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On the extension of Newton's second law to theories 
of gravitation in curved space-time 

M. ARMTNJO N (GRENODLE) 

W E INVESTIGATE the possibility of extending Newton's second law to the general framework of 
theories in which special relativity is locally valid, and in which gravitation changes the fl at Galilcan 
space-time metric into a curved metric. This framework is tirst recalled, underlining the possibili ty 
to detine uniquely a space metric and a local time in any given n.:ference frame, hence to define 
velocity and momentum in terms of the local space and time standards. lt is shown that a unique 
consistent definition can be given for the derivative of a vector {the momentum) along a trajectory. 
Then the possible form of the gravitation force is investigated. l t is shown that, if the motion of 
free particles has to follow space-time geodesics, then the expression for the gravity acceleration is 
determined uniquely. lt depends on the variation of the metric with space and time, and it involves 
the velocity of the particle. 

1. Int roduction 

THIS woRK COMES from an attempt to explore the possibili ty o f extending the 
" logic of absolute motion", which prevail s in the Lorentz-Poincare interpreta-
tion of special relativ ity [8-9, 15, 20-24], so as to obtain a consistent theory of 
gravitation. Thus, a theory with a preferred frame has been tentatively proposed 
[1 -4]. Just li ke general relativi ty (GR), this theory endows the space-time with a 
curved metric. Just like in GR, special re lativity (SR) holds true locall y in this 
tentative theory. However, an extension of Newton's second law, or rather of 
its modifi ed expression vali d in SR , has been defi ned fo r a test parti cle (mass 
point o r photon) in the most general situation withi n this investigated theo1y 
[4] . As it wi ll be reported here, the way used in this theory to defin e Newton's 
second law in a "cu1ved space-time" turns out to be both natural and general 
in its principle. Hence, it has been tri ed to fi nd in the lit erature such a natu-
ral and general extension, but this quest has not been really successful. Apart 
from approximate equations occurri ng in "post-Newtonian" treatments, two ex-
act extensio ns of Newton's second law to relati visti c theori es of gravitation can 
be found among well -known textbooks: LANDAU and LJFCHITZ [11, § 88] defin e 
this law for a constant gravitation fi eld, and M 0LLEK [1 8, § 11 0] "t ri es to write 
[the equations of space-ti me geodesics] in the form of three-dimensional vecto r 
equatio ns" in a general case but, as his sentence suggests, and as will be di s-
cussed below (no te 1 and Sec. 4), his attempt is not full y satisfactoiy . JANTZEN 
et al. [1 0] review and unify the various attempts, including the important work 
o f CATTANEO [6-7], to '·split space-time into space plus time" and to rewrite 
the relativi stic equations of moti on with "spati al gravitational forces". It appears 
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from their review that three difTerent definiti ons have been int roduced, by va·i-
ous authors, fo r the ti me-deri vative of the momentum. These definiti ons will oe 
examined in Sec. 4. It will appear that one does no t obey Le ibniz' rule, whJe 
none of the other two does involve only the separate ingredients "space metri ;" 
and " time metric" in a given reference frame, as should be true fo r a natural 
extension o f Newton's second law. H owever, it seems tha t one has good reaso1s 
to search for such extensio n and hence to fi nd this "missing link" [17] betwetn 
classical and relativ istic mechanics. 

Indeed, the Lorentz-Poincare construction of special re lativi ty [1 5, 20-2 ], 
fully developed by JANOSSY [8- 9] and PROKH OVNI K [22-24], obtains the "rea-
tivistic" efTects as being all consequences o f the "true" Lorentz contraction c.s-
sumed to afTect all bodies in mo tion with respect to the "ether". As it has be!n 
recently reestablished [27] against contrary statements, it is impossible to mea-
sure consistently the anisotropy in the one-way velocity of li ght. This makes t1e 
Lorentz-Po incare version empiri cal ly undisti nguishable from the Einstein w r-
sion of SR [22]. The Lo rentz- Poincare interpretation all ows to concil e specal 
relativity wit h our intui tive noti on of d istinct space and time, and thus with t1e 
most crucial concepts of classical mechanics. H owever, special re lativ ity does rot 
describe gravitati on: for gravitation, general re lativi ty is the current tool. I3 ut in 
GR, the laws of motion become a consequence of the space-time curvature, eg. 
the "free" particles are assumed to follow the geodesic li nes of the space-tine 
metri c. Thus, a t least as long as the geodesic fo rmulation o f motion has not ｢･ｾｮ＠
derived from a generalization of Newton's second law, one is enforced to giv{ a 
physical status to space-t ime in GR. O n the other hand, despite the experimm-
tal success of G R , it leaves unsolved p roblems as regards gravitation. We rmy 
mention the problem of the singularity occurring with the gravitational collapse o f 
very massive objects, and the need to postulate huge amounts of " dark matter" in 
order to explain stell ar motio n in galm<ies. We should a lso mention the questims 
on the inOuence o f the coord inate condition in GR , which were raised a long t ine 
ago (e.g. PAPAPETROU [1 9]), but that have been newly d iscussed by LOGUNOV er d. 
[1 3-14]. LoGUNOV et al. present detailed arguments against the usual agreemmt 
that, in GR, the cho ice o f the coordinate condit ion has no physical consequen:e. 
It thus may be worth to investi gate alternative, speculati ve theori es and to <sk 
questions on the formulation o f motio n. 

In this paper, an extensio n of Newton's second law will be given fo r theores 
o f gravitati on in curved space-time in which SR is locall y vali d, including GR. rn 
doing so, care will be taken to ma intain space covariance in a given refererce 
frame, in o rder that the fo rce be properly defined. However, no attempt will Je 
made to investigate the transfo rmatio n o f the fo rce from one refere nce frane 
to another. Sectio n 2 will be focused on the definit ion o f the ri ght-hand sideof 
Newton's law, i.e. the time-derivative of the momentum: it w ill be shown that t1 is 
may be defin ed from rather compellin g principles, up to the same parameter .A 
as in the tentative theory [4], and which a lso must be ,\ = 1/ 2 if L eibniz' nle 
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is to apply. In Sec. 3, it will be investigated which form of the gravitation force 
is compatible with Einstein motion (for "free" particles), i.e. the motion along 
space-time geodesics. In the fir st step, Leibniz' rule will not be imposed but it 
will be assumed, in analogy with the Newtonian theory, that the gravitation force 
depends linearly on the spatial derivatives of the metric and does not depend 
on its time-derivati ve. In the second step, Leibniz' rule will be assumed, but no 
restriction on the gravitation force will be imposed. In Sec. 4, the three anterior 
definitions of the time-derivative of a spati al vector, reviewed by Jantzen et al., 
will be examined from the point of view of "consistency" (validity of Leibniz' 
rule), and " naturalness" (space plus time separation). 

2. Definition of Newton's second law for a (pseudo-) Riemannian 
space-time metric 

2.1. Some clarification on the kind of theories considered 

We suppose that, according to some gravitation theory, the physical standards 
of space and time are influ enced by a gravitatio n field, but that SR holds true 
locally (GR is the prototype of such gravitatio n theories, of course). It will he 
useful to recall in some detail what is meant by this, no t the least because it w ill 
make clear that this framework does not preclude to consider a preferred-frame 
theory, nor does this framework imply that a fundamental physical meaning must 
be given to the mathematical concept of space-time. It wil l also give the way 
to separate the fo rce into a gravitational force or rather a mass force, and a 
non-gravitatio nal force. 

i) According to a theory of th is kind, our space and time measurements 
may be arranged so as to be described by a metric 1 with (1 ,3) signature o n 
a 4-dimensio na l, "space-time" manifold. This may be done as follows. Any possi-
b le reference frame :F, physicall y defined by a spatial nefiVork of "obse1vers" (each 
one equipped with a rule r and a clock, all made in the same factory, say), al-
lows one to define (in many ways, actually) an associated coordinate system (.ra ) 
( lt' = 0, ... , 3), with x0 the time coordinate and .1: ; (i = 1, 2, 3) the space coordi-
nates, so that each observer has constant space coordinates. Moreover, l = x0 j c is 
the "formal date" assigned to an event occurring at a point specified by the space 
｣ｯｯｲ､ｩｮ｡ｴ･ｳ Ｚｾ ﾷ ［＠ (I has in general no immediate relation to real time-measurements 
made by the obse1ver at this point). The observers in the same frame :F are 
not necessarily at rest with each othe r, i.e. they may find that their mutual dis-
tances are no t conse1ved (case of a deformable frame). The manifold structure 
o f the space-time means simply that the same physical events will be given dif-
ferent space and time coordinates by difTerent networks of observers, say (.t 0

