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Non-uniform stagnant motions of materially non-uniform 
simple fluids 

S. ZAHORSKJ (WARSZAWA) 

NON-UNLFORM STAGNANT motions of materiall y non-uniform (inhomogeneous) incompressible fluids 
arc reconsidered in greater detail. These motions may be used in many practical siiU atio ns, such 
as fibre spinning and drawing processes. It is shown that the corresponding constitutive equations 
are very similar to those describing moti ons with constant stretch history or, in particular, steady 
extcnsional flows. 

1. Introduction 

THERE ARE AT LEAST three reasons for reconsidering non-uniform motions of ma-
terially non-uniform (inhomogeneous) simple fluid s. The first reason is connected 
with pretty weak interest of the researchers involved either in the continuum 
theories or in the rheology of polymeric liquids. Existing references are rather 
devoted to what may be call ed inhomogeneities (dislocations, aeolotropy etc.) in 
materially uniform simple bodies (cf. [1 ]) . The second reason results from seri-
ous needs for such considerations in the rheology of polymers when the material 
non-uniformity may be caused by a sensitivit y of material properties to various 
temperature, viscosity, structure, etc. variati ons in the fl ows considered. The third 
reason, but not of minor importance, is the fact that the Referees of my previous 
papers on the necking phenomenon in fibre spinning processes [2, 3) had some 
doubts about the possibility of applying the constitut ive equations in a fo rm very 
similar to that describing uniform steady elongati ons of incompressibl e simple 
fluids [4] . 

In 1962 COLEMAN and NOLL discussed the class of substantially stagnant mo-
tions [5) or motions with constant stretch history (MCSH) [6]. 

According to Noli's definiti on, a motion is called a MCSH if, and only if , 
relative to a fi xed reference configuration at time 0, the deformation gradient at 
any time r is given by 

(1.1) Q(O) = 1, 

where Q(r ) is an orthogonal tensor and M is a constant tensor such that M = r.:N0, 

INol = 1, and "' a constant parameter. The above definition shows that in all 
MCSH, the history of the relative deformation tensor is one and the same function 
of t - r for all current instants t. 

Moreover, it results from WANG'S theorem [7] that in all MCSH, the extra-
stress tensor can be expressed as an isotropic tensor function of at most fi rst three 
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Rivlin - Ericksen kinematic tensors, i.e. 

(1.2) To( I) = h(A t (t), A2(t) , A3(t.), ), trTt: = 0, 

where by definition 

(1 .3) 

and the velocity gradient amounts to 

In the present paper we generalize the above results for the case of non-
uniform stagnant motions (hereafter called NUSM) of materially non-uniform 
(inhomogeneous) incompressible simple fluid s. It is shown that the corresponding 
constitutive equations are very simil ar in form to those valid fo r MCSH. 

2. Non-uniform stagnant motions (NUSM) 

Consider a more general class of motions for which the deformation gradient 
at any time r , relative to a configuration at time 0 is of the form: 

(2.1) Fo(X , r ) = Q(X, r ) exp(r M(X)) , Q(X, 0) = 1, 

where Q(X , r) is an orthogonal tensor, and M(X) depends only on the position X 
of a particle X in an arbitrarily chosen reference confi guration K (not necessaril y 
at time 0). Thus, the non-uniformity of the quantities involved ｣ＺＮｾｮ＠ be expressed 
either by X or )( (X = K(X)). 

According to the definition (1.4), we obtain the fo llowing velocity gradient: 

(2.2) 
• T 

L 1 (X , t) = Q (X , t)Q (X, t) + L(X , t), 

where 

(2.3) L(X , I) = Q(X.t)M(X)QT(X , t) , 

is call ed the rotated parametric tensor (cf. [8]) , and l denotes the current instant 
of time. 

The deformation gradient, relative to a configuration at the current time r, 
amounts to 

(2.4) 
F1(X,t. - s) = Fo(X,r)F0

1(X , t) = Q(X,I - 8)exp(-sM(X))QT(X , t.), 

T = t - S, 0 :=; s < oo, 
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wha t leads to the foll owing history o f the relative de formation tensor (cf. [8]): 

(2.5) c;(x. 8) = C1(X, 1- s) = FJ'F1 = exp( -sLT(X. t)) exp( -sL(X, t)). 

In ful l analogy to the case of M CSH , we may ask what will happen if L1 (X) 
defin ed through Eq. (2.2) is steady (independent o f time t) but no n-uniform in 
space? The answer results from the foll owing d iiTerential equation based o n 
Eq. (1.4): 

(2.6) 
d 
-l Fo(X ,r) = L 1(X)Fo(X,r) , 
(T 

with the initi al cond iti on: F0(X , 0) = 1. The corresponding solution can be wri t ten 
as 

(2.7) Fo(X, r) = exp(rL 1 (X)) . 

T he above expressio n evidently be longs to the class (2.1) with Q = 1. Tt is obvious 
that for steady fl ows in an E u lerian sense 

(2.8) L 1 (x) = V(x) · \' L1 (x) , 

where V is the velocity and \ denotes the gradient with respect to place x. 
Tt is wort hwhil e to mention that Noli 's classificat ion of MCSH based on the 

tensor M(X) (or L(X , t)) can be generalized to the case of NUSM. T herefore, in 
certain parts of a fl uid, we may have the following classes o f flows: 

(T) non-uniform viscometric flow 

(IT ) non-uniform doubly-superposed viscometric fl ow 

(TTT) non-unifo rm tri p ly-supe rposed viscomerric fl ow and extensional fl ow 

l\1 11 f= 0 fo r all '' = 1, 2 . .... 

