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On the extension of Newton’s second law to theories
of gravitation in curved space-time

M. ARMINJON (GRENOBLE)

WE INVESTIGATE the possibility of extending Newton’s second law to the general framework of
theories in which special relativity is locally valid, and in which gravitation changes the flat Galilean
space-time metric into a curved metric. This framework is first recalled, underlining the possibility
to define uniquely a space metric and a local time in any given reference frame, hence to define
velocity and momentum in terms of the local space and time standards. It is shown that a unique
consistent definition can be given for the derivative of a vector (the momentum) along a trajectory.
Then the possible form of the gravitation force is investigated. It is shown that, if the motion of
free particles has to follow space-time geodesics, then the expression for the gravity acceleration is
determined uniquely. It depends on the variation of the metric with space and time, and it involves
the velocity of the particle.

1. Introduction

THIS WORK COMES from an attempt to explore the possibility of extending the
“logic of absolute motion”, which prevails in the Lorentz-Poincaré interpreta-
tion of special relativity [8-9, 15, 20-24], so as to obtain a consistent theory of
gravitation. Thus, a theory with a preferred frame has been tentatively proposed
[1-4]. Just like general relativity (GR), this theory endows the space-time with a
curved metric. Just like in GR, special relativity (SR) holds true locally in this
tentative theory. However, an extension of Newton’s second law, or rather of
its modified expression valid in SR, has been defined for a test particle (mass
point or photon) in the most general situation within this investigated theory
[4]. As it will be reported here, the way used in this theory to define Newton’s
second law in a “curved space-time” turns out to be both natural and general
in its principle. Hence, it has been tried to find in the literature such a natu-
ral and general extension, but this quest has not been really successful. Apart
from approximate equations occurring in “post-Newtonian” treatments, two ex-
act extensions of Newton’s second law to relativistic theories of gravitation can
be found among well-known textbooks: LANDAU and LircHiTz [11, §88] define
this law for a constant gravitation field, and MoLLER [18, §110] “tries to write
[the equations of space-time geodesics] in the form of three-dimensional vector
equations” in a general case but, as his sentence suggests, and as will be dis-
cussed below (note 1 and Sec.4), his attempt is not fully satisfactory. JANTZEN
et al. [10] review and unify the various attempts, including the important work
of CATTANEO [6-7], to “split space-time into space plus time” and to rewrite
the relativistic equations of motion with “spatial gravitational forces”. It appears
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from their review that three different definitions have been introduced, by vai-
ous authors, for the time-derivative of the momentum. These definitions will e
examined in Sec.4. It will appear that one does not obey Leibniz’ rule, whle
none of the other two does involve only the separate ingredients “space metri:”
and “time metric” in a given reference frame, as should be true for a natuml
extension of Newton’s second law. However, it seems that one has good reasois
to search for such extension and hence to find this “missing link” [17] betwe:n
classical and relativistic mechanics.

Indeed, the Lorentz-Poincaré construction of special relativity [15, 20-2 ],
fully developed by JANOssY [8-9] and PROKHOVNIK [22-24], obtains the “rel-
tivistic” effects as being all consequences of the “true” Lorentz contraction s-
sumed to affect all bodies in motion with respect to the “ether”. As it has be:n
recently reestablished [27] against contrary statements, it is impossible to mea-
sure consistently the anisotropy in the one-way velocity of light. This makes tie
Lorentz - Poincaré version empirically undistinguishable from the Einstein ver-
sion of SR [22]. The Lorentz-Poincaré interpretation allows to concile specal
relativity with our intuitive notion of distinct space and time, and thus with tie
most crucial concepts of classical mechanics. However, special relativity does rot
describe gravitation: for gravitation, general relativity is the current tool. Butin
GR, the laws of motion become a consequence of the space-time curvature, eg.
the “free” particles are assumed to follow the geodesic lines of the space-tine
metric. Thus, at least as long as the geodesic formulation of motion has not be:n
derived from a generalization of Newton’s second law, one is enforced to give a
physical status to space-time in GR. On the other hand, despite the experimen-
tal success of GR, it leaves unsolved problems as regards gravitation. We may
mention the problem of the singularity occurring with the gravitational collapse of
very massive objects, and the need to postulate huge amounts of “dark matter”in
order to explain stellar motion in galaxies. We should also mention the questims
on the influence of the coordinate condition in GR, which were raised a long tine
ago (e.g. PAPAPETROU [19]), but that have been newly discussed by LoGuNov et i,
[13-14]. LoGunov er al. present detailed arguments against the usual agreement
that, in GR, the choice of the coordinate condition has no physical consequen:e.
It thus may be worth to investigate alternative, speculative theories and to sk
questions on the formulation of motion.

In this paper, an extension of Newton’s second law will be given for theores
of gravitation in curved space-time in which SR is locally valid, including GR.In
doing so, care will be taken to maintain space covariance in a given refererce
frame, in order that the force be properly defined. However, no attempt will be
made to investigate the transformation of the force from one reference frane
to another. Section 2 will be focused on the definition of the right-hand side of
Newton’s law, i.e. the time-derivative of the momentum: it will be shown that tiis
may be defined from rather compelling principles, up to the same parameter A
as in the tentative theory [4], and which also must be A = 1/2 if Leibniz’ rile
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is to apply. In Sec.3, it will be investigated which form of the gravitation force
is compatible with Einstein motion (for “free” particles), i.e. the motion along
space-time geodesics. In the first step, Leibniz’ rule will not be imposed but it
will be assumed, in analogy with the Newtonian theory, that the gravitation force
depends linearly on the spatial derivatives of the metric and does not depend
on its time-derivative. In the second step, Leibniz’ rule will be assumed, but no
restriction on the gravitation force will be imposed. In Sec. 4, the three anterior
definitions of the time-derivative of a spatial vector, reviewed by Jantzen et al.,
will be examined from the point of view of “consistency” (validity of Leibniz’
rule), and “naturalness” (space plus time separation).

2. Definition of Newton’s second law for a (pseudo-) Riemannian
space-time metric

2.1. Some clarification on the kind of theories considered

We suppose that, according to some gravitation theory, the physical standards
of space and time are influenced by a gravitation field, but that SR holds true
locally (GR is the prototype of such gravitation theories, of course). It will be
useful to recall in some detail what is meant by this, not the least because it will
make clear that this framework does not preclude to consider a preferred-frame
theory, nor does this framework imply that a fundamental physical meaning must
be given to the mathematical concept of space-time. It will also give the way
to separate the force into a gravitational force or rather a mass force, and a
non-gravitational force.

i) According to a theory of this kind, our space and time measurements
may be arranged so as to be described by a metric 4 with (1,3) signature on
a 4-dimensional, “space-time” manifold. This may be done as follows. Any possi-
ble reference frame F, physically defined by a spatial network of “observers™ (each
one equipped with a ruler and a clock, all made in the same factory, say), al-
lows one to define (in many ways, actually) an associated coordinate system ()
(a = 0,...,3), with 2¥ the time coordinate and «' (i = 1,2,3) the space coordi-
nates, so that each observer has constant space coordinates. Moreover, { = 20 [eis
the “formal date” assigned to an event occurring at a point specified by the space
coordinates z' (¢ has in general no immediate relation to real time-measurements
made by the observer at this point). The observers in the same frame F are
not necessarily at rest with each other, i.e. they may find that their mutual dis-
tances are not conserved (case of a deformable frame). The manifold structure
of the space-time means simply that the same physical events will be given dif-
ferent space and time coordinates by different networks of observers, say («%)
and (z'“), and that the correspondence between (x“) and (2'") is locally smooth
(for smoothly deforming networks). So we have a space-time manifold A%, The
elements (points) of the spatial network cannot be identified with points in that
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manifold but with “world lines”, thus with /ines in space-time. Hence, from the
point of view of “space-time”, a reference frame is a 3-D differentiable manifold
N whose each point is a (time-like) differentiable mapping from the real line
onto the space-time M*; moreover, N is diffeomorphic to any spatial section of
M* (this is only the sketch of a rigorous definition; from the point of view of
“space + time”, a much simpler definition may be proposed [1]). Note that many
new coordinate systems (z'*) do not change the reference frame (network) spec-
ified by one system (®): the frame remains unaltered if and only if the change of
the space coordinates does not depend on the time coordinate, i.e. da" /0" = 0.
Up to this point, it seems that no physically restrictive assumption is involved
(except, of course, for the fact that “classical” physics, not quantum physics, is
envisaged here).

