reasons. We do not need to discuss this problem in the
present work because it does not differ from the same problem of the nonlinear
continuum mechanics of single-component media. However it is worth noticing
that the vector J is also assumed to be independent of the observer which can
be easily done in the Lagrangian description as we see further in this work. It
is connected with the fact that the Lagrangian velocity is independent of the
observer being defined by means of the relative velocity (see: (3.6)).

Further in this work we consider the simplest possible two-component porous
medium for which it is assumed that the skeleton is elastic and the fluid is ideal.
This certainly does not mean the reversibility of processes which are influenced by
the diffusion and the sources of porosity, both these factors yielding dissipation.
In terms of our fields the collection of constitutive variables in such a case is as
follows

(4.13) C = {QF,n,CS,X’F}, CS = FSTFS,

where C¥ denotes the right Cauchy-Green deformation tensor of the skeleton.
Finally we have the following constitutive relations

(4.14) Z = Z(C),

all these functions being assumed to be twice continuously differentiable with
respect to all arguments.

Equations (4.7), (4.10) and (4.11) together with the constitutive relations (4.14)
form the closed set of eight field equations for the eight fields (4.6). It remains
to formulate the boundary and initial conditions to obtain the initial-boundary
value problem for the set of differential equations. We shall discuss the boundary
conditions after the presentation of some thermodynamic admissibility conditions
for the constitutive relations (4.14) which are as yet almost arbitrary except for
the above mentioned mathematical regularity conditions.

5. Thermodynamic restrictions

We proceed to present the restrictions of the above described constitutive
relations following from the assumption that the processes must satisfy the second
law of thermodynamics.

Any solution of the field equations is called the thermodynamic process. Ac-
cording to the second law of thermodynamics, the thermodynamic process is ther-
modynamically admissible if the following inequality

S F , . IFS
(5.1) gsag’ +oF (W x’F-Gradw")—Pb-aF

at a T ot
—PF.Gradx* - FTp*. X'F <0



602 _ K. WiLMARSKI

is identically satisfied. In the above inequality ¥, ¥ denote the partial Helmholtz
free energies of components. These are assumed to be the constitutive quanti-
ties, i.e.

(5.2) s =e5), ¥F=uF().

The simple derivation of the inequality (5.1) from the entropy balance equa-
tions and the entropy inequality for isothermal conditions can be found, for in-
stance, in the work [11].

In the standard way we eliminate now the constraint on solutions of the in-
equality (5.1) that it should hold solely for the thermodynamic processes. Namely
we introduce the Lagrange multipliers for the field equations and require that
the inequality

ows ov OF°

S F 1F F b

(5.3) 5 + 0 (at + X"« Grad ¥ ) T
=PF«Gradx'f —= FPLp*«X'F

-
—A° (% + Div QFX”) - A" (((?)_t + Div] — )

_LS (‘_Sa(jt — Div PS _ px _ sts)

0 - ) . ’ ; ;
. (E(QFX’F) + Div (o X" @ X'F — P+ p* - QFbF) <0
p
should hold for arbitrary fields. The multipliers are functions of the same consti-
tutive variables as all other constitutive functions, i.e.

A = Ae(C), A™ = A™(C),
L® = FSL{(C), LF =F°LE(C).

(5.4)

The solutions of the above inequality are constructed in two different ways.
In early 60-ies B.D. CoLEMAN has proposed the method in which it was assumed
that the class of volume forces was large enough to accomodate arbitrary changes
of the other terms in the momentum balance equations. This means that these
equations do not constrain the class of solutions of the entropy inequality. In
such a case

(5.5) 1f=0, LF=0

However, if the class of volume forces is not large enough (e.g. if b% = b
as it is the case for the gravitational forces), the inequality must be exploited
by the absence of these forces. This has been investigated for the first time by
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I. MOLLER in 70-ies. It can be easily shown that the second way is less restrictive
for the multicomponent media and both methods yield the same results for the
single-component continua.

For the purpose of this work we rely on the CoLEMaN's method. Consequently
the results remain on the safe side as far as the thermodynamic restrictions are
concerned.

Bearing in mind the constitutive relations (4.14) and (5.2) and making use of
the chain rule of differentiation in (5.3) we obtain the inequality which is linear
with respect to the following derivatives

do" On X't S IF
(5.6) {c’)t T ,Grad "', Grad n, —— B ,GradF’,Grad X }

Consequently the inequality can hold for arbitrary fields solely in the case when
the coeflicients of these derivatives vanish. We arrive at the set of the following
identities

ows v SOUS  LovF
iz S F L - P}
A g do¥ te dol"’ 4 ® on to" on ’
LOwS dJ OUE o dJ
S +F n == FIZ owaile 1 et S
5.7 e {)él’x ¥ doF 0, ® “on 5T wd dn 0
ows o’
S F S
o oxF Yo oy =0
i WS powF
PS + PF = 2F° F s
( acs T ¢ ocs )
our oy \*
STpF - _ F g0 FY*  owiF _ anf _YJ
(5.8) F'p 0" A1 + o 0X,FQ<)X A (ax,p) ]

owF aJ\T"
23pF F _ 23 S F F _ A"
sym“P" @ X'*' = sym {ZF ( 563 ® X (0C5) .

There remains the residual inequality which defines the dissipation D of the
process

(5.9) D=FTp.XF - A >0

The above relations determine the Lagrange multipliers, relate partial stress
tensors to the partial Helmholtz free energies and to the flux J and introduce cer-
tain additional restrictions on the constitutive relations. We do not try to exploit
these results in their full generality and restrict our attention to the particular
case of the isotropic porous media. This is the subject of the next section.
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6. Isotropy

The assumption of the isotropy does not seem to limit the applicability of the
present model very considerably because we have already assumed the porosity to
be described by the volume fraction. Such an assumption eliminates any influence
of the geometrical anisotropy of the pore structure from the model. In this respect
the full isotropy assumption concerns solely the mechanical responses of the
skeleton and reactions to the relative motion.