The non-uniform extensional fl ows, because o f their technological validity, will 
be discussed separa tely in Sec. 4. 
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3. Constitutive equations of materially non-unifo1·m (inhomogeneous) 
simple Huids 

As mentioned at the beginning, in many practical situations, instead of solv-
ing the usuall y complex problems, it is more useful to assume a priori that 
unknown temperature, viscosity, structure, etc. distributions lead to a material 
non-uniformity (inhomogeneity). In other words, such a non-uniformity means 
that the mechanical properties of a fluid vary from particle to particl e. 

The constitutive equations of materiall y non-uniform incompressible simple 
fluid s can be written in the form (cf. [9]): 

(3.1) 
CO 

TE(X, t) = 1{ (C:(x, s); X) , 
s=O 

where T E is the non-uniform extra-stress tensor, and 7{ denotes a constitutive 
functional. Such a definition is not in contradiction with the principles of deter-
minism and local action. Equations (3.1) also satisfy the principle of objectivity 
(invariance with respect to the reference frame) since all the tensors involved are 
objective (cf. [8]) . 

For non-uniform stagnant motions (NUSM) defined by Eq. (2.10), after intro-
ducing Eq. (2.5) into Eq. (3.1) and taking into account the properties of tensor 
exponentials, 

(3.2) 

we arrive at 

(3.3) Tc(X, t) = h(L(X , I); X). 

where h is an isotropic function of the tensor argument. Tn particular, if the 
rotated parametric tensor L(X) is a steady one, the particle positi on X may be 
replaced by its place in space x. This leads to 

(3.4) T E(x) = k(L(x); x). 

Since for the motions considered (NUSM) the follow ing relations are als 
valid: 

(3.5) n 2: 1, 

the corresponding representation theorem analogous to that derived by WANG [i ] 
can easily be proved (cf. [8]). Thus, it can be shown that the extra-stress tenser 
in the most general case amounts to 

(3.6) TE(X , I) = f(At (X, 1), A2(X , 1), A3(X , t); X) , 
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where all the quantiti es depend on the particle position X. Similarly to the case of 
MCSH, a knowledge of the fir st two kinematic tensors A1 and A2 is suflici ent to 
determine q(X, s) uniquely, if eithe r A1 has three difTerent eigenvalues, or two 
of them are equa l but difTer from the third one and, moreover, (A2) = (Ai] in 
the same basis in which A1 has a diagonal form. Such a generali zation is possible 
since the proof of the theorem is based o n the geometty o f matrices involved, 
independently of whether they are functions of X or not. 

4. The case of non-uniform steady extensional flows 

The non-uniform steady extensional motions, under the assumption of quasi-
elongational approximation (cf. (2, 3]), may be useful as applied to various fi-
bre spinning and drawing processes (10). Fo r example, any temperature distri-
bution may lead to observable material non-uniformity (inhomogeneity). We will 
show that the above motio ns are particular cases of those described by Eq. (2.1) 
(NUSM). 

To this end, consider the fo ll owing exponential deformation gradient at time r 

(4. 1) Fo(X. r ) = exp(rM(X)) , 

where X, lik e in Sec. 2, deno tes the particle position at an arbitrary re ference con-
figuration, and the time-independent tensor M(X) is of a diagonal form. Instead 
of Eqs. (2.2), (2.4) and (2.5) we arrive at 

(4.2) 

(4.3) 

and 

f) 
L, (X) = -

0 
F1(X , r ) l = L(X ) = M(X) , 

T r=l 

F1(X , I - s) = exp( -sM(X)). T = I -s, 0 :::; s < oo, 

(4.4) c:cx, s) = C1(X, t- s) = exp( ＭＮｾ ｌ ｔ Ｈｘ Ｌ＠ !)) exp( -sL(X , t)). 

Therefore, for the flows considered, the velocity gradient L 1 (X) is equal to the 
parametric tensor L(X) and a lso to M(X) . 

Now, the constitutive equations (3.1) lead to 

(4.5) T t,·(X) = g(L(X) ; X), 

where g is an isotropic functio n of the tensor argument, or to Eq. (3.4), if the 
spatial description o f material non-uniformity is used. 

Since for general extensio nal fl ows with d iagonal A 1 we have 

(4.6) n :::: 1, 
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we can write instead of Eq. ( 4.5) 

(4.7) TE(X) = k(A 1(X); X). 

After taking into account the relevant representation of an isotropic tensor func-
ti on o f o ne symmetric tensor argument (cf. [8, 9]), we finally obtain 

(4.7) trA 1 =0, 

where the material functions (31 and (32, depending on the invariants of A1 are 
also explicit functions of the position X (or the place x in steady Oows). 

5. Conclusions 

Non-uniform stagnant motio ns (NUSM) are some generalization of the well 
known motio ns with constant stretch history (MCSH) defined by Coleman and 
Noli. In the case of materiall y non-uniform incompressible simple Ouids, the 
constituti ve equati ons take a form very simi lar to that valid fo r MCSH. 

In the case of non-uniform steady extensional Oows the corresponding consti-
tutive equations simplify considerably and, o f course , are independent of t ime. 
Those equatio ns may be used in many practi call y important quasi-etongationat 
flows such as fi bre spinning and d rawing processes. 
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