) 

and Ｈ ＺｾＺ Ｇ ｡ ＩＬ＠ and that the correspondence between (:t 0
) and (.r'" ) is locally smooth 

(for smoothly deforming networks). So we have a space-time manifold J1/ 4. The 
elements (points) of the spatial network cannot be identified with points in that 
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manifold but with "world lin es", thus with lines in space-time. H ence, fro m the 
point of view of "space-time" , a refe rence frame is a 3-D difTerentiable manifo ld 
N whose each point is a (time-lik e) differentiable mapping from the real lin e 
onto the space-time A/ 4

; moreover, N is difTeomorphic to any spati a l section o f 
M 4 (this is only the sketch of a rigorous definiti on; fr o m the point o f view o f 
"space + time", a much simpler definitio n may be proposed [I]) . Note that many 
new coordinate systems (x'(' ) do not change the reference frame (network) spec-
ified by one syste m (:z:0

): the frame remains unalt ered if and only if the change o f 
the space coordinates does not depend on the time coordinate, i.e. D.r'i j ｄＮｾ［ Ｐ＠ = 0. 
Up to this point, it seems that no physically restrictive assumption is involved 
(except, of course, fo r the fact that " classical" physics, no t q uan turn physics, is 
envisaged here). 

The assumption that SR appli es locally is the one which all ows to define a 
(1,3) space-time metric. T his assumptio n means, in the fir st place, this: in any 
reference frame, the velocity o f light, as measured on a to-and-fro path between 
infinit esimally distant posit io ns, is always the same constant r. Under this con-
diti o n, the link between p hysical space and time measurements and the metric 
1 may be described as in L ANDAU and LJ FCHITZ [ 11 ], it is based o n using the 
Poincare- Einstein synchronization conventio n for infi n itesimall y distant c locks. 
Thus the prope r time along the trajectOty of a mass point (" time-li ke" lin e in 
space-time), i.e. the time T measured by a clock bound to the moving point, is 
directly g iven by metric 1: 

(2.1) I 2 - .2 I 2 - ｾ＠ I .o I .. J ( .<. - ( f T - [,,,3 f .I f .1 . 

Al so, the d istance dl between neighbouring o bservers (of a given frame :F, spec-
ifi ed by a coordinate system), as they find by using their rule rs, or by measuring 
the interval riT of the ir proper time that it takes for a li ght signal to go forth and 
back, is expressed by a space metri c tensor h = hF (i t depends o n the frame :F) : 

(2.2) h,j = Ｍ ｾＬｩＮｩ＠ + (io ; /ojhoo). 

Mo reover, a synchronized local time Ｇ ｾ ＨＰ＠ may be defined alo ng any open line in 
space-time (i.e. a p iecewise differentiable and one-to-one mapping ｾ＠ - (.r" (0) 
defin ed o n a closed segment of the real lin e), such that its vari atio n a lo ng the 
given trajecto1y is given by: 

(2.3) rltx = J,Oo ( r/.r
0 + -1o, ｾＩ＠ . 

ｲｬ ｾ＠ (' ､ｾ＠ / 00 ｲｬｾ＠

As emphasized by CATIA EO [6], the inte1val rllx is invari ant under any coordi-
na te transformatio n that leaves the refere nce frame unchanged (" internal tram;-
fo rmation") and has thus an objective physical meaning. If the /Oi compo nents 
(i = 1, 2. 3) are identicall y equa l to zero, the synchronization conventio n implies 
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that events occurring at a given value of :r0 are simultaneous in the frame F, 
independently of their spatial coordinates (this may be seen in Eq. (2.3)). Hence 
x0 is a "universal ti me" in the frame F. As a consequence, if one uses such coor-
dinates (x0

), then the trajectory of any test particle may always be parametrized 
with the coordinate time l itself and, moreover, the local time has the simple 
expression 

(2.4) 

The expression (2.4) of the local ti me has the immediate physical meaning of 
showing how clocks are affected by the gravit ation fi eld (usuall y they are slowed 
down, i.e. 1'00 decreases towards the gravitational attraction). The property /Oi = 0 
holds true after any coordinate transformation of the form x'0 = </>(.r0) , .r'; = 
1/;i (x 1, x2, x3). Thus it is indeed a characteristi c o f a given frame F. The restricti on 
to space-independent transformation of time, x'0 = <Jy(.r0), renects simply the 
global synchronization. Using this time transformation, one may impose that the 
local t ime at a given point bound to the frame, x0 = (.r0i), coincides with the 
universal time (i.e. /oo(.r0, (.roi)) = 1 't/ .z·0), and then only a shift of .t0 is left free. 
The l oo component is invariant under the remaining, purely spatial coordinate 
changes. 

ii) The other assumption involved, in saying that SR appli es locall y, is that 
the laws of non-gravitational physics are "formally unaffected" by gravitati on, in 
the foll owing sense: in the absence of gravitation, any such law must (or should) 
be formulated in the frame of SR. Then, in the absence of gravit ation, it may 
be expressed in a generally covari ant fo rm, in replacing the partial derivatives, 
valid in Galilean coordinates, by the covariant derivati ves with respect to the flat 
space-time metric ,o (Galilean coordinates are the ones in which the nat metric 1° 
has the canonical diagonal form, y 0,"' = '""' with ( 7)1w) = diag(L - 1, - 1, - 1)). 
Now the assumption is that, in the presence of gravit ation and hence (according 
to a theory of the class considered here) with a cwwd metric 1, rhe expression 
of any such laiV is exrended ro rhis situation si111ply by suhsritwing 1' for 1·0. This 
assumption is quite natural: physics must be descri bed in terms of the local space 
and time standards which (cf. point (i)) are ruled by metric -1 in the frame of SR. 
And at the local o r rather at the infinit esimal scale, the presence or absence of 
curvature plays littl e o r no role, i.e. any metric behaves (in many respects though 
not in all ) as a nat metri c in the infinit esimal. Some ambiguity may yet arise when 
t1y ing to use this assumption, if differential expressions of order greater than one 
are involved: since Schwarz' theorem does not apply to covariant derivatives fo r 
a curved metri c, different higher-order expressions may become identical fo r a 
nat metric and yet remain distinct for a curved one (e.g. W I LL [26]). In a such 
case, a comparison wit h experiment may either decide between the possibiliti es, 
or show that they do not d iffer signifi cantly. Such empiri cal procedure might lead, 
of course, to different choices for different gravitation theori es, i.e. for d ifferent 
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metrics 'Y in the same physical situation, and thus could create a b ias when test ing 
alternative theories. 

2.2. Extended Newton law for a constant gravitation field 

Let us first consider the static case, i.e. the case where a frame F exists, 
defined by a coordinate system (x 0

), in which all components ｾＯｯｦｊ＠ of metric 
'Y are independent of x0, and moreover the "/Oi (i = 1, 2 , 3) components are 
zero. The first property holds true after any coordinate transformation o f the 
form x10 = ax0 + cp(x 1, x2, x3), x'i = cpi(x 1, x2, x3) , thus in a difTerent range for 
the time transformation than for the second property, discussed above. Then, 
the right-hand side of Newton's second law, valid for SR, i.e. dP /ell with P the 
momentum including the velocity-dependent mass, is easy to extend to any such 
theory of gravitation. The velocity v of a test particle (relative to the frame F ) 
is measured with the local time lx of the momentaril y coincident observer in the 
frame F, and its modulus v is defined with the point-dependent (Riemannian) 
space metric h in the frame F. Thus 

(2.5) 

The momentum is hence for a time-like test particle (mass point): 

(2.6) P = m(u)v, 

(using the mass-velocity re lation of SR) et). For a li ght-like test particle (photon), 
one substitutes the mass content of the energy for the inertial mass m(u). Then we 
must define the derivative of the momentum with respect to the local time. Thus 
in general we have to define the derivative of a vector w = w( \) attached to a 
point x(\) =(xi(\' )) which moves, as a function of the real parameter.\_, in some 
Riemannian space: here this space is the 3-D domain V = N :F constituted by the 
spatial network which defines the considered frame F. Hence the points inN are 
specifi ed by their constant space coordinates .'L i , i = 1, 2, 3, and N is equipped with 
the space metric h. The derivative must be defined as the "absolute" derivative 
(e.g. I3RILLO UTN [5], Ll CHNEROWICZ [1 2]), which is a space vector and accounts 
for the (merely spatial) variation of the space metric alo ng the trajectory: 