The constitutive relations for scalar functions of the isotropic medium must be
invariant with respect to an arbitrary orthogonal transformation of the reference
configuration. In our model there are three scalar functions (see: (4.12) and (5.2))

(6.1) {v, 05,97},

and these functions of constitutive variables (4.13) satisfy the above requirement
if they depend on these variables solely through their invariants

(6.2) Cio = { 0", n", L ILTIL IV, V, VI},
where

I=1.C5 II = %(12—1-(:52),
(6.3) I = detCS = J52, IV = XF.XF,

VvV =(CS. (XIF ® X’F), VI = C52. (xlF ® xIF)'

Simultaneously the model contains two vector constitutive functions for which
the general isotropic representation is of the following form

J = (¥l + 8,C° + $,C5H)XF,

(6.4)
F*Tp* = (ml + mC% + mCSH)X'F.

In the above relations the coefficients are arbitrary isotropic scalar functions, i.e.
(6.5) &, = 9,(Ciso), 7o = TalCiso), e=0,1,2.

Further we do not need the isotropic constitutive relations for the partial stress
tensors because these follow from the identities (5.8) whose right-hand sides are
determined by the isotropic scalar and vector functions.

Bearing in mind the thermodynamic relations (5.6) and (5.7) as well as the
symmetries of the partial Cauchy stress tensors T, T¥ we obtain the following
results.
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The flux in the balance equation for the porosity must be parallel to the
Lagrangian velocity X'¥

(6.6) J=6XF, & =¢,=0.

The dependence of the Helmholtz free energies and of the coefficient ¢ on
the invariants is restricted by the relations

ows od
S 4 AREEY 0
g doF do¥
ovr P
F n 0
b el v

(6.7) powr owF
0 (g 3o am)

d b d &,
AR F 0 0 =
A"V III [g 90" ( __HI) + 21“01” ( ﬁ)] 0,

where the multiplier A™ is given by the relation (5.7),. Simultaneously

=0,

=0, Ay =, LILIV, VI,

s0¥° + FawF

=0, Ay =1V, V, VL.

The Piola - Kirchhoff partial stress tensors have the following form

691 P"=- [QF (g"’ai], + gbgw,,) + 4%4 |

69 P =2F"7 {g [aawl 4 (IO()LI: % m‘?ni;)
“IH(Z)![I’I ch 4 2%{, ooz ® X’F]
e 3;0(:5 (II% + III%) 1- III%?{’CS-1
+2%CSXW ® CsxlF] } ‘

The proofs of these relations are rather technical; they are based on the spec-
tral representation of the deformation tensor and of the Lagrangian velocity.
They shall not be quoted in the present paper. The details can be found in the
work [25].
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In spite of the complexity of the above relations, some important properties
of the isotropic model are immediately seen.

First of all the relations (6.6) yield the considerable simplification of the addi-
tional field equation (4.11) of the model. The collinearity of the flux of porosity
and of the relative Lagrangian velocity of components couples the diffusion pro-
cesses with this surface mechanism of changes of the porosity which is absent in
the models based on the evolution equations for porosity. This property simplifies
as well the problem of an additional boundary condition which is necessary for
this field equation in the fully nonlinear case of the present model. The latter
problem shall not be discussed in this work.

Simultaneously the scalar coefficient @ in the relation for the flux J plays
the crucial role in the “static” coupling between the components. This “static”
coupling is understood as the description of the interactions between components
reflected by the dependence of the free energy of the fluid ¥ on the deformation
of the skeleton through the invariants I, II, III of the Cauchy - Green deformation
tensor, as well as the dependence of the free energy of the skeleton ¥~ on the
mass density of the fluid o%. The former is easily seen in the relations (6.7)3
and the latter in the relations (6.7),. The additional most important “static”
coupling is reflected by the dependence of both partial free energies on the
current values of the porosity n. The dependence on n of at least one of these
energies is necessery for the non-triviality of the relation (5.7); for the multiplier
A™. This multiplier is solely responsible for the additional static interaction terms
in all relations quoted above. For instance in the case of lack of diffusion, the
vanishing multiplier A™ would yield the classical relation for the stress tensor in
the one-component ideal fluid and the classical relation for the stress tensor in
the one-component nenlinear elastic solid. In addition, all these interactions of
components are described by the model independently of the fact whether the
particular process is connected with the relative motion of components or not.

The above relations for stresses show also a rather complicated influence of
the relative velocity on the mechanical responses of the two-component medium.
Quite clearly this influence is at least quadratic. This means that the small diffu-
sion velocity yields primarily the explicit linear dependence of the diffusion forces
(momentum source) p* and of the porosity flux J on this velocity, and the partial
stresses contain solely the influence of the static interactions of components. In
such a case the partial Cauchy stress tensor for the fluid component is reduced
to the spherical form (pressure!).

Let us finally mention that the residual inequality (5.9) is in the isotropic case
of the following form

NS aw F
(6.10) (7ol + m;C° + 1,C%) « (X'F @ X'F) - (QSOL s ) v > 0.

dn e dn

Obviously the first term of this dissipation inequality describes the dissipation
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due to the diffusion, and the second one — due the changes of porosity caused by
the source v in the field equation of porosity. In the thermodynamical equilibrium
the relative velocity as well as the porosity source must vanish. These are the two
mechanisms of the thermodynamical relaxation in the present model.

Let us briefly review the above results for the general case. The thermodynamic
admissibility and the isotropy reduce the constitutive problem of the model to
the following scalar constitutive functions

(611) {ws’ va ¢(]aTrOv TTI,TFQ,N} )

which, in general, may depend on the constitutive variables (6.2) and are subject to
the conditions (6.7), (6.8) as well as (6.10). The vector fluxes and the stress tensors
are then determined by these functions through the appropriate differentiation.
Further in this paper we discuss some possibilities of the effective construction
of these functions for certain real porous materials.