The assumption that SR applies locally is the one which allows to define a
(1,3) space-time metric. This assumption means, in the first place, this: in any
reference frame, the velocity of light, as measured on a to-and-fro path between
infinitesimally distant positions, is always the same constant ¢. Under this con-
dition, the link between physical space and time measurements and the metric
5y may be described as in Lanpau and Lircuitz [11], it is based on using the
Poincaré - Einstein synchronization convention for infinitesimally distant clocks.
Thus the proper time along the trajectory of a mass point (“time-like” line in
space-time), i.e. the time 7 measured by a clock bound to the moving point, is
directly given by metric ~:

(2.1) ds? = 2 dr? = y,5dx® d2”

Also, the distance dl between neighbouring observers (of a given frame F, spec-
ified by a coordinate system), as they find by using their rulers, or by measuring
the interval dr of their proper time that it takes for a light signal to go forth and
back, is expressed by a space metric tensor h = hr (it depends on the frame F):

(2.2) di* = (cdr[2)? = hyjdatda?, hij = =i + (voi 70,/ ¥00)-

Moreover, a synchronized local time ,(¢) may be defined along any open line in
space-time (i.e. a piecewise differentiable and one-ro-one mapping & — (£“(£))
defined on a closed segment of the real line), such that its variation along the
given trajectory is given by:

23) dly _ \/m ((/_,“ L0 (/.I-f)

e~ ¢ d€ o0 d€

As emphasized by CATTaNEO [6], the interval d!y is invariant under any coordi-
nate transformation that leaves the reference frame unchanged (“internal trans-
formation™) and has thus an objective physical meaning. If the vy; components
(¢ = 1,2.3) are identically equal to zero, the synchronization convention implies
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that events occurring at a given value of +U are simultaneous in the frame F,
independently of their spatial coordinates (this may be seen in Eq.(2.3)). Hence
2% is a “universal time” in the frame F. As a consequence, if one uses such coor-
dinates (z“), then the trajectory of any test particle may always be parametrized
with the coordinate time ¢ itself and, moreover, the local time has the simple
expression

(2.4) dix/dt = /v = B.

The expression (2.4) of the local time has the immediate physical meaning of
showing how clocks are affected by the gravitation field (usually they are slowed
down, i.e. ygo decreases towards the gravitational attraction). The property vg;, = 0
holds true after any coordinate transformation of the form 2”0 = ¢(20), 2" =
(!, 22, 2%). Thus it is indeed a characteristic of a given frame F. The restriction
to space-independent transformation of time, /0 = ¢(x0), reflects simply the
global synchronization. Using this time transformation, one may impose that the
local time at a given point bound to the frame, xo = (ry'), coincides with the
universal time (i.e. 790(2", (x¢')) = 1 ¥ 20), and then only a shift of = is left free.
The ygo component is invariant under the remaining, purely spatial coordinate
changes.

i) The other assumption involved, in saying that SR applies locally, is that
the laws of non-gravitational physics are “formally unaffected” by gravitation, in
the following sense: in the absence of gravitation, any such law must (or should)
be formulated in the frame of SR. Then, in the absence of gravitation, it may
be expressed in a generally covariant form, in replacing the partial derivatives,
valid in Galilean coordinates, by the covariant derivatives with respect to the flat
space-time metric 7? (Galilean coordinates are the ones in which the flat metric ¢
has the canonical diagonal form, ¢",, = Nue With (n,,) = diag (1, -1, -1, =1)).
Now the assumption is that, in the presence of gravitation and hence (according
to a theory of the class considered here) with a curved metric v, the expression
of any such law is extended to this situation simply by substituting + for v°. This
assumption is quite natural: physics must be described in terms of the local space
and time standards which (cf. point (i)) are ruled by metric 5 in the frame of SR.
And at the local or rather at the infinitesimal scale, the presence or absence of
curvature plays little or no role, i.e. any metric behaves (in many respects though
not in all) as a flat metric in the infinitesimal. Some ambiguity may yet arise when
trying to use this assumption, if differential expressions of order greater than one
are involved: since Schwarz’ theorem does not apply to covariant derivatives for
a curved metric, different higher-order expressions may become identical for a
flat metric and yet remain distinct for a curved one (e.g. WiLL [26]). In a such
case, a comparison with experiment may either decide between the possibilities,
or show that they do not differ significantly. Such empirical procedure might lead,
of course, to different choices for different gravitation theories, i.e. for different
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metrics v in the same physical situation, and thus could create a bias when testing
alternative theories.

2.2. Extended Newton law for a constant gravitation field

Let us first consider the static case, i.e. the case where a frame F exists,
defined by a coordinate system (x®), in which all components 7,5 of metric
v are independent of 29, and moreover the 7o; (i = 1,2,3) components are
zero. The first property holds true after any coordinate transformation of the
form z0 = az® + ¢(z!, 22, 23), 2" = ¢'(x!, 22, 23), thus in a different range for
the time transformation than for the second property, discussed above. Then,
the right-hand side of Newton’s second law, valid for SR, ie. dP/dt with P the
momentum including the velocity-dependent mass, is easy to extend to any such
theory of gravitation. The velocity v of a test particle (relative to the frame F)
is measured with the local time ¢, of the momentarily coincident observer in the
frame F, and its modulus v is defined with the point-dependent (Riemannian)
space metric h in the frame F. Thus

(2.5) vl = dat/dty, v = [h(v.v)]"/2 = (hj; o' v")/2,
The momentum is hence for a time-like test particle {mass point):
(2.6) P = m(v)v, m(v) = m( = 0)+y, = m(0): (1 — v?/c?)~1/?

