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Non-uniform stagnant motions of materially non-uniform
simple fluids

S. ZAHORSKI (WARSZAWA)

INON-UNIFORM STAGNANT motions of materially non-uniform (inhomogeneous) incompressible fluids
are reconsidered in greater detail. These motions may be used in many practical situations, such
as fibre spinning and drawing processes. It is shown that the corresponding constitutive equations
are very similar to those describing motions with constant stretch history or, in particular, stcady
extensional flows.

1. Introduction

THERE ARE AT LEAST three reasons for reconsidering non-uniform motions of ma-
terially non-uniform (inhomogeneous) simple fluids. The first reason is connected
with pretty weak interest of the researchers involved either in the continuum
theories or in the rheology of polymeric liquids. Existing references are rather
devoted to what may be called inhomogeneities (dislocations, aeolotropy etc.) in
materially uniform simple bodies (cf. [1]). The second reason results from seri-
ous needs for such considerations in the rheology of polymers when the material
non-uniformity may be caused by a sensitivity of material properties to various
temperature, viscosity, structure, etc. variations in the flows considered. The third
reason, but not of minor importance, is the fact that the Referees of my previous
papers on the necking phenomenon in fibre spinning processes [2, 3] had some
doubts about the possibility of applying the constitutive equations in a form very
similar to that describing uniform steady elongations of incompressible simple
fluids [4].

In 1962 CoLeMAN and NoLL discussed the class of substantially stagnant mo-
tions [5] or motions with constant stretch history (MCSH) [6].

According to Noll’s definition, a motion is called a MCSH if, and only if,
relative to a fixed reference configuration at time 0, the deformation gradient at
any time 7 is given by

(1.1) Fo(r) = Q(r)exp(rM).  Q(0) = 1,
where Q(7) is an orthogonal tensor and M is a constant tensor such that M = N,
[Ng| = 1, and « a constant parameter. The above definition shows that in all

MCSH, the history of the relative deformation tensor is one and the same function
of ¢t — r for all current instants ¢.

Moreover, it results from WaNG's theorem [7] that in all MCSH, the extra-
stress tensor can be expressed as an isotropic tensor function of at most first three
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Rivlin - Ericksen Kinematic tensors, i.e.

(1.2) To(t) = h(A(1). Ax(1). A5().).  tr Ty =0,

where by definition

(13) A=LT+L,, Ai=A.+AL+LTA,, a>1,

and the velocity gradient amounts to

(1.4) Li(t) = Fo(OF;' (1) = Q)QT (1) + QM QT ().

In the present paper we generalize the above results for the case of non-
uniform stagnant motions (hereafter called NUSM) of materially non-uniform
(inhomogeneous) incompressible simple fluids. It is shown that the corresponding
constitutive equations are very similar in form to those valid for MCSH.

2. Non-uniform stagnant motions (NUSM)

Consider a more general class of motions for which the deformation gradient
at any time 7, relative to a configuration at time 0 is of the form:

(2.1) Fo(X, 7) = Q(X, 7) exp(M(X)), Q(X,0) =1,

where Q(X, 7) is an orthogonal tensor, and M(X) depends only on the position X
of a particle X in an arbitrarily chosen reference configuration K (not necessarily
at time 0). Thus, the non-uniformity of the quantities involved can be expressed
either by X or X (X = k(\)).

According to the definition (1.4), we obtain the following velocity gradient:

(2.2) Li(X,0) = Q(X.)Q" (X, 1) + L(X, 1),
where
(2.3) L(X. 1) = Q(X. OM(X)Q” (X, 1),

is called the rotated parametric tensor (cf. [8]), and ¢ denotes the current instant
of time.

The deformation gradient, relative to a configuration at the current time 1,
amounts to

) F/(X,t — s) = Fo(X, 7)F; (X, 1) = Q(X, ¢ — s) exp(-sM(X))Q" (X, 1).
. r=1-—3, 0<s< oo,
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what leads to the following history of the relative deformation tensor (cf. [8]):
(25)  Ci(X,s) = CuX.1 - s) = F/F; = exp(—sL" (X. 1)) exp(—sL(X, 1)).

In full analogy to the case of MCSH, we may ask what will happen if L;(X)
defined through Eq.(2.2) is steady (independent of time ¢) but non-uniform in

space? The answer results from the following differential equation based on
Eq.(1.4):

(26) LE(X,7) = LX) Fo(X. 7),

with the initial condition: Fy(X, 0) = 1. The corresponding solution can be written
as

2.7) Fo(X.7) = exp(rL;(X)).