7. Simplified nonlinear models

The purpose of this section is the construction of some simplified models
based on the general considerations of the sixth section. We shall not discuss all
important particular cases because the research on this subject is still in progress.
We want solely to illustrate the connection of the general mechanical model
of large deformations of the porous two-component medium with some other
models whose range of applicability is more restricted and with observations of
some real materials.

We begin with the assumption that processes deviate not too far from the
thermodynamical equilibrium. The latter is defined as the state with the vanishing
dissipation. According to the inequality (6.10) we have in such a state

(7.1) XFlg =0, vig =0, — n|g = ng = const.

The above assumption means then that the relative velocity of components is
small and the deviation of the porosity from the homogeneous initial state ng is
small as well. In this approximation

IS A
N(S()w i )

V=s——
of dn  ~  dn

(7.2) P
N(ng, L ILIIT, 0") > 0,

N

and the functions 7y, 71, 72 must be dependent on the same variables as \.
Simultaneously the state of the thermodynamical equilibrium is the state in
which the dissipation reaches its minimum. Consequently

3 . & s s -
(73) 5@+ o U Ny =0 (@0 0 U mny > 0.
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Bearing in mind the identities (6.7) in the first approximation of the deviation
from the state of equilibrium, we obtain after easy calculations

1
b5 = 03+ o
(7.4) vF =i + %w{ (n — no)?,
&y = ['y(no) + Qﬁg)(n - ng)] vIIT,

where
5) U5 = ¥ (no, LILI), ¥ = ¥§ (ng, of ),
of = oFII-1/2,
and
F F
_ =7 -9 , 558 F o Fy—1 n_ @ . _
76) v=-"0, r= T M), at = Lo - n).

The material parameter 7 has the interpretation of the relaxation time of the
porosity and, according to the condition (7.3); of the stability of the thermodynamic
equilibrium, it must be positive. It creates the damping of the acoustic waves in
addition to the damping connected with the diffusion.

Simultaneously

1 405 oF 0]
=0 s vIII —5 = 0,
2¢ Dol TN dol 0

10wl 1 b}
= e e e P e 2 ), As =1 11 L
2043 TN 0A;3
It is convenient to use further the spatial representation of the constitutive
variables and functions. In order to do so we introduce the current mass density
o7, the left Cauchy - Green deformation tensor B¥ and the real relative velocity w

(1.7)

(7.7)1 gf —_ QSJS_l, QtF = QFJS-I’ B) = FSFST, W= (X,F*‘XIS).

The invariants I, II, III are certainly identical for the tensor B® with those
of the tensor C?, and the invariants IV, V, VI are immaterial under the present
simplifying assumption of the small deviation from the thermodynamical equilib-
rium,

The partial Cauchy stress tensors, related to the Piola - KirchhofF stress tensors
by the relations (4.9), are in this case given by the following relations

- TS = 7;B% + Tyl + 7_,B~ !,
7.8
TF = —pF1,
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where
oy
— 2.5%%
Il 29: ()I )
LOUS
— SZ70
(7.9) AR 2111 p; I
. ows vy n—n
— 9,8 0 0 F 0
Iy 2p; (II ot + IIT é)HI) + 7y myval
and
ovF n—n
F _ ( F\20% F 0
(7.10) P = (er) 2F T TN

We have used the relations (7.5) and neglected terms quadratic in the deviation
of the porosity n from its equilibrium value ng. The latter causes the symmetry
of interactions in the partial stress tensors.

The similarity of the relations (7.8) to the classical relations for nonlinear
elastic materials and for the ideal fluids is, certainly, only apparent. The response
coefficient Iy depends in the present case not only on the deformation invariants
I, II, III, as it is the case in the classical one-component model but also on the
mass density of and on the porosity n. Simultaneously the partial pressure in
the fluid p* depends not only on the current mass density o/ but also on the
invariants I, I, IIT and on the porosity #. Crucial for this coupling of components
is the presence of the constant v which is the part of the flux of porosity as well
as the presence of the two additional material parameters 7 and A, both of them
connected with the changes of porosity.

Let us finally mention two other simplified models which may have the prac-
tical bearing on the soil mechanics. In both models we assume the linearity with
respect to the diffusion velocity.

The first one follows from the assumption that the balance equation for the
porosity (4.11) reduces to the evolution equation which describes the changes of
the porosity along trajectories of the fluid. Then

(7.11) &y = n, ie.  v(ng) = nog, $l=1 M=l

In such a case the identities (6.7) yield

wS = w5 (ng, 1,11, TIT),
(7.12) vl = Llf"w(ng,gf,n), k=nJ51,
N ~OUE
A" = of

ok’
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and the partial Cauchy stress tensors have the form

g OWS ows ovs ov
S _ s B _ S 5-1
™= 2 578+ 20 (II o 1 am)l 2111y, aHB
(7.13)
ovF ot
F _ _ |, F\2 F
T = [(Qt)angrgt o n]l.

Hence the interaction of components is not symmetric in this case. The changes
of porosity influence the stresses in the fluid but not in the skeleton.

The second simplified model follows from the assumption that the evolution
equation of porosity is carried by the skeleton, i.e.

According to the identities (6.7) we obtain then

@S = @5(n,1,11,1II),
(7.15) v = wF(ng,0f),
;OUS
T s D
Am=e on -’
and the partial Cauchy stresses are
ows ows av ov
S _~n,S s 5 I 1- s -1
T 20; 3l ——B” + 2p; (II Bl IIUIII) 211y, Bl B

(7.16)
TF

Il

ot
- \k(gt}?)z (()QF] 1

t

Consequently the interaction of components is again non-symmetric. The changes
of porosity influence solely stresses in the skeleton through the dependence of
the free energy ¥5 on the porosity.

We rest here as far as the discussion of the construction of nonlinear models is
concerned. In the next section we present briefly the boundary conditions which
are necessary to pose the mathematical problem for the field equations. Some
physical properties of various models will be discussed in connection with the
wave propagation.