(using the mass-velocity relation of SR) (!). For a light-like test particle (photon),
one substitutes the mass content of the energy for the inertial mass m(v). Then we
must define the derivative of the momentum with respect to the local time. Thus
in general we have to define the derivative of a vector w = w(y) attached to a
point x(\) = (¢'(\)) which moves, as a function of the real parameter y, in some
Riemannian space: here this space is the 3-D domain N = Nz constituted by the
spatial network which defines the considered frame 7. Hence the points in NV are
specified by their constant space coordinates «*, i = 1,2,3,and N is equipped with
the space metric h. The derivative must be defined as the “absolute” derivative
(e.g. BriLLouiN [5], LicHNerowICZ [12]), which is a space vector and accounts
for the (merely spatial) variation of the space metric along the trajectory:

Dw\' du' : - dak
3, A el g
(2:%) (1)\') dy ikt dy

(') Equation (2.6) implicitly assumes that the rest mass m(0) is the same constant my, independently of the
gravitation ficld. This may be seen as an immediate consequence of defining the inertial mass m as the ratio
P/v (= P'/v') and assuming that the P' are the spatial components of the 4-momentum, this being in turn
assumed to have the form P* = g da™ /dr with a constant my. This is consistent with Lanpau and Lircnirz
[11]. On the other hand, M@rLLEr [18] defines the inertial mass as the ratio m' = P/v,; with vy = dx/dt,
thus m' = m dt/dtx, hence his rest mass m'y = m'(vg = 0) = myqdt/dix depends on the gravitation ficld.
However, the definition of v and hence that of m' depend on the chosen time coordinate ¢ even in a given
frame, while the velocity v used by Landau and Lifchitz (and used here) depends only on the reference frame,
as it should.
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where the I'';; are the Christoffel symbols of metric h in coordinates (z').
As shown in ref. [2], the use of Eq.(2.7) is enforced if one wants to know
that Leibniz’ rule applies, and that the derivative cancels for a vector w that
is parallel-transported (relative to the space metric h) along the trajectory. This
is considered to be important, because it means that Eq. (2.7) is not merely one
possible formal rule to obtain a space-contravariant vector, but the unique consis-
tent definition for the time-derivative of a vector along a trajectory, in the case of
a time-independent metric. Now the left-hand side of Newton’s second law is just
the force. This may be decomposed into a “non-gravitational” force Fy, which
should have the same expression for any gravitation theory in the considered
class (%), and a “gravitational” force F, whose expression, of course, will depend
on the theory. Note that Fy will generally contain “inertial” forces as well (since
a general reference frame is considered here), hence “mass force” would be a
more appropriate denomination [1]. Thus finally:

(2.8) Fo + F, = DP/Dt,.

Using the same equations (2.3) and (2.5) to (2.7), the same definition may and
must be used in the stationary case, in which the 7,3’s remain time-independent,
but the 7, components may be non-zero: although a synchronized local time
cannot be defined in the frame F as a whole if the v¢,’s are non-zero, what matters
is that it is uniquely defined along the trajectory followed by the considered
particle (provided that it follows an open line in space-time: a closed line would
mean a travel back in time).

2.3. Extended Newton law for a general gravitation field

In the general case where the gravitation field is not constant in the frame
F, the new feature is that now the space-time metric v depends also on z°.
Hence also the space metric h (Eq.(2.2)) varies, not only as a function of the
space coordinates 2' (what is natural for a general Riemannian metric in a space
depending on these coordinates), but also as a function of the time coordinate
20, What is relevant for Newton’s second law is, more precisely, the variation of
h along a trajectory (of a test particle), i.e. the fact that our spatial network N
is equipped with a metric field h, that changes as the parameter \ evolves on the
trajectory, thus for any value of y and at every point \" € N we have a covariant
tensor h, (X). In our case, the variation of the metric field with y is due to the
variation of h with the point in space-time, thus in coordinates:

Al =123 = Ai[2°(0)s @Fi=1.23)-

(*) The expression of Fy is taken from the situation without gravitation: thus, as recalled in point (ii) of
Subsec. 2.1, it involves the ficld ~ (in the place of the flat metric ~”), and it depends on the non-gravitational
ficlds; in practice, these are the electromagnetic ficld and/or thermomechanical fields (the nuclear ficlds are
very microscopic matter fields and moreover, their current theory does not belong to classical physics, i.c. their
influence cannot be described in terms of deterministic trajectories of mass points). A “free” particle is one
which crosses a region free from matter and electromagnetic field: for such a particle, the force Fy will be zero
independently of the reference frame considered.
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Moreover, we have a preferred parameter \ = /, on the trajectory. It is easy to
convince oneself that nothing needs to be changed in Eqgs. (2.3), (2.5) and (2.6),
because they involve only the local components of the metric (which now become
its local and “current” components), not its variation. In order to define properly
an extension of (2.7), let us list the properties that should be satisfied by this
searched derivative of a vector on a trajectory in a manifold equipped with a
variable metric:

a) Tt must be a (space) vector, i.e. it must be contravariant for any coordinate
transformation of the form z* = z"'(a/).

b) It must be linear in w. More precisely, it must obviously have the form

(DW/ DY) = (dw'[dX)\ =y, + L';w’ (x0)

with yo the point of the trajectory where the derivative is to be calculated, and
where L', behave as a mixed second-order (space) tensor (transforming a (space)
vector into another one), for linear coordinate transformations.

¢) It must reduce to (2.7) if the metric field h, does not depend on .

d) It should account for the variation of metric h, as a function of y.

e) It must be multiplied by «\ /d¢ if \ is changed to ¢ = ¢(y).

f) Tt must satisfy Leibniz’ derivation rule for the derivative of a scalar product,
Le.

d Dz Dw
2.9 — =h e —.Z].
(29) = oma) = b (w5) ()

in which it is understood that, on the left, the variation of metric h with 20 is
accounted for, as becomes obvious if one writes down explicitly the scalar product:

(2.10) ho(w.z) = h;; [(+"(\)a=0....3] @' ()7 (V)

(Hence, it is likely that (f) implies (d)).

First, we note that definition (2.7) still makes sense, and satisfies requirements
(a), (b), (c) and (e). Of course, it is now specified that the Christoffel symbols of
metric h are those at the relevant position and “time”, thus in (2.7)

(2.11) Ik = TSl i=23] = Tl (O)a=o,..a]-

The “candidate” thus defined by Eq.(2.7) will be now denoted by Dyw/Dy. It
does not satisfy (d) (nor (f), in fact), for it amounts to substituting the metric
h,, of the “time” a = 2%(\p) for the variable metric h,. From (a), (b) and (c), it
follows that we have to search an expression in the form

(2.12) DW/ Dy = Dow/ Dy + t-w(\p).

in which t is a mixed second-order space tensor (indeed, the ordinary derivative
dw/dy = (dw'/dy\) is already involved in Dow/ Dy, Eq.(2.7)). But to satisfy (d),
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it is hence necessary that this tensor should involve the variation of metric hy
with y, due to the variation of h with 2Y:
Bhii; _ Fhyj da®

5% de0 dy -’

Thus, tensor t must contain either h;, o terms or Y ; ones, with (h*7) the inverse
matrix of (h;;). In order to be a mixed tensor and satisfy (e), t should have the
form

(2.13) th = hho(da®/dy), or ' =hYg(de®/d\)hjy,

or any linear combination of these two tensors. But since h'-fhjk = §';, we have
t+t' = 0, so that, without imposing Leibniz’ rule, we are left with a one-parameter
family of candidates:

(2.14) Daw/Dy\ = Dow/ Dy + Atew.

Finally, nearly the same short calculation as in Ref. [4] shows that Leibniz’ rule
(2.9) imposes A = 1/2, hence only one definition of the derivative remains:

Jh oh da®
(2.15) Dw/Dy = Dogw/ D\ + (1/2)t+w, tsh\”‘-(.—\;h"‘.'( ol'
g\ dal dy
or in coordinates:
Dw\' duw . ade® ] da®
2.16 —_— 5= ! + —h"h ;) g— ™.
=16) (1)\) il il D e

Thus, a theory of the kind considered should provide an expression for the mass
force F,, and this expression would depend on what the theory considers as “the
gravitation field” (this may include the space-time metric 7, in any case it must
determine 7). Then one and only one “Newton law” can be consistently stated
in such a theory: it is Eq. (2.8), where the momentum P is given by Eq. (2.6) and
its derivative DP/ DI, is calculated using rule (2.16). The trajectory £ — (27 (£))
being defined with the help of an arbitrary parameter &, the variation of the local
time \ = {y along the trajectory is given by Eq.(2.3).