(2.7) ( Ow) i rlwi · · rh·k - = -- + /'' k w1 -· - , 
/) \ (['\ J d \ 

(')Equation (2.6) implicitly assumes that the rest mass m (O) is the same constant mo, independently of the 
gravitation field. This may be seen as an immediate consequence of defining the inertial mass m as the ratio 
P/v ( = P' fv') and assuming that the P' arc the spatial components of the 4-momcntum, this being in turn 
assumed to have the form po = mo <ix" fdr with a constant m11 . This is consistent with lANDAU and LirCIIIT£ 
IIJI. On the other hand, MOLLEI! 1181 defines the inertial mass as the ratio m ' = Pf v11 with vo = dxfdt, 
thus m ' = m dtfdtx , hence his rest mass m'o = m'(vo = 0) = mo dtfdtx depends on the gravitation field. 
However, the definition of vn and hence that of m'n depend on the chosen time coordinate t even in a given 
frame, while the velociry v used by Landau and Li.fchitz (and used here) depends only on the reference frame, 
as it should. 
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where the ri jk are the Christofi el symbols of metric h in coordinates (.ri ). 
As shown in ref. [2), the use of Eq. (2.7) is enforced if one wants to know 
that Leibniz' rule applies, and that the derivative cancels fo r a vector w that 
is parallel-transported (relative to the space metric h) along the trajectory. This 
is considered to be important, because it means that Eq. (2.7) is not merely one 
possible formal rule to obtain a space-contravariant vector, but the unique consis-
tent definition fo r the time-derivative of a vector along a trajectory, in the case of 
a time-independent metric. Now the left-hand side of Newton's second law is just 
the fo rce. This may be decomposed into a "non-gravitational" fo rce Fo, which 
should have the same expressio n fo r any gravitation theory in the considered 
class e), and a "gravitatio nal" force Fg whose expression, of course, wi ll depend 
on the theory. Note that Fg will generally contain "inertial" forces as well (since 
a general reference frame is considered here), hence "mass force" would be a 
more appropriate denomination [1 ). Thus fin all y: 

(2.8) Fo + Fg = DP/ D lx . 

Using the same equations (2.3) and (2.5) to (2.7), the same definiti on may and 
must be used in the stationa1y case, in which the /of3 's remain time-independent, 
but the / Oi components may be no n-zero: altho ugh a synchronized local ti me 
cannot be defin ed in the frame F as a who le if the /o;'s are non-zero, what matters 
is tha t it is uniquely defi ned along the trajectory fo ll owed by the considered 
parti cle (provided that it fo ll ows an open line in space-ti me: a closed lin e would 
mean a travel back in time). 

2.3. Extended Newton law for a general gravit ati on fi eld 

In the general case where the gravitatio n fi eld is no t constant in the frame 
F, the new feature is that now the space-time metri c ｾ Ｏ＠ depends also on x0. 

Hence also the space metric h (Eq. (2.2)) vari es, no t only as a functi o n of the 
space coordinates xi (what is natural fo r a general Riemannian metri c in a space 
depending o n these coordinates), but a lso as a function o f the time coordinate 
x0. What is re levant fo r Newto n's second law is, more precisely, the variatio n of 
h along a trajectory (o f a test parti cle), i.e. the fact tha t our spatial network N 
is equipped with a m etric field h\ that changes as the parameter \ evoh,es on the 
trajecto1y, thus fo r any value o f \: and at every poin t X E N we have a covariant 
tensor hx (X) . In our case, the variati on of the metri c fi eld with x is due to the 
variatio n o f h with the point in space-time, thus in coordinates: 

h\ ;j[ (:rk)k= 1.2,3] = h;J(.c0( \ ) , (:z/)1,=1.2,3]· 

(') The expressio n of Fo is taken fro m the situation wi thout gravitation: thus, as recall ed in point (i i) of 
Subsec. 2.1, it invo lves the fi eld 'Y (in the p lace of the tlat metric -y0) , am.! it depends on the non-gravitational 
fields; in practice, these a rc the electromagnetic fie ld and/o r thermomechanical fi elds (the nuclear fi e lds are 
very microscopic matter fi e lds and moreover, their current theory does not belong to classical physics, i.e. their 
influence cannot be described in terms of determinist ic trajcctories of mass points). A "free" particle is one 
which crosses a regio n free from matter and electromagnetic field : for such a part icle, the force Fo wi ll be zero 
independently of tire reference [m111e consid,•red. 
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Moreover, we have a preferred parameter \ = lx on the traject01y. It is easy to 
convince oneself that nothing needs to be changed in Eqs. (2.3), (2.5) and (2.6), 
because they involve only the local components of the metric (which now become 
its local and "current" components), not it s vari ation. In order to define properly 
an extension of (2.7), let us li st the properties that should be satisfied by this 
searched derivative of a vector on a trajectory in a manifo ld equipped with a 
variable metri c: 

a) It must be a (space) vector, i.e. it must be contravariant for any coordinate 
transformation of the form x 'i = :z:' i (.r.i ). 

b) It must be lin ear in w. More precisely, it must obviously have the form 

(Dw/ D\); = (rlt"i/ rl\\ =\ 11 + Li; u.J(\o), 

with \o the point of the trajectOJy where the derivative is to be calculated, and 
where Li i behave as a mixed second-order (space) tensor (transforming a (space) 
vector into another one), for linear coordinate transformations. 

c) It must reduce to (2.7) if the metric fi eld h , does not depend on \· 
d) It should account for the vari ation of metri c h, as a function of \. 
e) It must be multiplied by d\ / rl( if\ is changed to ( = <b(\). 
f) It must satisfy Leibniz' derivation rule fo r the derivative of a scalar product, 

Le. 

(2.9) cl ( /)z ) ( /)w ) - (h\ (w, z)) = h\ w,- + h, - .z . 
d\ /) \ /)\ 

in which it is understood that, on the left, the vari ation of metric h with .1'0 is 
accounted for, as becomes obvious if one wri tes clown explicitly the scalar product: 

(2.10) 

(Hence, it is likely that (f) impli es (d)). 
First, we note that defin ition (2.7) still makes sense, and satisfies requirements 

(a), (b), (c) ancl (e). Of course, it is now specifi ed that the ChristofTel symbols of 
metric h are those at the relevant position and "time", thus in (2.7) 

(2.11) 

The "candidate" thus defined by Eq. (2.7) will be now denoted by Dowf D \. It 
does not satisfy (d) (nor (f) , in fact), for it amounts to substituti ng the metric 
h\ 0 of the " time" a = x0(\o) for the variable metri c h, . From (a), (b) and (c), it 
fo ll ows that we have to search an expression in the form 

(2.12) Dw/ D\ = Dowf D\ + t · w(\o), 

in which t is a mixed second-order space tensor (indeed, the orcl inaty derivative 
dwjdy_ = (rlu/ f d\) is already involved in D0wj D\., Eq. (2.7)). But to satisfy (d), 
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it is hence necessary that this tensor should involve the variation of metric h\ 
wi th x. due to the variation of h with x0 : 

Thus, tensor t must contain either h;j,O terms or h ij ,o ones, with (h iJ ) the inverse 
matrix of (h;J ) . In order to be a mixed tenso r and satisfy (e), t should have the 
form 

(2.13) or 'i - ij 0 t k - h ,o(rl.t ( d\)hi k , 

or any lin ear combinati o n of these two tensors. But since hijh1k = ｯ ｩ ｾ［Ｌ＠ we have 
t+t' = 0, so that, without imposing Leibniz' rule, we are left with a o ne-para me ter 
family of candidates: 

(2.14) D.,w/ D\ = Dow/ 0\ + .At·w. 

Finally, nearly the same short calculati o n as in Ref. [4] shows that Leihniz' rule 
(2.9) imposes ,\ = 1/ 2, hence only o ne definiti o n of the derivative remains: 

(2.15) 

o r in coordinates: 

(2.16) - / ' ' I . h'' h . k (/)·w)' rl 1"i · dr k 1 dr0 
=- + ﾷｾ［ Ｑ ＱＱﾷＭ Ｋ Ｍ · 1, o- u·. 