8. Boundary value problems, permeable boundary of the skeleton

The set of field equations for the fields (4.6) requires — similarly to the mix-
ture theory — two vector conditions on the boundary, connected with the vector
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equations following from the momentum balance laws and, in general, one scalar
condition for the scalar balance equation of porosity. The latter may not appear
in particular cases when the coefficient of the flux of porosity @ is identical with
n itself. It is easy to show that it may appear at least in two cases. The first one
concerns the skeleton whose interactions with the fluid vanish entirely from the
Helmholtz free energy ¥ as discussed in the previous section. This seems to
appear for some rocks in the range of moderate porosities. The second one fol-
lows from the relation (7.4); as the approximation of the small volume changes
of the skeleton: III = 1, y(ng) = ng and &) = 1. In both cases the stress tensor
in the skeleton does not contain contributions from the fluid - it is indeed purely
elastic. We skip here the details justifying these assumptions in some practical ap-
plications whose main purpose is to estimate the order of magnitude of the new
material parameters. We shall accept them however in examples to be considered
further in this paper. The general case has not been considered as yet.

In addition to the above boundary conditions one has to describe the motion
of the free surface if the fluid flows out of the porous skeleton and the boundary
is identified with the boundary of the skeleton. We proceed to present some
elements of these problems.

Let us begin with the so-called dynamical compatibility conditions. These are
the jump conditions for fields and their functions which follow from the general
balance equations in the limit on singular surface. The derivation is standard and
we shall not present here any details.

In order to simplify the considerations let us assume that the surface is material
with respect to the skeleton. This means that its velocity is identically zero in the
Lagrangian image used in the work. The general case has been considered in the
paper [11]. Then the mass balance for the skeleton does not yield any non-trivial
conditions. The mass balance of the fluid (4.2) leads to the following relation

mf = ("XT)" N = (o"X")*. N, e
["X*)-N=0, [[.I=()" -,

where (...)~ is the limit of the expression in parenthesis from the negative side of
the surface (this is the internal side of the surface if the surface is the boundary),
and (...)" is the limit from the positive side (the exterior for the boundary) for the
other quantity. The quantity mf describes the amount of the mass of the fluid
which flows through the unit surface in the unit time. According to the above
condition, the mass is neither produced nor does it sink on the surface. Such
surfaces are called ideal.
The momentum balance equations (4.8) yield the following conditions

(8.1)

)] -N =0,

(8.2)
PN = " "]
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where the first condition does not differ from the classical Poisson’s condition of
continuity of the stress vector in the skeleton. The presence of the right-hand
side in the relation for the fluid means that due to the non-material character of
the surface, it is not the ideal surface for the fluid with respect to the convective
transport 6f momentum.

The surface balance for porosity is determined by the equation (4.11) which
holds for an arbitrary regular point but can be easily written in the integral
form and then extended to hold also in the limit on the singular surface. The
corresponding jump condition is then of the form

(8.3) [[0x]] -N = 0.

We shall not discuss this problem any further in this work.

We proceed now to formulate the boundary conditions for the boundary of
the skeleton on which the external load is given and the boundary is permeable
for the fluid. Many details concerning this problem as well as its applications in
the weak formulation and numerical codes for the two-component porous media
can be found in the work of W. Kemra [30].

The first vector boundary condition follows from the assumption that the
external load, say t., is given on the boundary of the skeleton 95. We assume
that this load is taken over by the resultant stress vector of both components on
the positive side of the boundary, i.e.

(8.4) {@Ny + "Ny~ + " [¥7]] } los = tex,

where the sum of the dynamic compatibility conditions (8.2) has been used. Apart
from the limits of fields from the interior, this relation contains as well the un-
specified quantity (x’F)*. We relate this vector to a scalar quantity in the sequel
(Eq. (8.6)1).

In order to expose the most essential feature we consider the second vector
condition under the additional assumption that the Cauchy stress tensor in the
fluid is spherical, i.e. we neglect the higher order contributions of the relative
velocity. In such a case we can assume that the tangential component of the
relative velocity is continuous on the boundary of the skeleton and the fluid does
not flow tangentially to the skeleton in the exterior. In the Lagrangian description
we have then

(8.5) (XF - (XF N)N)"|s5 = 0.
Solely two components of this vector are independent. For this reason we need

in addition one scalar condition. We formulate this condition assuming that the
flow of the fluid m” on the boundary of the skeleton is controlled by the pressure
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difference between the fluid inside of the porous material (p'')~ and the pressure
of the surrounding p..:;. Consequently

[x"7)

w 3]

m

e [ 3]

~JSCS-L.(N@N) [[,)F]] :

‘“Q(]’cxt - PF_ ),

where the relation (8.4) has been accounted for, as well as the following relations
for the unit vector n normal to the boundary in the current configuration [11]
and for the pressure in the fluid have been used

1 —
(87) n= (CS_I' (N ® N))_lleS-TN, pF = __3_JS(PF F.ST). 1 ,

and the parameter a is constitutive. If this parameter as well as the mass density
(¢F)* and the pressure pe were known, the relations (8.6) would complete the
formulation of the boundary value problem. We shall not go into any further
details referring an interested reader to the work [30]. Let us solely notice that
the constitutive relation for the boundary (8.6)3 does not contain any influence
of the pressure gradient projected on the normal to the boundary. Sometimes
it seems to be necessery to have this type of condition. The linear combination
of the jump of pressure and such a normal derivative would yield the boundary
condition similar to that appearing in the heat conduction problems with the
boundary characterised by its own thermal conductivity.