2.4. Comments and link with the investigated preferred-frame theory

It is seen that the derivative of the momentum is defined in any possible
reference frame (and it depends on the frame). Hence, if a theory gives a covariant
expression for Fy and 7, the extended second Newton law does not restrict the
covariance of the theory. On the other hand, a preferred-frame theory may give F,
and v in one reference frame only; if one were able to calculate the transformation
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law of the derivative DP/ D, then this same law would apply to the force, so
the law of motion would be reexpressed in a covariant form.

The investigated ether theory [1-4], which is indeed non-covariant, starts
from a heuristic interpretation of gravity as Archimedes’ thrust in a perfectly
fluid “micro-ether” (the rigid ether frame & considered by Lorentz and Poincaré
would be defined by the average motion of this “micro-ether” at a very large
scale). The transition to account for “relativistic” effects is based on a formulation
of Einstein’s equivalence principle, natural in this preferred-frame theory: the
equivalence is stated to exist between the absolute metric effects of uniform
motion and gravitation. This leads to postulate a gravitational contraction (resp.
a dilation) of the space (resp. time) standards, depending on the field of the “ether
pressure” p,, thus getting a curved (Riemannian) space metric g and a local time
tx in the ether frame &£, which together build a curved space-time metric v [2-3].
This theory gives Fy and 7 in the ether frame & only, as a function of the scalar
gravitation field p,, or the associated fields f and 3 with

(2.17) f=p8%=(pe/p )P <1,

where p.~ = p,~(T) is the reference pressure (which, for an insular matter
distribution, is asymptotically reached at large distance from the matter. Here, 7’
is the “absolute time”). The gravitation force is assumed to be

(2.18) F, = m(vr)g.
with g the gravity acceleration, given by

B gradgp, _ 2 gradg:i 2

(2.19) g= = —grad, /.

P 3
where g = hg is the physical space metric in the frame &, and where gradg (resp.
gradg) is the gradient operator relative to metric g (resp. relative to the “natural”
metric g°, with constant curvature, of which the “ether” network (3-D manifold)
M = Ng is assumed to be equipped with). And the line element of the space-time
metric 7, affected by gravitational contraction of the space standards (relative to
metric g”) and by gravitational dilation of the time standards (relative to the
“absolute time” 7T'), has the form

(2.20) ds? = f3(d2®)? — di?, 2% =T,
where dl? is the line element of metric g. This has the following simple expression
in “isopotential” coordinates (y“), i.e. coordinates such that, at a given time 7,

y! = const (in space) is equivalent to p, = const, and that the natural metric g
is diagonal, (g°;;) = diag(a")):

(2.21) (g9;;) = diag(a;) with ay =@ ff, a= a%, a3 =a%.
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For a time-dependent field p., such coordinates are not bound to the ether frame
[4]. From Eq.(2.20), it follows that, if one selects any coordinates (z“), with
2% = ¢T, that are bound to the frame &, then the components 7g; are zero. Thus
a simultaneity is defined for the frame & as a whole; in other words, the absolute
time 7" is a universal time in the frame £. For the important case of an insular
matter distribution, the absolute time 7' is the local time measured at any point
xg which is bound to £ and far enough from matter so that no gravitation field is
felt there. Moreover, the global synchronization condition (yg; = 0) does not hold
true in a frame that rotates rigidly with respect to &, nor in general in a frame
that moves uniformly with respect to £ (*) (the condition vy; = 0 holds true for
any frame in uniform translation, in the case that no gravitation field is present,
thus for the flat metric v = 7). These considerations justify the denomination
“absolute time” for 7'. Hence, the ether frame &, which is already a global inertial
frame in the sense that the mass force in & (2.18)—(2.19) is purely gravitational,
is really a physically privileged reference frame (according to this theory).

3. Extended Newton law and geodesic motion
3.1. A possible form for the graviiation force in a globally synchronized reference frame

We now investigate the possible form of the gravitation force. In order to
make some meaningful induction from the Newtonian theory, it is very useful to
work in a reference frame F, in which the 54, components of metric y are zero
(Subsec. 2.1). The concept of global simultaneity is indeed so deeply involved in
any Newtonian analysis, that any induction from the Newtonian theory to the
general situation with curved space-time, where a simultaneity is defined only
along a trajectory, would seem dangerous. Whereas, if one works in a frame such
that 5o, = 0, the only change in the time concept is that now the clocks go dif-
ferently at different positions and times (Eq.(2.4)). We note that the existence
of a frame F, in which the 5, are zero, is not a physically restrictive assump-
tion, since it breaks down only for rather pathological space-times: in “normal”
space-times it is even possible to select a “synchronous” frame which not only
enjoys this global synchronization, but in which the 799 component is uniform,
i.e. the local time flows uniformly (LaANDAU and LirchiTz [11], MAvRIDES [16]).
Thus there “normally” exist many difTerent frames such that vg; = 0. Which form
of the gravitation force could one consistently state in such a reference frame?

For the class of theories considered in Sec. 2, what is considered by any such
theory as “the gravitation field”, has been assumed to determine the space-time
metric ¥ (for non-covariant theories, we should add that this has only to be true
in some preferred reference frame which is like &, i.e. such that yy; = 0). Here,
we will assume, in a more restrictive way, that the metric field v contains the

(*) Here, rigid rotation and uniform motion can be defined, at least if the metric manifold (M, @) has zero
curvature, i.e. if it is Euclidean.
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gravitation field (at least in the preferred frame). This is true in any reference
frame for GR and for the “relativistic theory of gravitation” (RTG) proposed by
LoGunov et al. [13-14], and this is true in the ether frame & in the tentatively
proposed theory. On the other hand, in order that SR would hold true locally and
that the inertial and (passive) gravitational mass might coincide, the gravitation
force must have the form

(3.1 Fy = m(v)g,

with g being a space vector in the considered frame. If we want the metric field
to play the réle of a potential, we must ask g to depend linearly on the first
derivatives of v, and bearing in mind the Newtonian theory we should add that
only the spatial derivatives v, are allowed. But, in a frame where g, = 0, we
have v;; = —h;; with h denoting the space metric in this frame, i.e. the metric
v reduces to the joint data v = (f,h) with [ = ~5g9. Thus, we are looking for
a space vector g depending linearly on the spatial derivatives of f and h. To be
contravariant by a general space transformation, g must depend linearly on the
covariant derivatives of [ and h (with respect to the space metric h!). But, as is
known, the covariant derivatives of metric h with respect to h itself are all zero
(in other words, one may cancel all spatial derivatives h;; ;. at any given point by
a purely spatial coordinate transformation). Hence, g should have the form

(3.2) g = a(/.h)grad, /[,

where « must be a given function of the values of the metric fields at the con-
sidered point (2®) in space-time, f = f(2®) and h = h(x+") in Eq.(3.2), thus
a(f,h) is completely independent of the variation of [ and h with time and
position.

Now we add the condition that geodesic motion (Einstein’s assumption) must
apply to free particles (Fy = 0) for a static gravitation field. This is exactly equivalent
to assuming the following expression for the gravitation force in the static case:

(33) F,= -m(,,-)(-zg”—“:hf = m(c)grady,(—*Log 3),  where [ = \/700.