/)\ rl\ ) d\ 2 J . rl\ 

Thus, a theory o f the kind considered should provide an expressio n fo r the mass 
fo rce Fg, and this expressio n would depend o n wha t the theo1y co nsiders as " the 
gravitati o n fi eld" (this may include the space-time metric 1 , in any case it must 
determine 1 ) . Then o ne and only o ne "Newto n law" can be consistently stated 
in such a theory: it is Eq . (2.8), where the mo mentum P is given by Eq. (2.6) a nd 
its derivative DP/ D lx is calcula ted using rule (2.16). The traject01y ｾ Ｍ (:r .:' (O) 
being defin ed with the he lp o f an arbitrary ｰ ｡ ｲ｡ｭ ･ ｴ ･ ｲ ｾＮ＠ the variatio n of the local 
time \ = lx a lo ng the trajecto1y is g iven by Eq. (2.3). 

2.4. Comments and link ''ith the investig:Hcd preferred -fr ame theory 

It is seen that the deri vat ive of the mome ntum is defin ed in any possibl e 
refere nce fra me (and it depends on the frame). H e nce, if a the01y gives a covari ant 
expression fo r Fg and 1, the exte nde u second Newton law does no t restric t the 
covari ance of the theory. On the other hand, a p re ferred-fra me theory may give Fg 
and 1 in o ne re fe rence frame o nly; if o ne were able to ca lculate the t ransfo rmation 
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law of the derivative DP/ Dlx, then this same law would apply to the force, so 
the law o f motion would be reexpressed in a covariant form. 

The investigated ether theory (1 - 4], which is indeed non-covariant, starts 
from a heuristic interpretation of gravity as Archimedes' thrust in a perfectly 
fluid "micro-ether" (the ri gid ether frame [ considered by Lorentz and Poincare 
would be defined by the average motion of this "micro-ether" at a very large 
scale). The transition to account for "relativisti c" efTects is based on a formulation 
of Einstein's equivalence principle, natural in this preferred-frame theory: the 
equivalence is stated to exist between the absolute metric efTects of uniform 
motion and gravitation. This leads to postulate a gravitational contraction (resp. 
a dil ation) of the space ( resp. time) standards, depending on the field of the "ether 
pressure" Pe. thus getting a curved (Riemannian) space metric g and a local time 
tx in the ether frame£, which together build a curved space-time metric 1 [2-3]. 
This theory gives Fg and 1 in the ether frame [ only, as a function of the scalar 
gravitation fi eld ]Jc, or the associated fi elds f and f3 wit h 

(2.1 7) 

where Pe 00 = ]Je = (T) is the reference pressure (which, for an insular matter 
distribution, is asymptotically reached at large distance from the matter. H ere, T 
is the "absolute time"). The gravitation force is assumed to be 

(2.18) Fg = m(t>)g, 

with g the gravity acceleration, given by 

2 
grad

9
pc 2 grad

9
j3 c2 

g = -c = - (· = --
2 

grad0J . 
l'e J} 

(2.19) 

where g = hE is the physical space metri c in the framer, and where grad9 (resp. 
grad0) is the gradient operator relative to metric g (resp. relative to the " natural" 
metric g0, with constant curvature, of which the "ether" network (3-D manifo ld) 
AI = NE is assumed to be equipped with). And the lin e element of the space-time 
metric / , afTected by gravitational contraction of the space standards (re lati ve to 
metric g0) and by gravitati onal dil ati on of the time standards (relative to the 
"absolute time" T), has the form 

(2.20) 

where rl/ 2 is the lin e element o f metri c g. This has the fo ll owing simple expression 
in " isopotential" coordinates (y0 

), i.e . coordinates such that, at a given time T, 
y1 = const (in space) is equivalent to Pc = const, and that the natural metric g0 

is diagonal, (g0;j ) = diag(a0;): 

(2.21) (9;j) = diag(a;) w it h 
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For a time-dependent field Pe, such coordinates are not bound to the ether frame 
[4] . From Eq. (2.20), it follows that, if one selects any coordinates (x0

) , with 
x0 = eT, that are bound to the frame£, then the components /Oi are zero. Thus 
a simultaneity is defined for the frame £ as a whole; in other words, the absolute 
time T is a universal time in the frame £. For the important case of an insular 
matter distribution, the absolute time T is the local time measured at any point 
x0 which is bound to £ and far enough from matter so that no gravitation fi eld is 
felt there. Moreover, the global synchronizati on condition ( / Oi = 0) does not hold 
true in a frame that rotates rigidly with respect to £, nor in general in a frame 
that moves uniformly with respect to [e) (the condition /Oi = 0 holds true for 
any frame in uniform translation, in the case that no gravitation field is present, 
thus for the flat metric 1 = 1 °). These considerations justify the denomination 
"absolute time" for T. Hence, the ether frame £, which is already a global inertial 
frame in the sense that the mass force in £ (2.18)-(2.19) is purely gravitational, 
is really a physically privileged reference frame (according to this theory). 

3. Extended Newton law and geodesic motion 

3.1. A possible form for the gravitation force in a gltlhall y synl'hronized reference frame 

We now investigate the possible form of the gravitation fo rce. In order to 
make some meaningful induction from the Newtonian theory, it is very useful to 
work in a reference frame F, in which the / o, components of metric -y are zero 
(Subsec. 2.1 ). The concept of global simultaneity is indeed so deeply involved in 
any Newtonian analysis, that any induction from the Newtonian theory to the 
general situation with curved space-time, where a simultanei ty is defin ed only 
along a trajectory, would seem dangerous. Whereas, if one works in a frame such 
that / Oi = 0, the only change in the time concept is that now the clocks go dif-
ferently at different positions and times (Eq. (2.4)). We note that the existence 
of a frame F, in which the / Oi are zero, is not a physically restri cti ve assump-
tion, since it breaks down only for rather pathological space-ti mes: in "normal" 
space-times it is even possible to select a "synchronous" frame which not only 
enjoys this global synchronization, but in which the / 'OO component is unifo rm, 
i.e. the local time fl ows uniformly (LANDAU and LI FCHITZ (11 ], MAVRIOES (1 6]). 
Thus there "normally" exist many different frames such that ｾ ｴ ｯ ［＠ = 0. Which form 
of the gravitation force could one consistently state in such a reference frame? 

For the class of theories considered in Sec. 2, what is considered by any such 
the01y as " the gravitation field", has been assumed to determine the space-time 
metric 1 (for non-covariant theories, we should add that this has only to be true 
in some preferred reference frame which is li ke £, i.e. such that / Oi = 0). Here, 
we will assume, in a more restrictive way, that the metri c fi eld 1 contains the 

(') Here, rigid rotation and uniform motio n ca11 be detincd, at least if tile metric ma nifold (A/ , g0) has zeru 
curvature, i.e. if it is Euclidca n. 
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gravitation fi eld (at least in the preferred frame). This is true in any reference 
frame for GR and for the "relati vistic theory of gravitation" (RTG) proposed by 
LoGUNOV et al. [13- 14], and this is true in the ether frame [ in the tentatively 
proposed theory. On the other hand, in order that SR would hold true locall y and 
that the inertial and (passive) gravitational mass might coincide, the gravitat ion 
force must have the form 

(3.1) Fg = m(v)g, 

with g being a space vecto r in the considered frame. If we want the metric fi e ld 
to play the role of a potential, we must ask g to depend lin early on the fi rst 
derivatives of 1 , and beari ng in mind the Newtonian theory we should add that 
only the spatial derivatives liw ,k are all owed. But, in a frame where ｾ ｦ ｏ ｩ＠ = 0, we 
have lij = - h;j with h denoting the space metric in this frame, i.e. the metri c 
1 reduces to the jo int data 1 = (!, h) with f = l OO· Thus, we are looking for 
a space vector g depending linearly on the spatial derivatives of f and h. To be 
contravariant by a general space transformation, g must depend linearly on the 
covariant deri vatiw:s of f and h (with respect to the space metric h! ). But, as is 
known, the covariant derivatives of metri c h with respect to h itself are all zero 
(in other words, one may cancel all spatial derivatives hi.i.k at any given point hy 
a purely spatial coordinate transformation). Hence, g should have the form 

(3.2) 

where a must be a given function of the valw:s of the metri c fi elds at the con-
sidered point (.1:c' ) in space-ti me, f = f(.r '' ) and h = h(.l' '' ) in Eq. (3.2), thus 
a(! , h) is completely independent o f the t·ariation of f and h with t ime and 
position. 