9. Acceleration waves in two-component media

The model constructed above in this paper contains a number of constitutive
quantities which must be measured in experiments. In the case of porous materials
such experiments are usually of the two different types. Either the measurements
are done by means of devices which are in contact with real components or
they are delivering the mean quantities in which the contribution of separate
real components is not clearly specified. To the first type belong, for instance,
the measurements of true mass densities of components separated from each
other or the measurements of the real pore water pressure. The most important
class of measurements of the second class are the measurements of speeds of
propagation and the attenuation of acoustic waves in porous materials. The waves
propagate in the multicomponent porous media and they deliver an information
on the whole system rather than on separate real components. Many examples
of such measurements can be found in the book of T. Boursig, O. Coussy,
B. ZINSZNER [5].
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In this section we present the most fundamental properties of acoustic waves
described by the present two-component model. We follow here the papers [19,
27, 28]) where also the extensive discussion and the comparison with the experi-
mental data can be found.

Within the continuum mechanics the acoustic wave is defined as the so-called
weak discontinuity wave in which the motion and the velocities are continuous and
the accelerations suffer the jump on a singular surface. This surface is assumed
to be orientable and it is called the wave front. It moves through the material
with the speed of propagation of the wave.

According to the above definition we assume in the case of the two-component
medium the following relations to hold on the wave front of the acoustic wave

oy [ =0, [¥)]=0, [¥)=0, [m1=0

Under these conditions the so-called iterated geometrical and kinematical com-
patibility conditions yield

[F]] =0, [x7) =0, [i"] =0,
[(P)N=0, [PN=0,

1S7]
[ %‘t— = aSy?, [[GradFS]] =a@NQ®N,
o
[ O_F_ =-Ua’@N,
ot |
9.2) o
ox’ — oF 2 1 — _raF
[[—a't—-J =a U i [[Gradx ]] = —Ua @N,
[[Grad x"“]] = (U -XF.NF’-'a° g N- UFS-1af @ N,
(')QF” F on
_ = — =r —_— =_[
H T ] Ur, [[Gradg ]] N, [ 0£” Un,
[[Grad n]] = nN,

where N denotes the unit normal vector to the wave front and a®, a*, r and n
denote the so-called amplitudes of discontinuity of the acceleration in the skele-
ton, the acceleration in the fluid, the fluid mass density gradient and the porosity
gradient, respectively. The speed of propagation of the wave front is denoted by U.

In order to find the speed of propagation U and the relation between the
direction of the amplitude and the direction of propagation, it is now sufficient
to evaluate the limits of field equations on both sides of the wave front. This
evaluation for the mass balance in the fluid (4.7) and for the balance equation of
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porosity (4.11) yield
) FS_T- (aS ® N)

1F 7!
rU(l—%N—) —gFU(l—“X
+o"UFST.@F @N) =0,

P Xﬁ? (?450 - ,FG(PQ

. (FSTaS ® N)

1F
—&U (1 - ATN) F5-T. (@5 @N) + oUF-T.(a"* @ N) = 0,

X§ =X".N.

In most cases of the practical bearing the relative velocity of components is
much smaller than the smallest speed of propagation of the acoustic wave. For
this reason we can make the simplifying assumption

IF
U

(9.4) <1;

the usual order of magnitude of the left-hand side is 10~%. If all other terms in the
relations (9.3) are of the same order of magnitude then we have approximately

(9.5) r=oFT.a°-a")eN, n=¢FT.(a°-a")@N.

Hence the amplitudes of the mass density gradient in the fluid and the am-
plitude of the porosity gradient are determined by the amplitudes of the accel-
eration. They do not yield their own waves and are carried by the other sorts of
waves. This would not be the case if we did not make the simplifying assumption
(9.4). A rather unusual type of waves appears if we make a better approximation
(see: [28]) but there is no experimental evidence that such waves do indeed exist.

We proceed now to investigate the momentum balance equations (4.10) from
both sides of the wave front. We limit the attention to the case of small relative
velocities for which the Cauchy stress tensor in the fluid is spherical (see: (7.2)).
Then bearing in mind the simplification (9.4) and the remaining constitutive as-
sumptions we obtain easily

S
a0 = JS(F5T.(a% - F)@N){ FgTF +¢080T }-(FS‘TN)+QSaS,
- ) ()p dp
F_Fr2 _ _4S T (oS _ oF\ & F
(9.6) o"a"U J {(F“' (a° —a")®N) (g 20F %Oz)

+20F (a® ®WN)} FS-TN,
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where

TB
S — oy 939_ S—T S
9.7) Q*=2°755) (FTNGFN).

This tensor of the second order is called the acoustic tensor in the classical theory
of acoustic waves in single-component nonlinear elastic materials. Its eigenvalues
determine the wave speeds, and its eigenvectors — the relation of the directions
of amplitude to the directions of propagation in this classical case. It is not so in
the case under considerations.

Let us notice that the second relation (9.6) implies that the amplitude a* must
be parallel to the vector n which is given in the current configuration by the rela-
tion (8.7) and which is perpendicular to the wave front. Consequently the waves
carrying the discontinuity of the acceleration in the fluid must be longitudinal.

It is also easy to check that the amplitude a® can have an arbitrary direction.
As pointed out in the work [27], these solutions of the set of algebraic equations
(9.6) determine three types of acoustic waves: two longitudinal so-called P1- and
P2-waves and one transversal S-wave.

We shall discuss some properties of these waves for the linear model in the
next section. However it is important to stress that all three waves are observed
in porous materials. The fastest one is the P1-wave. It propagates, for instance, in
soils with the speed 3 — 5 km/s. The second fastest is the transversal wave carried
primarily by the skeleton. The slow P2-wave (Biot’s wave) has, for instance, in
soils the speed 0.5 — 1.5km/s. These speeds as well as other properties of the
waves (for instance — attenuation) are dependent on the deformation of both
components and on the current porosity. This delivers the in situw methods of
diagnosis of porous materials by propagating acoustic waves and measuring the
arrival time and amplitudes of various sorts of waves. To a certain extent such
methods are already used, for instance, in geology. The difficulties are connected
with the analysis of the available data for which the old models of porous materials
were not adequate.