Indeed, it was already proved (and it will be proved again below, in a different
way) that Eq. (3.3), which occurs naturally in the ether theory, implies geodesic
motion for mass particles in the static case [2]; this is also true for photons [3],
substituting in that case the mass content of the energy ¢ = /v for the inertial
mass m(v). Conversely, it is proved in LaANpavu and LircHiTz [11] that geodesic
motion implies the expression (3.3) for the force in the static case, defined as the
derivative (2.7) of the momentum (2.6) (). Thus the reason for assuming geodesic

(") Actually, LANDAU and Lirciirrz |11, § 88| derived from geodesic assumption the expression of the foree in

the stationary case, using the same definition for the force (what is consistent with the present work, Subsec. 2.2).
They found an expression involving an additional term which cancels if ~, = 0.
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motion in the static case is that it is indeed so for the tentative ether theory as
well as, of course (and in any situation) for the usual theories of gravitation with
curved space-time, in particular GR and the RTG. So we must have, by Eqgs. (3.1),
(3.2) and (3.3):

2

. ie. a(f,h)y=——

_ngradh;i _ ¢* grad,f ¢
2f "

B2
when fg = 0 and h = 0. But since «(f, h) depends only on the local values of
f and h, not on their variation, Eq. (3.2) implies then that g keeps the form (3.4)
and thus Eq.(3.3) holds true in the most general situation.

(3-4) =

3.2. Expression of the 4-acceleration for a “free” particle using the extended Newton law

In theories with a (pseudo-) Riemannian space-time metric, two well-known
space-time vectors may be defined for a time-like test particle (i.e. a mass point).
These are the 4-velocity U, which is the velocity on the world line of the particle
in space-time, when the world line is parametrized with the proper time 7 of the
particle,

(3.5) U = da® /dr,

and the 4-acceleration A, which is the absolute derivative AU/ A7 of the former
relative to the space-time metric 4. Thus

(ﬂ). = (-—g“m + 1" ('“(‘/L/ = . + [ URUY,
Ar

v Ji

(3.6) A

dr dr dT

~pCx

symbols 1

., being the Christoffel symbols of metric 5 in coordinates ().

i) Spatial components of the 4-acceleration in a globally synchronized refer-
ence frame.

It is recalled that we use coordinates () that are bound to a “globally syn-
chronized” frame . Thus v, = 0 (i = 1,2,3), from which it follows immediately
that:

(3.7) hij = —7ij» I‘iﬂ\' = l‘l;k .
hence

AUN'  dU? - ‘g : . !
(38) (—_\—-) = ,(_.[* 4 [*r,k(r,;(‘;l\ 51 IV”OO(UO)Z & 2I~I:Ok(;l)(/k'

‘8 aT '
In this equation, we note that, in view of Eq. (3.7); (and since h"/ = —~% is always
true):
Oy Yo0k + Yok = Y0ka) 05k _ 1, {x® .

(3.9) [P0 00 = ?,..( 0,k 2L.u YOk, )(‘0(31. _ ih"'h_,k.o%(’kn
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By (2.4) and (3.5) we get:

O = (da¥/dty)(dty/dT) = e(dix/dT)]/ /700 »

but, using Eqs. (2.1)—(2.3) and (2.5), it may be proved (cf. LANDAU and LiFcHITZ
[11]) that, independently of the fact that v, = 0, one has always:

dity
dr

(3.10) =7,

as was already noted [2] for the tentative theory. Hence we obtain

3.11 o= v = v
(3.11) 700 3

so we reexpress another term in Eq. (3.8), calculating I}, as for I} in Eq.(3.9)
and using again Eq. (2.4):
i 100, 22 288, 2 5 o(gradyB)

]0 v _ pij ¥ =
G(UPY = AT T Tt = Y Tt = i

We recognize here the component g' of the assumed gravity acceleration (Eq.
(3.4)), thus

(3.12) (U = —1ig'.

It is now possible to calculate (AU/ A7) with the Newton law, for a “free” particle
(Eq.(2.8) with Fy = 0 and with F, given by Eq.(3.1)). In a first step, let us
calculate with the incompletely defined Newton law, which is obtained if one
uses the derivative D\P/Dt, with the unspecified parameter A (cf. Eq.(2.14)).
Using (3.10), we may write this in terms of 7:

(DAP/ Dt = (D\P/D7Y /7, = movay'
and we have by Egs. (2.5), (2.6) and (3.10):
(3.13) P¥ = myuvt = moy, da' fdty = moda’ fdr = moU",
so the “unspecified” Newton law has the form
(3.14) (D) D7) = 424,

where u' = (U/') means the spatial part of the 4-velocity U. Applying definition
(2.14) which involves terms given by Eqgs. (2.13) and (2.7), we get

0
([l ([A

Dy’ {1 - -
(3.15) ( D‘: ) - % + D U2 U + MR
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Hence, the unspecified Newton law imposes the following values to the spatial
components (in coordinates bound to a globally synchronized frame F) of the
4-acceleration of a free test particle (Eq. (3.8) with (3.9) and (3.12)), depending
on the parameter A:

da?

(3.16) (£> 201 = MM UOU* = (1= Mo == U,

AT
In particular, the spatial part of the equation for space-time geodesics is satisfied
for a variable gravitation field (h;;.o # 0) if and only if the parameter \ has the
value A = 1.
ii) Time component of the 4-acceleration in a globally synchronized frame
For the time component, we have simply

AUN®  4qut , i ki pil préprd
G17) A'= (F) =—+ "0 (U%? + 2", UU* + 1,007

Using Eq. (3.7); and the fact that vo9 = 3° (Eq. (2.4)), the [0, are easily calcu-
lated:

el

_ Bo oo Bx g0 _ hijo
0= "7, ik = =2 ' =
3 3

.;iz N

11/0

L

By Eq.(3.11), which implies also that U* = (y,/3)(dx*/dt), one then rewrites
(3.17) as

07 05 = d (”,_,) 4 v Jp 9 h'y,’dk(l: 1 =y Bhy dat dal

(3.18) — =z T Siteg W o

dt 2¢252 3 Ot dt dt

At this point, we may insert the energy balance deduced from the “unspecified”
Newton law for the free test particle (Eq. (4.21) in Ref. [4]):

G (_]"~ =()_’i A 1_2_’\0_h
(31)) (“(dlt:) Tv B + 07 T (V,V)

with o' = (dz'/dt)/3 by Eqgs.(2.4) and (2.5)(°). We have thus in Eq. (3.18):

d (v, d(] _ 1 0(1) (l)(lw""
dt (/j) dt ‘3"> T d (j“)ﬂj”‘ lar 7))\ @ L dt

( 9 rm') L dv 1=2X0hy dat da

(*) Equation (3.19) is derived using the fact that some derivation rule of a scalar product can be obtained
even with the “unspecitied” Newton law, although it does not obey the true Leibniz rule (Eq. (2.9)) unless
A = 1/2. However, if A # 1/2, this balance equation cannot be rewritten as a true conservation equation, at
least in the scalar theory [1-4].

http://rcin.org.pl



566 M. ARMINJON

so that some cancellation occurs in (3.18). We obtain finally:

2 : i
0o Yo q_pyhuded? (A=), i -
(3.20) A 0!34(1 R = 7 hi; o' U3 = 21— M)

110
1

Ui,

In particular, the time part of the equation for space-time geodesics, as well as
the spatial part, is satisfied for a variable gravitation field (h;; o # 0) if and only if
the parameter A has the value A = 1. However, it is recalled that the value A = 1
specifies the Newton law in an incorrect manner, since it means that Newton’s
second law is based on a vector time derivative which does not obey Leibniz’
derivation rule.