Now we add the conditi on that geodesic 111otion (Einstein 's assumption ) must 
apply to free particles (Fo = 0) for a slatic gral'i lation field. This is exactl y equivalent 
to assuming the fo ll owing expression for the gravitati on fo rce in the slatic case: 

(3.3) 2 gradh,.:i 2 Fg = - m(u)c ,.:i = m(c) gradh(- c Log;J) , where {3 = J/00. 

I ndeed, it was already proved (and it wil l be proved again below, in a different 
way) that Eq. (3.3), which occurs naturally in the ether theo1y, impl ies geodesic 
moti on fo r mass particles in the static case [2]; this is also true for photons [3], 
substituting in that case the mass content of the energy r = h11 for the inert ial 
mass m(v). Conversely, it is proved in LANDAU and LIFCHI TZ [11] that geodesic 
motion impli es the expression (3.3) fo r the fo rce in the static case, defin ed as the 
derivative (2.7) o f the momentum (2.6) (4

) . Thus the reason for assuming geodesic 

(' ) Actuall y, LANDAU ant! L tFCI IIT/. I I I, !i 881 ｊ ｣Ｚｲ ｩ ｶｾＮＺ ｴＡ＠ fr om ｧｾＮＺ ｯ ｴｬ ｾＮＺ ｳ ｩ｣＠ assu111ption the ｾＮＺｸ ｰｲ ･ ｳ ｳｩ ｯ ｮ＠ of the fo rce in 
the s1a1iomuy case, using the sa111e t!dinit ion for the fo rce (what is consistent with the ーｲ｣ｳｾＮＺ ｮｴ＠ work, ｓｵ ｢ ｳ ｾＮＺ ｣Ｎ＠ 2.2). 
They fount! an expression invo lving a n aJJitional term which cancels if ' '" = 0. 
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motion in the static case is that it is indeed so for the tentative ether theory as 
well as, of course (and in any situation) fo r the usual theories of gravitation with 
curved space-time, in particular GRand the RTG. So we must have, by Eqs. (3.1 ), 
(3.2) and (3.3): 

(3.4) i.e . 

when J,o = 0 and h,o = 0. 13ut since a(J, h) depends only on the local values of 
f and h, no t o n their variation, Eq. (3.2) implies then that g keeps the form (3.4) 
and thus Eq. (3.3) holds true in the most general situa tion. 

3.2. Expression of the 4-accelcralion for a "free" partil'le us ing the extended f\'cwton law 

In theories with a (pseudo-) Riemannian space-time metric, two well-known 
space-time vectors may be defined fo r a time-lik e test particle (i .e. a mass point). 
These are the 4-velocity U, which is the velocity o n the world l ine of the particle 
in space-time, when the world li ne is parametri zed with the proper time r of the 
particle, 

(3.5) U" = rl.r " j rlr, 

and the 4-accelerati on A, which is the absolute derivative ....lU/ ... h of the former 
relative to the space-time metri c I · Thus 

(3.6) ,\ = - = -- + !'' '' l 'l l_'_ = -- + /''" U''[!V 0 -
(

.JU)'' rill " rl1 .v rl (''' 
....lr - dr 1"' dr - dr 1w • ' 

symbols ｲＧ ｾｶ＠ being the Chri stofTel symbols o f metric 1 in coordinates (x" ). 

i) Spa tia l components of the 4-acceleration in a globally synchronized refer-
ence frame. 

It is recalled that we use coordinates (.r" ) that are bound to a "globally syn-
chronized" frame F. Thus l'Oi = 0 (i = 1, 2, 3), from which it fo ll ows immediately 
that: 

(3.7) h,.l = -l'i), /,; I ,,, 
. ;k = jk. 

hence 

(3.8) 

In th is equation, we note that, in view of Eq. (3.7)1 (and since h'·1 = Ｍｾｦｩｪ＠ is always 
true): 

(3.9) 
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By (2.4) and (3.5) we get: 

U0 = (dx0 jdlx)(rllx fr lT) = c(rllx f dr) /J/00, 

but, using Eqs. (2.1)-(2.3) and (2.5), it may be proved (cf. LANDAU and LIFCHITZ 

[11]) that, independently of the fact that / Oi = 0, one has always: 

(3.10) 
dlx - =, dr v 

as was already noted [2] for the tentative theory. Hence we obtain 

(3.11) 

so we reexpress another term in Eq. (3.8), calculating J0b as for 1'0t in Eq. (3.9) 
and using again Eq. (2.4): 

We recognize here the component gi of the assumed gravity acceleration (Eq. 
(3.4 )), thus 

(3.12) 

It is now possible to calculate (.JUj .Jr Y with the Newton law, for a "free" particle 
(Eq. (2.8) with F0 = 0 and with Fg given by Eq. (3.1 )). In a fir st step, let us 
calculate with the incompletely defined Newton law, which is obtained if one 
uses the derivative D,\P/ /Jix with the unspecified parameter .-\ (cf. Eq. (2.14)). 
Using (3.10), we may write this in terms of r: 

(D:..P/ /Jix)i =::: (D,\ P/Dr)i hv = mo/u!/ , 

and we have by_ Eqs. (2.5), (2.6) and (3.10): 

(3.13) 

so the "unspecified" Newton law has the form 

(3.14) 

where u' = (Ui ) means the spatial part of the 4-velocity U. Applying definition 
(2.14) which involves terms given by Eqs. (2.13) and (2.7), we get 

(3.15) ( 
DD,\ru' ) - dUi r i . u1 k ' i j rl .?:o 1 k 

- dr + 1k U + Ah h jk.O dr L . 
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Hence, the unspecified Newton law imposes the following values to the spatial 
components (in coordinates bound to a globall y synchronized frame F) of the 
4-acceleration of a free test particle (Eq. (3.8) with (3.9) and (3.12)), depending 
on the parameter A: 

(3.16) 

In particular, the spatial part of the equation for space-time geodesics is satisfied 
for a variable gravitation field (h Jk.O f. 0) if and only If the parameter A has the 
value A= 1. 

ii) Time component of the 4-acceleration in a globally synchronized frame 

For the time component, we have simply 

(3.17) Ao = (.:1u )o = duo+ r'o (Uo)2 + 2r'o Ll oUk + r'ou;u1 
I - l . 00 Ok I) . 

--lT (T 

Using Eq. (3.7)1 and the fact that 1oo = ;32 (Eq. (2.4)), the 1''01w are easily calcu-
lated: 

r'O _ !3.o F'O = f3.k F'O = h,J,O 
. 00 - If ' Ok f} ' IJ 2;J2 . 

By Eq.(3.11), which impli es also that Uk = (!·u/fJ)(dxkj(ll ), one then 
(3.17) as 

rewrites 

(3.18) 

At this point, we may insert the energy balance deduced from the " unspecified" 
Newton law fo r the free test particle (Eq. (4.21) in Ref. [4]): 

(3.19) rl ) D/3 3 1 - 2ADh() 
dt(/3/u = / uDt + ｴ Ｏｶｾ＠ Uf Y, Y 

with u; = (rl x;jdt) //3 by Eqs.(2.4) and (2.5)CS). We have thus in Eq. (3.18): 

d ('u) · d ( 1 ) 1 d [a ( 1 ) ( 1 ) dxkl 
dl /3 = dl ｪＳＲＨＳｾＬｬＧ＠ = (32 dt Ｈ ｦｊｾｦｶ Ｉ＠ + /3/'u Dt (32 + (J2 ,k dt 

_ Ju ((),3 
23 

d.tk) / u Ｑ Ｍ Ｒ ｾ ｜ｻＩ ｨ ［ｪ＠ d.1:i d:tl - -- - + l k- +------
;32 Dt · dt J3 2c2 Dt dt dt ' 

e) Equation (3.19) is derived using the fact that SV/111! ､ ｾ ｲｩ ｶ｡ ｴｩ ｯ ｮ＠ rule o f a scalar product can be obtained 
even wi th the " unspecified" Newton law, although it does not obey tlu; true Lcibni7. rule (Eq. (2.Y)) unless 
,\ = 1/2. However, if ,\ -f' 1/2, this balance equation cannot be rewritten as a true conservation equation, at 
least in the scalar theory (1 - 41. 
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so that some cancell ation occurs in (3.18). We obtain fin all y: 

(3.20) Ao = ＱＧｾ＠ (1 - A) oh;j dx; dx1 =-= (1 - A)h . UiUj = 2(1-A)f 'o UiU j . 
cf] 4 Dt dl dl f32 '1•

0 
'1 

In particular, the time part o f the equation fo r space-t ime geodesics, as well as 
the spatia l part, is sati sfi ed fo r a variable gravitation fi eld (h ;J,O :f 0) if and only if 
the parameter A has the value A = 1. H owever, it is recall ed tha t the value A = 1 
specifi es the Newton law in an incorrect manner, since it means that Newton's 
second law is based o n a vecto r ti me derivative which does no t obey Le ibniz' 
derivatio n rule. 