10. Linear models, some simple analytical considerations

For the purpose of illustration we close this work with a few remarks con-
cerning the linear version of the model. It is obvious that the construction of any
analytical solution of the fully nonlinear boundary value problem shall be almost
impossible. We can expect, however, that the numerical codes shall be developed.
The work on this subject is already in progress. For this reason it is convenient to
have some simple hints from the linear and simplified problems in which we do
not have to eliminate the artefacts connected with the numerical approximations.
We consider now a few examples of such problems.
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Let us consider the case in which the following assumptions are satisfied

ES=XcS-1), |[ES|= sup |ES-(men),
2 n,|n|=1
sup [ES|| < 1,
E 2 4
(10.1) ,
of — of

06

sup <1,

x.b

ng

sup €1, A=n-—ng,

Tt

where g(’,’ and ng denote the constant initial values of the mass density of the
fluid and of the porosity, respectively.

Under these assumptions the constitutive relations for the source of porosity
(7.11) and for the partial stresses (7.2) become

A

v=——, T = 1(ng),
T
TS = MS(E°. D1+ 22°E°%, X =X%(ng), 4 = p®(ng),
(10.2) g
TF = —pF1,  pF = KFpf + 2280 5
TN

EF = KF(ng), N =N(ng).

In the above relations we have used the assumption mentioned in the section
on the boundary conditions and concerning the form of the flux ¢9. Namely it
has been assumed to be equal to the porosity = itself. In the linear model this
assumption yields the constant flux of the value ng. The coupling of stresses is
then one-sided: the stress in the skeleton is independent of the presence and
properties of the fluid in pores.

The fields in this case

(10.3) {" a0V}, W =xT(X0)-X,

where u® is the displacement of the skeleton, are described by the following fully
linearized set of field equations

F
aait + ol Div(v™) = 0,
A A
(10.4) %—t + noDiv(vF) = -=,
9%’ =
0° == = (\* + °)Grad Div(u®) + ;° Div Grad(u®) + m3w + 0°b®,

ot
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(104) FBVF

no){f FnF
0y ——— = —Grad KFof + A —mw+ " b",

[cont.] at TN
ous
W= VF = W ’
where
(10.5) 3 = mg + 7 + 7 = w3(ng).

We can now make the analysis of the propagation condition of acoustic waves
completely explicit. We obtain the following equations for the amplitudes

r+g{;aF-n=0,
n+nga’+n=0,

eSU%% = (A% + p%)@% n)n + pSa’

F
; noo
95U23F={—I\Fr— 00n}n.

(10.6)

TN

Consequently the amplitudes of the mass density gradient r and the amplitude
of the porosity gradient n are not connected with their own waves — as it was
already the case in the nonlinear problem. The amplitude of the acceleration wave
in the fluid possesses solely the normal component and the speeds of propagations
are given by the following relations

AS 4 2u5
U = T“ longitudinal P1-wave,
uS
(10.7) Ui == transversal S-wave,
o
il
Uf =\/KF + ﬁ longitudinal P2-wave.

Hence the measurements of these three speeds of propagation deliver immedi-
ately three relations for the material parameters in function of the porosity ng.
These data are easily available and we show further a numerical example.

In order to analyze the attenuation of waves it is easier to consider a one-
dimensional example of the monochromatic wave. Let us denote by v the
z-component of the velocity of the fluid, by v¥ — the z-component of the ve-
locity of the skeleton and by £¥ — the extension of the skeleton in the z-direction.
These three quantities together with o/ and A fully describe the one-dimensional
process. We look for the solution of the set of field equations in the following
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form
of = of + eRF exp(i(wt — k™)),
of = eVF exp(i(wt — k™2)),
(10.8) v® = eV exp(i(wt — k™z)),
A = eDexp(i(wt — k™z)),
€% = eES exp(i(wt — k")),

where o}, RF,VF V5 D, ES are constants and
(10.9) O<e<l.

In the above relations the frequency w denotes the real frequency of the
monochromatic wave which is considered to be given. The wave number k* is
assumed to be complex. Namely

(10.10) k* =k +ia,

where k is the inverse of the wavelength and « denotes the attenuation of the
wave.

Substitution of the relations (10.8) in the field equations yields the following
dispersion relation for the monochromatic waves

2 il T
_ 2_pFy=2 Mo ? 2 _ ;T3
(10.11) {w Uy +—_TNw_—+i1/r ze(‘;w

2 52;%2 .73 3 3 2
qw”=Ur%k —z—u}+ (—) (7)“’ =0,
{ 0’ 05/ \

which is the equation for £* as a function of w. It is easy to check that the limit
case of almost empty pores for which we can neglect the influence of diffusion
yields the frequency-dependent speeds of propagation of two different types of
waves corresponding to the two longitudinal waves discussed above. Moreover
the limit w — oo yields the same speeds of propagation as before.

As far as the attenuation coefficient « is concerned we obtain the following
relation

1.0 ffo 1y_%
(10.12) r—2Q{(Q—4)W
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where

10.13 Y-
(10.13) = 5=

is the so-called the quality factor of the monochromatic wave (see: Sec.3.3.3.
of [5]). Hence the relaxation time 7 for the porosity is indeed one of the two
parameters describing the attenuation of waves. The second one is the classical
diffusion coefficient w3. The quality factor is also easily attainable to the mea-
surements. This yields the possibility of measuring the additional parameter 7 of
the model discussed in this section.

In order to illustrate the above considerations we present the numerical results
for the Massillon sandstone. For the porosity n, = 23% and the water saturation
Sw = 0.1% we have the following experimental data [S] and the results of the
wave analysis

Measurements: | Uf =3.1x 100 m/s | UF = 0.9 x 10° m/s 1_059 =40 for w=2x10" Hz

Uf 21.6x10° m/s | Uy = 0.3 x 10° m/s | o° = 2.4 x 10° kg/m?

Results (the A5 =10.776 | u=6.144 | KF =09 N =17.347 = 3.699
wave analysis): %x10° MPa x10° MPa | x10° m?/s? | x107® s?/m? x107% s

These values check well with the available experimental results obtained by
the standard methods of measuring the material parameters.