Let us summarize the results of Subsecs. 3.1 and 3.2, which concern Newton’s
second law and geodesic motion:

(NGM1) Consider a theory with curved space-time metric v and locally valid SR,
and assume that in some “globally synchronized” reference frame F (7o; = 0), the
gravitation force (3.1) involves a space vector g depending only on the metric field
v. More precisely, assume that g does not depend on the time variation of v and is
linear with respect to the space variation of 5. In order that free particles would follow
space-time geodesics in the static case (7,0 = 0), it is necessary and sufficient that
the general expression of vector g in the frame F should be

ngradhd _c? grad,f

2 =
(3.21) g 3 5

with h the space metric in F. This expression implies Eqgs. (3.16) and (3.20) for
the 4-acceleration, thus it implies that, for a time-dependent ficld, geodesic motion
corresponds exactly to the incorrect Newton law (A = 1).

3.3. Characteristic form of the gravitation force associated with geodesic motion

The assumption that the metric field v plays the role of a potential for the
gravity acceleration g seems quite natural, if one thinks of a “soft” generalization
of Newtonian gravity. The foregoing result implies, among other things, that Ein-
stein’s assumption of a motion following space-time geodesics is not such a soft
extension. But, after all, in Maxwell’s theory the electric field involves also time
derivatives of the electromagnetic potential, besides the usual space derivatives.
Moreover, the Lorentz force depends on the velocity of the charged particle.
A more general expression than we assumed for the gravity acceleration might
hence be correct also, the more so as we now have empirical reasons to think that
the gravity interaction indeed propagates, as does the electromagnetic field, and
with the same velocity (TavLor and WEISBERG [25]). That gravitation propagates
with the velocity of light was first envisaged by Poincaré in his “electromagnetic”,
Lorentz-invariant theory of gravitation [20-21] and, as is well known, it is pre-
dicted by Einstein’s theory.
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Thus we now investigate the possible form of the vector g, subjected to the
unique constraint that geodesic motion should occur with the correct form of New-
ton’s second law, i.e. A\ = 1/2. We continue to work in a globally synchronized
reference frame and, in order to simplify the expressions, we take g in the form

sgrady P gradyf |,
= —¢"————— + = -  — 4
Starting from Eq.(3.6) as before, nothing changes until Eq.(3.12), which now
becomes

(3.22) f =0 = B2

(3.23) - W = 23 - 9.

And again nothing changes until Eq. (3.16), which is modified into
~ AUN* . dx® :
= [ = _ Uh., nee TR 2. n

(3.24) A (.;\r) (1= X)h"hji0 o U™ +#,0".

Hence, the spatial components of the 4-acceleration cancel with A = 1/2, if and
only if

- =1 . dhy -1 Jh -1 oh

25 b e _h‘J_L (K ’=__h_l.A. _——h_l. .
(-25) "= 250 o T 2 oY
But does this expression also cancel the time part of the 4-acceleration? To check
this, one must reexamine the energy balance derived in Ref. [4]. Proceeding in
the same way, we find easily that the energy balance resulting from the expression
(3.22), (3.25) of g is (with A = 1/2)
d 03 By, Oh
— (7)) = Y= — =5 == V)
a1 =0 = 33

[ g

(3.26)

instead of Eq.(3.19). Thus, with the correct Newton law (A = 1/2), the same
expression is now obtained as it was obtained before with the incorrect Newton
law (A = 1). Therefore, the time part of the geodesic equation, A? = 0, is satisfied
for A = 1/2, as it was previously for A = 1. We have proved the following:
(NGM2) Consider a theory with curved space-time metric v and locally valid
SR. and assume the correct time derivative (2.15) in the extension (2.8) of Newton'’s
second law. In order that free particles (Fo = 0in Eq. (2.8)) might follow space-time
geodesics, it is necessary and sufficient that, in any globally synchronized reference
frame F (vo; = 0). the gravitation force (3.1) should involve the following expression
for the gravity acceleration (space vector g):
sgradyd 1y @h

h ' 3= o0 -
3 23 ol e

with h being the space metric in F and v — the velocity vector (Eq. (2.5)).
This result provides the general link between Newton’s second law and Ein-
stein’s geodesic assumption.

(3.27) Bpcod = —¢

http://rcin.org.pl



568 M. ARMINION

4. Comparison with the literature
4.1. Magller’s work and the relation between covariant and contravariant form of Newton’s law

Among attempts to define Newton’s second law in the case of a variable
gravitation field, a well-known one is that of M@LLER [18]. However, Mgller uses
the absolute derivative with respect to the “frozen” space metric, thus A = 0 in
Eq.(2.14), so that Leibniz’ rule is not satisfied with the actual, time-dependent
metric. In connection with this, he notes that this derivative does not commute
with raising or lowering the indices with respect to the space metric h. As a
consequence, when he rewrites the equations for space-time geodesics in the form
of Newton’s second law with gravitational forces, the latter look very different in
covariant and in contravariant form. We show that this difficulty is absent with
our definition.

Indeed, it is easy to adapt our line of reasoning so as to define the time-
derivative of a spatial covector w*. One finds in exactly the same way that, apart
from Leibniz’ rule, a one-parameter family of time-derivatives may be defined as:

4.1) D\w* /Dy = Dow" /Dy — Atew™,
with

(4.2) (tew™), = hl'J-_O((LrO/(l\)th 0w
= (dz/dy)(h geh D) wy = (dz°/d\ Y (b~ Leh ) w™ e = o™y,

and where Dow™/ Dy is the absolute derivative using the “frozen” metric. And
one finds that Leibniz’ rule imposes A = 1/2. It is also easy to verify that, for this
correct value A = 1/2 and, for a time-dependent metric h, only for this value, the
time-derivative D/ Dy does commute with raising or lowering the indices with
respect to the space metric h, that is

4.3) | Dyja(hew)/ DY = he(Dyw/ D).

Therefore, if one takes the covariant components of the momentum instead of
the contravariant ones, thus substituting P* = h-P for P, then the corresponding
“covariant Newton law” will involve just the covariant components of the force,
F* = h.F = h.(Fy + F,) in Eq.(2.8).

4.2, Newton’s second law with the “Fermi-Walker” time-derivative

From now on, we will discuss the work on “Newton’s second law in relativistic
gravity” as reviewed and unified by JANTZEN et al. [10]. They define the equivalent
of what we call a frame (spatial network) by a 4-velocity vector field u, and they
name it “observer congruence”. What they call “observer-adapted frames” is a
very different notion from that of adapted coordinates as defined by M@LLER
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[18] and Catrtaneo [6, 7]. Here we continue to work in adapted coordinates,
i.e. such that the observers of the network (or congruence) have constant space
coordinates. In such coordinates, the contravariant and covariant components of
u are given by

(4.4) (u*) = (_\/%70‘0‘0) ’ (ta) = <_m, (\/.%)1:1,2,3)

(we keep our notations, except for the fact that we set «® = dz/ds and adopt
the (3,1) signature as in Refs. [6-7] and [10], until the end of this Section). It
follows that the spatial projection tensor IT = TI(u) [7, 10], which is a space-time
tensor defined in general by

", = ", + vu, ,
has a simple expression:
(45) H;=8;, HYy=0, H°%= -/, H%=0.