Let us summarize the results of Subsecs. 3.1 and 3.2, which concern Newto n's 
second law and geodesic motio n: 

(NGM1) Consider a the01y with cw v ed space-time metric 1 and locally valid SR., 
and assume that in some "globally synchronized " reference frame :F ( / Oi = 0). the 
gravitation force (3. 1) in 11olves a space vector g depending only on the metri c field 
1'· More precisely, assume that g does not depend on the time l'ari ation of 1 and is 
linear with respect to the space varia tion of I · In order that fi'ee particles would follow 
space-time geodesics in the static case (J,,..,,o = 0). it is necesscuy and sufficient that 
the general expression of l'ector g in the fram e :F should be 

(3.21) f =loo = tP, 

with h the space m etri c in F. This expression implies Eqs. (3.1 6) and (3.20) for 
the 4-acceleration. thus it implies that. for a time-dependent field. geodesic motion 
corresponds exactly to the incorrect Newron law (A = 1 ). 

3.3. Characteristi c form of the gr·avit ntio n l'urce assorinted with geod esic moti o n 

The assumptio n that the metric fi e ld 1 p lays the ro le o f a po tential fo r the 
gravity accelerati o n g seems quite natural, if o ne thinks o f a "soft" generalization 
of Newtonian gravity. The fo regoing result impli es, among o the r thi ngs, that E in-
stein's assumption o f a mo tio n follow ing space-t ime geodesics is no t such a soft 
extension. But, after all, in M axwell 's theo ry the electric fi e ld involves also time 
deri vatives of the electromagneti c potentia l, besides the usual space derivatives. 
Moreover, the Lorentz fo rce depends o n the velocity of the charged particle. 
A mo re genera l expressio n than we assumed fo r the gravity accelerati o n might 
hence be correct a lso , the mo re so as we now have empiri cal reasons to think that 
the gravity interactio n indeed propagates, as does the electro magneti c fi eld, and 
with the same veloci ty (TAYLOR and WEISBERG [25]) . Tha t gravitati on propagates 
wi th the velocity of light was fi rst envisaged by Poincare in h is "e lectromagnetic", 
Lorentz-invariant theory o f gravitatio n [20 - 21] and, as is well known, it is pre-
dicted by Einstein's theory. 
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Thus we now investigate the possible form o f the vector g, subjected to the 
unique constraint that geodesic motion should occur with the correct form of New-
ton's second Law, i.e. A = 1 / 2. We continue to work in a globally synchronized 
reference frame and, in order to simplify the expressions, we take g in the form 

(3.22) 2gradh,6 1 c2 gradhf , 
g= -c ,6 +g = - 2 f +g , J - - a 2 =tOO= fJ • 

Starting from Eq. (3.6) as before, nothing changes until Eq. (3.12), which now 
becomes 

(3.23) r l i (Uo)z 2( i 1i) 00 = Ｍ ｾ ｖ＠ [} - [} ' 

And again nothing changes until Eq. (3.16), which is modified into 
. 0 . (.c..lU)' ·· ､ｾＺ＠ 1.: 2 · A' = --;-;---- = (1 - A)h'1 h;k o-l·-u · + l u!l. 

i..lT ' ( T 
(3.24) 

Hence, the spatial components of the 4-acceleration cancel with A = 1/ 2, if and 
only if 

(3.25) i.e. 
I - l - I Oh - 1 - I Dh 

g = - h • - •V = - h • - •V 
2/J iJ I 2 i)J X 

But does this expression also cancel the time part of the 4-accelerati on? To check 
this, o ne must reexamine the energy balance deri ved in Ref. [4). Proceeding in 
the same way, we find easil y that the energy balance resulting from the expression 
(3.22), (3.25) of g is (with ,\ = 1 /2) 

(3.26) !.!__ j- = - i) .3 - !h u D h V V 
rli (, 11,) tu 01 2c2 ()l ( ' ) , 

instead o f Eq. (3.19). Thus, with the correct Newton law (/\ = 1 /2), the same 
expression is now obtained as it was obtained before with the incorrect Newton 
law (A = 1). Therefore, the time part of the geodesic equation, : !0 = 0, is satisfi ed 
fo r A = 1/ 2, as it was previously fo r /\ = 1. We have proved the foll owing: 

(NGM2) Consider a the01y with curved :;puce-time m etri c 1 und Locully valid 
SR. and assume the correct time derivatil·e (2.15) in the cxtl'llSion (2.8) of Newton's 
second law. In order that free' purticles (Fo = 0 in t:q. (2.8)) might folLow space-time 
geodesics. it is necessw y and sufficient that. in any glohully ::,ynchronized reference 
frame F (to; = 0). the gruvitation force (3.1) should invoil·e the following expression 
for the gravity acceleration (space w:ctor g): 

2 gradh (j 1 _ 1 iJh 
(3.27) ggcod = -c .3 -

2
,) h • Ji •V. ,j = v0QO. 

with h being the space m etric in F and v - the velocity l'ector (Eq. (2.5)). 

This result provides the general li nk between Newron's second law and Ein-
stein's geodesic assumption. 
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4. Compari son with the literature 

4.1. M0ll er's work and the relati on between covariant and contravariant form of Newton's law 

Among attempts to defi ne Newton's second law in the case o f a variable 
gravitatio n fi eld, a well -known o ne is that of M0LLER [18]. H owever, M0ller uses 
the absolute derivative with respect to the "frozen" space metri c, thus ..\ = 0 in 
Eq. (2.14), so that Leibniz' rule is not satisfied with the actual, t ime-dependen t 
metric. In connectio n wi th this, he no tes that this derivative does no t commute 
with raising o r lowering the indices with respect to the space metric h. As a 
consequence, when he rewri tes the equations for space-ti me geodesics in the form 
o f Newto n's second law wit h gravitational fo rces, the latter look very d ifTerent in 
covariant and in contravariant form. We show that this d ifficulty is absent with 
our defin it ion. 

Indeed, it is easy to adapt our li ne of reasoning so as to defin e the time-
derivative of a spatial covector w•. One finds in exactly the same way that, apart 
f rom Leibniz ' rule, a one-parameter family of time-derivatives may be defin ed as: 

(4.1) 

with 

(4.2) (t·w· ); = ｨ ［ｪＬ ｯＨ ､ＮｬＺ Ｐ Ｏ ｲｬ ａＮ Ｉｨ ｪｫ ｷ ﾷ ｾ｣＠

= Ｈ､ ｸ Ｐ Ｏ ､ ｜Ｉ Ｈ ｨ Ｌ ｯ ﾷｨ Ｍ Ｑ Ｉ ＯＧ ｷ ＢｾＮＺ＠ = Ｈ ､ Ｎ ｬＺ Ｐ Ｏ ､｜ ＩＨ ｨ Ｍ Ｑ ﾷ ｨ Ｎｯ ＩＢ Ｇ［ｷ ﾷ ｾＮＺ＠ = ｦ｣ ［ｷﾷｾＮＺＬ＠

and where Dow* / D \ is the absolute derivative using the "frozen" me tric. And 
one finds that Leibniz' rule imposes >. = 1/ 2. I t is also easy to verify that, for this 
correct value>. = 1/ 2 and, for a t ime-dependent metric h, only fo r this value, the 
time-deriva tive D,\ / D '( does commure with raising o r loweri ng the indices w ith 
respect to the space metri c h, that is 

(4.3) 

There fo re, if one takes the covariant components o f the momentum instead o f 
the contravariant o nes, thus substitu ting p· = h·P for P, then the correspond ing 
"covariant Newto n law" w ill involve just the covari ant components of the fo rce, 
F" = h·F = h·(Fo + F9 ) in Eq. (2.8). 