In addition, the above simple examples justify to a certain extent the assump-
tions made in the nonlinear model. For instance the measurements of the speeds
of the P1-wave in many rocks show that they are almost independent of the wa-
ter saturation in pores. It means that these speeds do not react to the art of the
substance in the pores — they are independent of o/ and A. This justifies for such
materials the assumption of independence of the free energy of the skeleton of
the mass density of the fluid and of the changes of the porosity which we have
mentioned in the section on the boundary conditions.

We complete this section with another standard example stemming from the
soil mechanics (see: [29] for further details). First of all let us notice that the
equations (10.4), » can be combined in the following way

o4 A& _ m Bo”
ot T ob Ot
If the mass density of" were known, we could find the changes of porosity from
this equation. Consequently the formal solution can be written in the form

(10.14)

t
n —i/r 1 ¥
(10.15) A= E?Q{E‘F—Qge t/r _ ;fé’p(xﬂ])e (t=m)7 gy
0
0
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As expected, the equation for porosity yields a sort of memory effect which
in the linear theory is described by the Boltzmann integral. It means that the
present value of the porosity depends not only on the present value of the mass
density but also on its past history. The influence of the past history is, however,
modified by the exponential function. Hence, in the first approximation, we can
neglect these effects entirely. We obtain

n ;
(10.16) Ax Q—,‘?(QF - ob).
0

Substitution of this relation in Eq. (10.14) shows immediately that this equation
is satisfied solely in the case of the infinite relaxation time. In such a case there is
no dissipation due to the changes of porosity. The porosity changes according to
the change of the mass density of the fluid. The similar property appears under
the assumption of the incompressibility of real materials of components which
has been discussed by R. BoweN [6]. However in contrast to the work of Bowen,
in our case it is only the approximation which does not lead to any reaction forces
on constraints.

Bearing in mind the above approximation we solve now the one-dimensional
quasi-static consolidation problem which has been solved for the first time by
Frohlich in 1938 within the frame of the Terzaghi model of consolidation. Namely
we consider the compression of the semi-infinite prism of the porous material
filled with water with the free flow of the water through the boundary « = 0. The
external pressure p, is atmospheric and the loading is given as the body force on
the skeleton

SbS = qH (H)é(),

0"V =0,

o
(10.17)

where II(+) is the Heaviside distribution and é(-) is the Dirac distribution. The
constant ¢ is the load in the direction of the z-axis.

Simple manipulations of the field equations yield the following set of equations
for the pressure p/ and the normal component of the stress o in the direction

of the z-axis
o [apF 9% (opf - )
ot (a—z) ~ P (W = MgEriE),

do®  opF
P 0r - —qH(t)é(x),

(10.18)
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where
2
gg KF + 2o
M= i ES =25 + 245
—1 2 L] s y
ES + of (A’F + n—“)
™N
(10.19)
of (KF + 18.) s
95 0 TN
D = -7}-" ) p
3 n
ES +of [ KF + =2
4 (k)

The equations (10.18) can be easily solved. For instance, we obtain the fol-
lowing result for the so-called hydraulic gradient i

2/THY . 1 2"
( Mg )"ﬁe""(‘ﬁ)’

d F
P ; = ti),— , z’
dx H?
and M is a constant with the dimension of length.
7-

(10.20)

2 =

z
H’

5_

1.[\ -

002 04 06 08 1 12 14 16 18 2
L

F1G. 1. Time changes of the hydraulic gradient ¢ for z/# = 0, 0.25 and 0.75.

This solution is shown in the Fig. 1 for various values of the depth. The result
complies quantitatively with the results obtained for the model of Terzaghi for
times shorter than app. 1.5.
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For large times the decay in the present model is much slower even though
both solutions approach zero for the infinite time. This is most likely the result
of approximations applied by Frohlich.

The above results allow also to find the last material constant of the linear
model - the coefficient of diffusion 73. Consequently the model can be used in
the practical applications to describe processes of small deformations and small
changes of porosity. Little is known about the constitutive functions for nonlinear
cases. This is however also the deficiency of the experiments which are available
at the present time.

11. Final remarks

The simple examples of the last section have demonstrated how strong must
be the simplifying assumptions to lead to the classical results of the theory of
porous materials. Almost nothing has been done yet as far as the solutions for
large deformations are concerned. At the present stage of research there seems
to be a good chance for obtaining the first numerical results in the case of purely
mechanical processes in materials with the elastic skeleton and the ideal fluid.
However even in this case there are no mathematical results available and the free
boundary may yield difficulties connected with the existence of classical solutions.

Even less developed are the models combining the large deformations with
non-mechanical variables. Particularly important are here the non-isothermal
problems. There exist already the first attempts to incorporate these effects, par-
ticularly in connection with the phase transformations (e.g. drying processes in
ceramics). The situation is, however, not very satisfactory. The thermal variables
connected with the problem of free boundaries yield difficulties with the con-
struction of the model which would contain physically measurable quantities (e.g.
see [11]).

On the other hand there seems to be no doubt that the modern continuum
theory of mixtures of immiscible components is the only possibility to obtain the
mathematical models of porous materials. The purely structural theories may
deliver some important hints concerning, for instance, transport coefficients but
they are hardly in the position to be applicable in numerous engineering prob-
lems of geology, chemistry, acoustics etc. independently of the capacity of future
computers. The new chance for the continuum theories is certainly connected
with the unified Lagrangian description of all components. Its application in this
work has shown that the relatively complex model can be handled without many
technical difficulties and the first experience with this description in numerical
methods also indicates considerable simplifications.
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Appendix: Motivation of the equation for porosity (4.11)

In this Appendix we present the brief semimicroscopical motivation of the
balance equation for the porosity (4.11). Mathematical details of the derivation
of this equation are rather involved due to the lack of smoothness. We discuss
them elsewhere [24].