It corresponds to the projection of the local tangent space to space-time onto
the hyperplane which is y-perpendicular to the local 4-velocity u of the observer
congruence. In connection with this, what is called a “spatial tensor” by CATTANEO
[7] and by JANTZEN er al. [10] is also a very different notion from that used by
Mg@LLER [18] and in the rest of this paper. For us (and for Mgller), a spatial tensor
is just an element of a tensor space at the relevant point of the spatial network
(3-D Riemannian manifold) N, thus its components depend on the three spatial
(Latin) indices only, 7 = 1.2,3, in adapted coordinates. In Refs. [7, 10] and in
the remainder of this section, a spatial tensor is a space-time tensor which is equal
to its projection, the latter being generally defined by Eq.(2.2) of Ref. [10]. E.g.
for a 4-vector (space-time vector) X, the projection reads:

(46) (H.X)L’\ = ”Du-\'“-
Hence in adapted coordinates, by (4.5):
4.7 (LX) = X' (1-X) = 30,7 /300,

so that the “time” component X' is not equal to zero for a “spatial vector” (ex-
cept for a “normal congruence”, i.e. the case where 79, = 0 in some adapted
coordinates). We also note that the “rescaled time” 7y, considered in Ref.
[10] (for a time-like test particle with 4-velocity U), as well as the “standard
time” 7" considered in Refs. [6—7], is the same variable as our “local time” iy,
synchronized along the trajectory of the test particle, with their ¥ = 5y ) be-
ing our 7, (Eqgs.(2.3) and (3.10) here). On the other hand, what is called the
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“Fermi- Walker total spatial covariant derivative” (fw TSCD) in Ref. [10], has
the following expression for an arbitrary parameter \ (although it is defined only
for x = 7y = tx in Ref. [10]):

(4.8) — =1II-
We have thus in adapted coordinates, by Eq. (4.7):

D fw x g AX s (t,"\" . dx”
( ) - Wt - &
4.9 il i = [ =— = e A ] X# , =1, 2. 3,
( ) ( Dx ) (-—\\) (d\ i ‘[\) ’ 1

and the “time” part of the derivative is not independent of the “space” part:

. ,
(4.10) (U“W’X) = -1 (——D‘MX)J.
Dy 00 Dy

What corresponds to Newton’s second law in [10] is the evaluation of the spatial
projection of the 4-acceleration A of the test particle. Apart from the different
notation, it amounts almost exactly to Eq.(2.8) here, with the same definition
(2.6) for the momentum, involving the same relative velocity (2.5), though with
the derivative defined by Eq. (4.8) instead of Eq. (2.15). One difference is that the
velocity v and momentum P are now spatial 4-vectors which turn out to be the
respective projections of the 4-vectors U" and P/, with U’ the 4-velocity U, rescaled
to the local time, and P’ the usual 4-momentum. Thus the spatial components
of v and P are the same as in this work, and the “time” components obey the
general rule for a spatial vector X, i.e. such that II.X = X:

(4.11) X = —90;X /700

Another difference is that the gravitational force, which is the total force for
a free particle, is necessarily deduced, in the frame of GR and other “metric
theories”, from the geodesic equation, i.e. A = 0, whereas here geodesic motion
is one possibility among others.

Having thus recognized that the spatial part (4.9) of the derivative (4.8) plays
exactly the same réle in Ref. [10] as the derivative (2.15) plays here, we may
comment on the difference between the two derivatives. Since the spatial com-
ponents (4.9) are just those of the space-time absolute derivative AX/A\y, the
Fermi - Walker TSCD involves space-time coupling in a generally inextricable way,
in that it cannot in general be defined in terms of only the spatial metric h and
the local time ty. Hence, this derivative cannot be used in an arbitrary reference
frame to define a “true” Newton law as it has been defined here, i.e. precisely
a law involving only the separate space and time metrics in the given reference
frame, thus allowing to “forget” the concept of space-time as long as one does
not change the reference frame.
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4.3. The “normal” and “corotational” Fermi—-Walker derivatives obey Leibniz’ rule

Surprisingly, the question whether the introduced time-derivatives satisfy the
Leibniz rule is not investigated in Refs. [6, 7, 10]. However, it is not difficult to
show that the two Fermi - Walker derivatives do verify Eq. (2.9) for spatial vectors.
The spatial metric in those works is of course the same thing as here, except for
the signature and the fact that it is now a space-time tensor (for a given observer
congruence u):

hap = VoI5 = Yap + Watty =, hij = 7ij — iy §
700

(4.12)

Equation (4.12); implies immediately that, for any two space-time vectors X
and Y:

(4.13) h(X,Y) = v(X.II.Y) = v(II-X.Y).
On the other hand, the absolute space-time derivative obeys the Leibniz rule:
d AY AX
14 — [ (X.Y)] = X, — —— X
(414) b= (x50 +1(5Y)

Using Eq. (4.13), we rewrite Eq. (4.14), if both vectors X and Y are spatial, as:
d AY AX
—[hX.Y)]=h (X II.— ] + h H-—.Y).
d [h(X. V)] ( _\\) ( Ax

With the definition (4.8), this gives the Leibniz rule for the Fermi- Walker deriva-
tive:

4. —[h(X,Y)] = {(,——— ] +h X
(4.15) dy (hX, X)) =h (X Dy ) ( Dy

The “corotational” Fermi-Walker (cfw) derivative, when acting on a spatial
vector X, is related to the “normal” Fermi- Walker derivative by [10]:

D X2 Dy X\ © -t

(cfw) (fw) , Cdlx (.
4. —_— = ¢ Xk
(4.16) ( Dy ) ( Dy )

Ty
Here w®, are the mixed components of the “spin-rate” space-time tensor. This
comes from the decomposition of the covariant “spatial 4-velocity gradient”,

(417)  k=k(w) = -II-VOt,  w=(u), k=M T 5uy,,
into symmetric and antisymmetric part:

(4]8) k,;,_[j = *‘H‘-,;}'i'u;(-,;j 5 8.5 = (k“;f'*'k;jf,)/z. Wo3 = (kc.;g—k,.gc,)/Z,

http://rcin.org.pl



572 M. ARMINJON

and the mixed components w®, are obtained by raising the index a with metric
7. It appears that, just like the ordinary one, the corotational Fermi-Walker
derivative cannot in general be expressed in terms of the spatial metric h and
the local time ¢ only. Moreover, it is difficult here to refrain from asking the
question: with respect to what does the “spin rate” w measure the rate of relative
spin of the considered reference fluid (network)? Already the understanding of
the strain rate @ is difficult: without any preferred reference fluid, we may only
define, so to speak, the “strain rate of the fluid with respect to itself” due to
the evolution of the spatial metric h, and this is precisely what measures the
t = h~l.hy (dz¥/dt,) tensor in our derivative (2.15) (with y = #,) — but the
tensors t and ¢ are two different objects.

As to Leibniz’ rule, it applies to the cfw derivative, at least if both vectors
X and Y are spatial. Indeed, due to the antisymmetry of the covariant tensor w
(Eq. (4.18)3), the definition (4.16) gives

(X, /) ey [ Y] g (X ) - g =Y
’(’ D\) f( Dy ) 7( u\) ’(u\ )

cdity

dyx

. (it = .
Vuw (WH e XYY + w", VEXH) = %’_‘ (W XYY + w, YEXH) = 0.