4.2. Newton's second law with the " Fermi - Walker" time-deri vati ve 

Fro m now on, we will d iscuss the work on "Newton's second law in re lativ istic 
gravity" as reviewed and un ifi ed by J ANT Z EN er al. [1 0]. They define the equivalent 
of wha t we call a fr ame (spati a l network) by a 4-ve locity vecto r fi eld u, and they 
name it "observer congruence". What they call "observer-adapted frames" is a 
very d ifTerent notio n fro m tha t of adapted coordinates as defi ned by M0 LLER 
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[18] and CATIANEO [6, 7]. Here we conti nue to work in adapted coordinates, 
i.e. such that the observers of the network (or congruence) have constant space 
coordinates .. In such coordinates, the contravariant and covariant components o f 
u are given by 

(4.4) ( t tC\' ) = ( - J -!oo, ( ｾＩ＠ ) 
t OO i == I ,2,3 

(we keep our notations, except for the fact that we set 1t0' = d.1:0' I ds and adopt 
the (3,1) signature as in Refs. [6-7] and [1 0], until the end of this Section). It 
follows that the spatial projection tensor II = II(u) [7, 10], which is a space-time 
tensor defined in general by 

Il''v = o'' v + u''uv ' 

has a simple expression: 

(4.5) 1! '0 = 0. If 0 - ｾ＠ ［ｾ＠
J - - i OJ 100 , 

It corresponds to the projection of the local tangent space to space-time onto 
the hyperplane which is / '-perpendicular to the local 4-velocity u of the observer 
congruence. In connection wi th this, what is called a "spati al tensor" by CATIANEO 

[7] and by J ANTZEN et al. [10] is also a very different notion from tha t used by 
M0LLER [1 8] and in the rest of this paper. For us (and for M0ller), a spati al tensor 
is just an element o f a tensor space at the re levant point of the spatial network 
(3-D Riemannian manifold) N, thus its components depend on the three spatial 
(Latin) indices only, 'i = 1, 2, 3, in adapted coordinates. In Refs. [7, 1 0] and in 
the remainder of this section, a spatial tensor is a !)pace-time tensor which is equal 
to its projection , the latter being generall y defined by Eq. (2.2) of Ref. [10]. E.g. 
for a 4-vector (space-time vector) X, the projection reads: 

(4.6) 

H ence in adapted coordinates, by (4.5): 

(4.7) 

so that the "t ime" compo nent X 0 is not equal to zero for a "spati al vector" (ex-
cept for a "normal congruence", i.e. the case where / Oj = 0 in some adapted 
coordinates). We also note that the " rescaled time" T(U,u) considered in Ref. 
[10] (for a time-li ke test particle with 4-velocity U), as well as the "standard 
time" T considered in Refs. [6- 7], is the same variable as our " local time" lx , 

synchronized along the trajectory of the test particle, with their I' = I(U ,u) be-
ing our ru (Eqs. (2.3) and (3.10) here). On the other hand, what is call ed the 
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"Fermi-Walker total spatial covariant derivative" (fw TSCD) in Ref. [10), has 
the following expression fo r an arbitrary parameter \: (although it is defined only 
for X = T(U,u) = tx in Ref. [10]): 

(4.8) D(fw)X = IJ . .JX . 
D\. .Jx 

We have thus in adapted coordinates, by Eq. (4.7): 

(4.9) ( 
.JX) i - ( r[_\ -i f'i - ｾﾷ＠ d.l:v ) - - - + \ -
d \. - d X J.LV - d \ ' i=1,2,3, 

and the " time" part of the derivative is not independent of the "space" part: 

0 . 

( 
D(fw)X) = _ / Oj ( D(fw)X)

1 

D x loo Dx 
(4.10) 

What corresponds to Newton's second law in [1 0) is the evaluati on of the spati a l 
projection of the 4-acceleratio n A of the test parti cle. Apart from the dif ferent 
notation, it amounts almost exactly to Eq. (2.8) here, with the same definiti on 
(2.6) for the momentum, involving the same relati ve velocity (2.5), though with 
the derivative defined by Eq. (4.8) instead ofEq. (2.15). One difTerence is that the 
velocity v and momentum P are now spatial 4-vecto rs which turn out to be the 
respective projections of the 4-vectors U' and P', with U' the 4-velocity U, rescaled 
to the local time, and P' the usual 4-momentum. Thus the spati a l components 
of v and P are the same as in this work, and the "time" components obey the 
general rule for a spatia l vector X, i.e. such that Il·X = X: 

( 4.11) 

Anothe r difTerence is that the gravitational force, which is the total force for 
a free particle, is necessarily deduced, in the frame of GR and othe r '·metric 
theories", from the geodesic equatio n, i. e. A = 0, whereas here geodesic motion 
is one possibility among others. 

Having thus recognized that the spatia l part (4.9) of the deri vative (4.8) plays 
exactly the same role in Ref. [1 0) as the derivative (2.15) p lays here, we may 
comment on the difTerence between the two derivatives. Since the spatial com-
ponents (4.9) are just those of the space-time absolute deri vative .JX/ .J \, the 
Fermi- Walker TSCD invo lves space-time coupling in a generally inextricable way, 
in that it cannot in general be defin ed in terms of only the spatia l metric h and 
the local t ime lx. H ence, this derivative cannot be used in an arbitrary reference 
frame to defin e a "true" Newton law as it has been defined here, i.e. precisely 
a law involving only the separate space and time metri cs in the given reference 
frame, thus allowing to " forget" the concept of space-time as long as one does 
not change the reference frame. 
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4.3. The " normal" and "corola t iona l" Fermi -Walker derivatives obey Leil.HtiL' r ule 

Surprisingly, the questi on whether the introduced time-derivatives satisfy the 
Leibniz rule is not investigated in Refs. [6, 7, 1 0]. However, it is not diffi cult to 
show that the two Fermi - Walker derivatives do verify Eq. (2.9) fo r spatial vectors. 
The spatial metri c in those works is of course the same thing as here, except for 
the signature and the fact that it is now a space-time tensor (for a given observer 
congruence u): 

(4.12) 
hoi = hio = hoo = 0. 

Equation ( 4.12)1 implies immediately that, for any two space-time vectors X 
and Y: 

( 4.13) h(X, Y) ］ｾ ＬＭ Ｈｘ Ｎ＠ II·Y) = ! (II· X. Y). 

On the other hand, the absolute space-ti me derivative obeys the Leibniz rule: 

(4.14) d (' ..1Y) ( ..1X ) d \ [I(X ,Y)] = 1 X, ..1\ + 1 ..1\ .Y . 

Using Eq. ( 4.13), we rewrite Eq. ( 4.14 ), if both vectors X and Y are spatial, as: 

_!}__ [h(X . Y)] = h (x. rr . ..1Y) + h (rr· ..1x. v). 
d\ ..1\ ..1\ 

With the definiti on (4.8), this gives the Leibniz rule for the Fermi -Walker deriva-
tive: 

(4.15) _:!__ [h(X , Y)] = h ( x . !)(fw)Y) + h ( f)( fw) X, v ) . 
d,\ /) \ /)\ 

The "coro tatio nal" Fermi- Walker (cfw) derivati ve, when acting on a spatial 
vector X, is related to the "no rmal" Fermi - Walker derivative by [1 0]: 

( 4.16) Ｈ Ｏ｝ ｾＩ ｘ Ｉﾣ＾ ］＠ ( /)(fw)X) o + w0 ,crllxX'' . 
}) \ I r/\ 

Here w0
1, are the mixed components of the "spin-rate" space-time tensor. This 

comes from the decomposit ion of the covariant "spatial 4-velocity gradient", 

(4.17) 

into symmetri c and antisymrnetri c part: 

(4.18) 
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and the mixed components wo- ｾＭＧ＠ are obtained by raising the index o. with metric 
I· It appears that, just li ke the ordinary one, the corotational Fermi- Walker 
derivative cannot in general be expressed in terms of the spatial metric h and 
the local time tx only. Moreover, it is difficult here to refrain from asking the 
question: with respect to what does the "spin rate" w measure the rate of relative 
spin of the considered reference fluid (network)? Already the understanding of 
the strain rate B is difficult: without any preferred reference fluid, we may only 
define, so to speak, the "strain rate o f the fluid with respect to itself ' due to 
the evolution . of the spatial metric h, and this is precisely what measures the 
t = h- 1·h,o (rlx0 / dlx) tensor in our derivative (2.15) (with \.' = lx) - but the 
tensors t and B are two different objects. 

As to Leibniz' rule, it applies to the cfw derivative, at least if both vectors 
X and Y are spatial. Indeed, due to the antisymmetry of the covariant tensor w 
(Eq. (4.18)3), the definition (4.16) gives 

( 
D(cfw)y ) ( D(cfw)X ) ( /J(fw)Y) ( D(fw)X ) 

I X, D'( + ')' /J\ , Y -I X, /)\ -I D \ , Y 

= c ldlx IJ-LV Ｈ ｷｾＧ＠ g.ry ey v + w" eY!! XI') = c Ldlx (..vvg),"!! Y " + WJ.I(} y e ｸ ｾＧ Ｉ＠ = 0. 
c '( ( A. 