It is assumed that the skeleton, the solid component of the porous medium,
is a continuum on the semimicroscopical level of observation. This means that
each point X of the macroscopical manifold B is connected with a certain time-
dependent microstructure M x which is schematically shown in Fig. 2.

a) b)

c)

FiG. 2. The semimicroscopical mechanisms yielding the changes of porosity. The centre of the
magnifying glass is located in all three cases at the same point X; a) initial microstructure,
b) changes of microstructure due to the pore relaxation (micromotion and microsources),

c) changes of microstructure due to the macroscopical flux (motion of microstructure
rclative to the macroscopical skcleton).

The instantaneous geometry of this microstructure is established by the real
solid body B., embedded for each instant of time in the three-dimensional
Euclidean configuration space R>. The hull which is identical with the closed
boundary surface of the geometrical three-dimensional figure M x (the frame of
the magnifying glass in Fig. 2) is now shifted over the configuration space and the
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average properties of the part of the real body contained in the interior of the
hull are prescribed to the point of the space R* coinciding with a chosen internal
point of M x (the centre of the magnifying glass in the simple example of Fig.2)
and occupied at the same instant of time by the material point X of the skeleton.
For simplicity one assumes that the shape of the hull does not change in time.

This type of the volume averages are used quite commonly in the theories of
bodies with microstructure. For instance the volume averages of material prop-
erties of composites are calculated in this way. In the theory of porous materials
with diffusion processes there are also numerous attempts in this direction (e.g.
F. DoBran [31], W.A. Gray, S.M. HassaNiZADEH [32], J. BEAR, Y. BACHMAT
[33]). None of them seems to be yet effective and reliable enough to yield the
macroscopical model without any need for additional macroscopical constitutive
relations. For this reason we use the above described construction solely to mo-
tivate the equation for the porosity.

Instead of constructing averages in the configuration space R* we use the
procedure on the reference configuration B of the macroscopical skeleton. This
corresponds with our Lagrangian approach.

We seek the equation describing the volume changes of the part of the real
skeleton which at a given point X € B and at a given instant of time ¢ lies inside
the hull of the figure M x. The arbitrary point Y from My can be described by
the location vector

(A.1) Y=X+¢Z, XeB, YeMy,

where ¢ is the small parameter of the order of the cubic root of the ratio of the
volume of microstructure to the characteristic macroscopic volume. If we denote
by H(.,t) the characteristic function of the real skeleton contained in M x

for Y belonging to the domain of the real skeleton,
otherwise,

1
then the porosity is defined by the relation

1
(A.3) 1-n(X,t) = 7 / H(Y,1)dV, Ve = / dV = const,
CMx M x

where V, is sometimes called the control volume of the averaging.

We want to find the time changes of the porosity. The changes of the micro-
scopic geometry of the real skeleton are due to the two factors:

e The redistribution of the real solid material in the domain My due to
its microscopic deformation. This may follow from the compressibility of the real
material and/or from the microscopic motion of the skeleton inside of this domain
which shifts the solid material to the parts of the pore space. Such processes are
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not controllable on the macroscopical level and yield the pore relaxation processes.
They are schematically shown in Fig. 2b. The material of the real skeleton in the
microscopic configurations of Fig. 2a and 2b (the interior of the magnifying glass)
is the same but its distribution within M y has changed due to the above described
mechanisms;

¢ The flux of the real material through the hull of the microstructure into the
neighbouring regions of the real body. This is demonstrated in Fig. 2¢ by the shift
of the real material relative to the magnifying glass whose centre still lies in X.

The balance equation for the whole microstructure describing these changes
of the geometry has the form

(A.4) % / H(Y,t)dV = jf HY, )iy  ndA + ] H(Y,t)dV,
My Mx Mx

where v, denotes the velocity field for the points occupied in the microstructure
by the real skeleton. This field is highly singular and usually cannot be integrated
to describe any smooth trajectories (see: [24]). The operations performed on the
above equation, which must be understood in the distributional sense, require cer-
tain additional smoothing procedures which we do not present in this Appendix.
The vector n is the outward normal vector of the boundary of the microstructure
OMyx and H(Y,t) is the intensity of the source of the domain occupied by the
real skeleton. The latter is due to the changes of the volume of the real skele-
ton in the microstructure caused by the changes of the real mass density of the
skeleton (see: Fig.2b).

The surface integral in (A.4) can be transformed into the volume integral
under the above mentioned smoothing procedures. Subsequently we apply the
multiscaling indicated by the relation (A.1) and obtain

(A.5) }( H(Y, t)v3, - ndA = Divy ] HX, Z, 05, (X, Z, 1) AV
Mx M x

+e / Div (H(X, Z, VS o (X, Z, ) dVz ,
My

where the differentiation and integration with respect to the microvariable Z
has been separated from the differentiation with respect to the macroscopical
Lagrange variable X.

The first term on the right-hand side of this relation describes the macro-
scopical flux of the porosity defined by the relation (A.3). Simultaneously the
second term follows from the microscopical motions of the real skeleton within
the microstructure and contributes to the pore relaxation processes — indepen-
dently of the fact whether the real components are assumed to be compressible
or incompressible.
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Consequently, if we introduce the notation

1
-3, 0 = 5 /H(X,Z,t)vfca,(x,z,t)dvz ,
M x
1
(A6)  -iX,) =31 ] Divy H(X, Z, (V5. (X, Z, 1) dV
Mx

LS fﬁ(x,z,t)dvz ,
Ve
Mx

we obtain from the equation (A.4) the balance equation of the porosity (4.11).

The above considerations must be considered solely as the clarification of
certain microscopical mechanisms yielding the “internal” variables and the mo-
tivation of this balance equation and not as its derivation because, apart from
the above mentioned smoothness problems, the relations of this Appendix are
not effective if we do not have the full set of microscopical field equations. The
problem must be still closed by constitutive relations and this is obviously simpler
on the macroscopical level as we have done in the paper.
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