The Leibniz rule follows from this by (4.13) and (4.15), the two vectors X and Y
being assumed to be spatial vectors:

DicsnY D ctan X
(cfw) (cfw)

.19 h (X, + h .
(5 (x Dx ) ( Dy Y)

DY DX !
=h (x_”i) + h( “W’ .Y) = [h(X.Y)].
Dy Dy dy

4.4. The case of a globally synchronized frame and the “Lie” time-derivative

We consider the particular case of a globally synchronized frame (or “normal
congruence”), in which the vy; components of the space-time metric are zero in
some adapted coordinates. Then the spatial projection tensor 1T (Eq.(4.5)) is
written simply

(4.20) (11", = diag (0,1.1,1)

in such coordinates. Hence, in such coordinates, substituting its spatial projection
IT(u)-T for a space-time tensor T amounts exactly to taking its space components
only. In particular, the “time” component of a spatial vector X is now equal
to zero. Moreover, the spatial Christoffel symbols of the space-time metric are
equal to the Christoffel symbols of the spatial metric (Eq. (3.7)). This implies that
the Fermi- Walker derivative coincides, for the case considered and for a spatial
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vector X (thus X? = 0), with the D, ; derivative. Indeed, using Eq. (3.9), we find:

D X AX Xt 12 i w.dz?
(4.21) ( “‘”)) ( ):‘— 1JA\J(—+1" il

Dy Ax dy dy 907 dy
_dX! o J(lz _ Dy X! i
= ([\ +r k- X7 l—\ 4 2h hijoX X ( Dy §

with X’ = (X9).
For the non-zero components of the k tensor (Eq.(4.17)), we obtain using
Eqgs. (4.20), (3.9) and (4.4) (and since h;; = v, with the (3,1) signature):

(4.22) k; h; h 'k il e g B
. - = Uy = kll'— e U-—-—"H=

] (4] t 3 t 0; 2 17,0 2 J_[OCdlx
Therefore, the “spin-rate” tensor w is nil for a normal congruence [6], so that
the corotational Fermi- Walker derivative coincides, for spatial vectors, with the
“normal” one, and thus with the proposed derivative, ) = D;/;. On the other

hand, we have from (4.18) and (4.22):

1 da®

i = ~hij = o g,

What is called “Lie” TSCD derivative in Ref. [10], is not a Lie derivative in the
usual sense but the projection of a Lie derivative [10], and is defined in general
by [10]:

DX\ @ D X ('r[i )
(lie) (fw) f o Vi
4.23 = w, X#* = 0%, X
( ) ( Dy ) ( Dy ) dy ( E ’ )

(extending again the definition [10] to an arbitrary parameter y). Hence, we have
here:

o s L Digr X\ 1 edls . : deV . DX\
(lie) (fw) X ik . 0
4.24 —; o R S X7 A
( ) ( Dy ) ( Dy ) 2 dy AJ’OC(ZI, ( D\)

In other words, the so-called “Lie” derivative coincides in that case with the
absolute derivative with respect to the “frozen” spatial metric, and so does not
obey Leibniz’ rule.

5. Concluding remarks

1. From our bibliographical research, it would appear that it had not yet
been proposed in the literature, as it is proposed here, to introduce a consistent
definition of the time-derivative of a vector, in the following relevant situation:
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the vector is moving along a trajectory in a manifold equipped with a metric field
h, (the spatial metric in a given reference frame) that changes with the parameter
x on the trajectory. Indeed, of the three different notions of frame-dependent
time-derivatives that have been reviewed and unified by JANTZEN et al. [10], the
two first ones (the Fermi- Walker derivatives) involve the whole space-tinie metric
in an unseparable way, while the so-called “Lie” derivative does not obey Leibniz’
rule. In our opinion, this would mean that no consistent and natural extension
of Newton’s second law to the case of a variable gravitation field in a general
reference frame (in a theory with curved space-time as envisaged here) had yet
been proposed either. It seems as if, from the orthodox relativistic point of view,
it would be considered to be a priori impossible to define Newton’s second law
“really as before” — because the absolute priority is to maintain consistency with
the notion that the 4-dimensional space-time is the essential physical reality.
However, it turns out that the two Fermi- Walker derivatives coincide with the
proposed derivative in the important case of a globally synchronized frame (or
normal congruence).

2. We find that there is one and only one natural extension of Newton’s second
law to any theory with curved space-time metric, in the most general situation.
In particular, one may uniquely identify that gravity acceleration gy.oq Which is
necessary to obey Einstein’s assumption, i.e. to obtain geodesic motion for free
test particles. In doing so, we did not merely rewrite the three “spatial” equations
for space-time geodesics as the space-vector relation “force = time-derivative of
momentum”: we also proved that the latter relation implies the “time” equation
of geodesics, and this does not seem to have been done in earlier attempts.
This “geodesic™ gravity acceleration gy.,q depends on the reference frame, as is
natural in a “relativistic” theory (since the acceleration is not Lorentz-invariant).
It may seem more surprising that ge.oq depends on the velocity of the particle
(Eq. (3.27)). However, this is also the case for the Lorentz force which a charged
particle undergoes in an electromagnetic field. The striking difference is that the
magnetic force does not work, whereas the velocity-dependent part of gy.oq does
work. In the investigated case of a normal congruence, it has the same form
as the Newtonian inertial force that appears in a reference frame undergoing
pure strain with respect to an inertial frame [1]. But here this “inertial” force
comes from the straining of the reference frame “with respect to itselt” (i.e. due
to the fact that the spatial metric evolves with time) and it cannot in general
be cancelled in a finite region by changing the reference frame. Thus, theories
with geodesic motion inherently do not allow global inertial frames, although
such global inertial frames do appear in their Newtonian limit. We also note that
any velocity dependence of the gravity acceleration, g = g(x.v), implies that the
definition of the passive gravitational mass, i.e. 1, = F,/g with F, the gravitation
force, becomes indissolubly mixed with that of the gravity acceleration itself: one
may change g and my to ag and mg/a respectively, with a any scalar function of
the velocity (e.g. @ = 5," where » is any real number), so that m, is operationally
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defined up to the arbitrary function a only. Hence, although Newton’s second
law can be defined in a “curved space-time” after all, the statement “mg =
inertial -mass m(v)” still remains partly conventional. Indeed, the only testable
statement is then the universality of the gravitation force (which is really a crucial
point, of course).

3. The identity between inertial and gravitational mass would have a stronger
meaning if g depended only on the position of a given test particle. However, for
the kind of theories considered here, this could be true only in some preferred
reference frame (this is, of course, in contrast with the Galilean situation). To
check this identity, one might e.g. define g for particles at rest in the preferred
reference frame, thus g(x) = Fy(v = 0)/my, and check experimentally whether
or not the gravitation force Fy is indeed equal to m(v)g for an arbitrary velocity.
In the scalar ether theory which has been tentatively proposed [1-4], a vector
g depending only on the position, Eq. (3.21), has been found to occur naturally,
consistently with the notion that g should be determined by the local state of some
substratum. Thus this theory predicts “strong identity” between inertial and grav-
itational mass and, in connection with this, geodesic motion does not hold true in
the general case in this theory. If one were to modify this theory so as to obtain
geodesic motion, one would have to postulate Eq.(3.27) instead of Eq.(3.21).
Then, the modified g-field would still be determined (in the preferred frame &)
by the scalar field p. or g (together with the particle velocity!) However, this
would lead to the energy balance (3.26), which has been seen to be incompatible
with the derivation of a true conservation equation for the energy in this scalar
theory [4]. On the other hand, this theory could happen to predict unobserved
post-Newtonian effects of absolute motion.
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