The Leibniz rule foll ows from this by (4.13) and (4.15), the two vectors X and Y 
being assumed to be spatial vectors: 

(4.19) 

4.4. The case of a globally synchronized frame and the "Li e" time-derivative 

d 
- [h(X , Y)]. 
d\ 

We co nsider the particular case of a globally ｾｹｮ｣ｨ ｲ ｯ ｮｩ ｺ･､＠ frame (or " normal 
congruence"), in which the ｾ ｦｏｩ＠ components of the space-time metric are zero in 
some adapted coordinates. Then the spati al projection tensor IT (Eq. (4.5)) is 
written simply 

(4.20) (171' ..,) = diag(O, 1, 1, 1) 

in such coordinates. Hence, in such coordinates, substituting it s spatial projectio n 
IT(u) ·T for a space-time tensor T amounts exactly to taking its space components 
only. In particular, the "time" component of a spati al vector X is now equal 
to zero. Moreover, the spati al ChristofTel symbols of the space-time metric are 
equal to the ChristofTel symbo ls of the spatial metric (Eq. (3.7)). This impli es that 
the Fermi- Walker derivative coincides, for the case considered and for a spatial 
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vecto r X (thus X 0 = 0), with the D1; 2 derivative. Indeed, using E q. (3.9), we find: 

(4.21) ( D(fw)X) ' -= ( ..JX) ' _ dX; F' ..,.1 d.1:k r'' , .i dx
0 

D x ..Jx = d;.._ + 1u \ d\ + i D·· d'< 

= dX; + r i ﾷ ｫｸ ｊ ､ ＮｾＺｫ＠ + ｾ ｨ ｩｫ ｨ ｫ ﾷ ｯｘ ｊ ､Ｎｴﾷｯ＠ = Ｈ ｄｾｾ ｘＧＩ ［ Ｇ＠
d '( 1 rLx 2 1

' d\ 

with X' :::: (X i ). 
Fo r the no n-zero components of the k tensor (Eq. ( 4.17)), we obtain using 

Eqs. (4.20), (3.9) and (4.4) (and since hjk = /ik with the (3,1) signature): 

(4.22) 

The refore, the "spin-ra te" tensor w is nil fo r a no rmal congruence [6], so that 
the corotati o nal Fermi - Walker derivative coinc ides, fo r spati al vecto rs, with the 
"normal" o ne, and thus with the proposed derivative, D = D 112. O n the other 
hand, we have from (4.18) and (4.22): 

W hat is called "L ie" TSCD deriva tive in R e f. [1 0], is not a Li e derivative in the 
usua l sense but the proj ection of a Lie derivative [1 0], and is defi ned in gene ral 
by [10]: 

(4.23) 

(extending again the defi niti o n [1 0] to an a rbitrary parameter \). H ence, we have 
here: 

(4.24) 

In othe r words, the so-call ed "L ie" deri vative coincides in that case with the 
absolute derivative with respect to the "frozen" spati al metri c, and so does not 
obey L e ibniz' rule . 

5. Concluding remarks 

1. Fro m our b ibl iograp hical research, it would appear tha t it had not yet 
been proposed in the lit e ra ture, as it is proposed here, to in troduce a consistent 
defin itio n o f the time-derivat ive o f a vecto r, in the fol lowing re levant situati on: 
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the vector is moving along a trajectory in a manifold equipped with a metri c fie ld 
h:x. (the spatial metric in a given reference frame) that changes with the paramete r 
x on the trajectory. Indeed, of the three di fferent notions of frame-dependent 
time-derivatives that have been reviewed and unifi ed by JANTZEN et al. [1 0] , the 
two first ones (the Fermi- Walker derivatives) involve the whole ::.pace-time metric 
in an unseparable way, while the so-called " Li e" derivative does not obey Leibniz' 
rule. In our opinion, this would mean that no consistent and natural extensio n 
of Newton's second law to the case o f a variable gravitation field in a general 
reference frame (in a theory with curved space-time as envisaged here) had yet 
been proposed either. It seems as if , from the orthodox relativistic point of view, 
it would be considered to be a priori impossible to define Newto n's second law 
"really as before"-because the absolute priority is to maintain consistency with 
the notion that the 4-dimensio nal space-time is the essentia l physical reali ty. 
However, it turns out that the two Fermi- Walker derivatives coincide with the 
proposed derivative in the important case of a globally synchronized frame (o r 
normal congruence). 

2. We find that there is one and only one natural extension of Newton's second 
law to any theory with curved space-time metric, in the most general situati on. 
In particular, one may uniquely identify that gravity acceleration ggcod which is 
necessary to obey E instein's assumption, i.e. to obtain geodesic motion for free 
test particles. In doing so, we did not merely rewri te the three "spatial" equatio ns 
for space-time geodesics as the space-vector relatio n "fo rce = time-derivative of 
momentum": we also proved that the latter re lati on impli es the " time" equation 
of geodesics, and this does not seem to have been done in earli e r attempts. 
This "geodesic" gravity acceleration ggcod depends o n the reference frame, as is 
natural in a " relativistic" theory (since the acceleration is not Lorentz-invariant). 
It may seem mo re surprising that ggcod depends on the velocity o f the parti c le 
(Eq. (3.27)). However, this is a lso the case fo r the Lorentz force which a charged 
particle undergoes in an electromagnetic fi eld. The striking difTerence is that the 
magnetic force does not work, whereas the velocity-dependent part of ggcod does 
work. In the investigated case o f a normal congruence, it has the same fo rm 
as the Newtonian inertia l force that appears in a reference frame undergoing 
pure strain w ith respect to an inerti a l fr ame [1] . I3ut here this " inert ia l" force 
comes from the straining of the reference frame " with respect to itself ' (i. e. due 
to the fact tha t the spatia l metric evolves with time) and it canno t in general 
be cancell ed in a finite regio n by changing the reference frame. Thus, theories 
with geodesic motion inherently do no t allow global inertial frames, although 
such global inerti a l frames do appear in their Newtonian limit. We a lso note that 
any velocity dependence of the gravity accele ration, g = g(x, v), implies that the 
definition o f the passive gravitational mass, i.e. mg = Fg/g with Fg the gravitation 
force, becomes indissolubly mixed with that o f the gravity acceleration itself: one 
may change g and ·mg to n g and mg/ CI respectively, with rt any scalar function of 
the velocity (e.g. Cl = ! u'' where ·n is any real number), so that lllg is operationall y 
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defin ed up to the arbitrary functio n a· only. Hence, although Newton's second 
law can be defined in a "cuiVed space-time" afte r all , the statement "m g = 
inerti al mass rn( v )" still remains partly conventional. I ndeed, the only testable 
statement is then the universalit y of the gravitatio n force (which is reall y a crucial 
point, o f course). 

3. The identity between inertial and gravitational mass would have a stronger 
meaning if g depended only o n the position of a given test particle. However, for 
the kind o f theories considered here, th is could be true only in some preferred 
reference frame (this is, of course, in contrast with the Galil ean situati on). To 
check this identity, o ne might e.g. define g fo r parti cles at rest in the prefe rred 
re ference frame, thus g(x) ::::::: Fg(v = O)/ m0, and check experimentall y whether 
o r no t the gravitatio n fo rce Fg is indeed equal to 1n(v)g fo r an arbitrary velocity. 
In the scalar ether theory which has been tentatively proposed [1-4], a vector 
g depending only on the position, Eq. (3.21 ), has been fo und to occur naturally, 
consistently with the notion that g should be determined by the local state of some 
substratum. Thus this theory predicts "strong identity" between inertial and grav-
itational mass and, in connection wit h th is, geodesic motio n does not hold true in 
the general case in this theory. If one were to modify this theory so as to obtain 
geodesic motion, one would have to postulate Eq. (3.27) instead of Eq. (3.2 1 ). 
T hen, the modified g-field would still be determined (in the preferred frame [) 
by the scalar fie ld ]Je or {3 (together with the particle velocity !) H owever, this 
would lead to the energy balance (3.26), which has been seen to be incompatible 
with the derivation of a true conservation equation for the energy in this scalar 
theory [4] . On the other hand, this theory could happen to predict unobseiVed 
post-Newtonian eiTects of absolute motio n. 
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