The above expression evidently belongs to the class (2.1) with Q = 1. It is obvious
that for steady flows in an Eulerian sense

(2.8) Li(x) = V(x) - VL, (x),
where V is the velocity and V denotes the gradient with respect to place x.
It is worthwhile to mention that Noll’s classification of MCSH based on the

tensor M(X) (or L(X, 1)) can be generalized to the case of NUSM. Therefore, in
certain parts of a fluid, we may have the following classes of flows:

(T) non-uniform viscometric {low
M? = 0;
(IT) non-uniform doubly-superposed viscometric flow
M? # 0, M3 = (;
(TTT) non-uniform triply-superposed viscometric flow and extensional flow
M" # 0 forall n=1,2,....
The non-uniform extensional flows, because of their technological validity, will

be discussed separately in Sec. 4.

http://rcin.org.pl
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3. Constitutive equations of materially non-uniform (inhomogeneous)
simple fluids

As mentioned at the beginning, in many practical situations, instead of solv-
ing the usually complex problems, it is more useful to assume a priori that
unknown temperature, viscosity, structure, etc. distributions lead to a material
non-uniformity (inhomogeneity). In other words, such a non-uniformity means
that the mechanical properties of a fluid vary from particle to particle.

The constitutive equations of materially non-uniform incompressible simple
fluids can be written in the form (cf. [9]):

3.1) Tu(X, 1) = sﬁ}g(cg(x..s);X),

where Tg is the non-uniform extra-stress tensor, and H denotes a constitutive
functional. Such a definition is not in contradiction with the principles of deter-
minism and local action. Equations (3.1) also satisfy the principle of objectivity
(invariance with respect to the reference frame) since all the tensors involved are
objective (cf. [8]).

For non-uniform stagnant motions (NUSM) defined by Eq. (2.10), after intro-
ducing Eq.(2.5) into Eq.(3.1) and taking into account the properties of tensor
exponentials,

(3.2) epA=) LA (QAQY =QA"Q",
n=0 """

we arrive at
(33) T].;(X. t) = h(L(X, 1); X),

where h is an isotropic function of the tensor argument. In particular, if the
rotated parametric tensor L(X) is a steady one, the particle position X may be
replaced by its place in space x. This leads to

(3.4) Ti(x) = K(L(); x).

Since for the motions considered (NUSM) the following relations are also
valid:

(3.5) A =LT +L, A,u=AL+L7A,, n>1,

the corresponding representation theorem analogous to that derived by WanG [7]
can easily be proved (cf. [8]). Thus, it can be shown that the extra-stress tenscr
in the most general case amounts to

(3.6) Te(X, 1) = f(A1(X. 1), Ao(X, 1), A3(X, 1); X)),

http://rcin.org.pl
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where all the quantities depend on the particle position X. Similarly to the case of
MCSH, a knowledge of the first two kinematic tensors A; and A; is sufficient to
determine C|(X, s) uniquely, if either A, has three different eigenvalues, or two
of them are equal but differ from the third one and, moreover, [A;] = [A?] in
the same basis in which A; has a diagonal form. Such a generalization is possible
since the proof of the theorem is based on the geometry of matrices involved,
independently of whether they are functions of X or not.

4. The case of non-uniform steady extensional flows

The non-uniform steady extensional motions, under the assumption of quasi-
elongational approximation (cf. [2, 3]), may be useful as applied to various fi-
bre spinning and drawing processes [10]. For example, any temperature distri-
bution may lead to observable material non-uniformity (inhomogeneity). We will
show that the above motions are particular cases of those described by Eq. (2.1)
(NUSM).

To this end, consider the following exponential deformation gradient at time 7

4.1) Fo(X. 7) = exp(tM(X)),

where X, like in Sec. 2, denotes the particle position at an arbitrary reference con-
figuration, and the time-independent tensor M(X) is of a diagonal form. Instead
of Egs.(2.2), (2.4) and (2.5) we arrive at

J

(4.2) LX) = i)-—TF,(X.r) = LG = M(X),

(4.3) F(X,t — 5) = exp(—sM(X)), T=1-s, 0<s< oo,
and |

(4.4) Ci(X,s) = C(X, 1 — s) = exp(—sLT (X, 1)) exp(—sL(X, 1)).

Therefore, for the flows considered, the velocity gradient L;(X) is equal to the
parametric tensor L(X) and also to M(X).
Now, the constitutive equations (3.1) lead to

(4.5) Tr(X) = g(L(X); X),

where g is an isotropic function of the tensor argument, or to Eq.(3.4), if the
spatial description of material non-uniformity is used.
Since for general extensional flows with diagonal A; we have

(4.6) A, = (A)" = QL", u>1,

http://rcin.org.pl
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we can write instead of Eq. (4.5)
(4.7) Tr(X) = k(A1(X); X).

After taking into account the relevant representation of an isotropic tensor func-
tion of one symmetric tensor argument (cf. [8, 9]), we finally obtain

4.7) Ti(X) = 1A1(X) + FA%(X), trA; =0,
1

where the material functions /3; and /3, depending on the invariants of A, are
also explicit functions of the position X (or the place x in steady flows).

5. Conclusions

Non-uniform stagnant motions (NUSM) are some generalization of the well
known motions with constant stretch history (MCSH) defined by Coleman and
Noll. In the case of materially non-uniform incompressible simple fluids, the
constitutive equations take a form very similar to that valid for MCSH.

In the case of non-uniform steady extensional flows the corresponding consti-
tutive equations simplify considerably and, of course, are independent of time.
Those equations may be used in many practically important quasi-elongational
flows such as fibre spinning and drawing processes.
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