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Symmetrization of a heat conduction model
for a rigid medium

W. DOMANSKI, T.F. JABEONSKI and W. KOSINSKI (WARSZAWA)

THE SYMMETRIZATION of the equations of a heat conduction modcl for a rigid medium in time
and three space dimensions is performed. The gencral symmetrizability condition is formulated in
terms of the entropy function. Examples of particular models (e.g. Debye’s model) are discussed.

1. Introduction

MOST OF THE KNOWN DYNAMIC (non-equilibrium) problems in nonlinear continuum
mechanics and thermodynamics lead to quasi-linear hyperbolic systems of par-
tial differential equations. The problem of well-posedness, i.e. existence, unique-
ness and continuous dependence (stability) of a solution on the initial data, is
fundamental for any system of equations. It is well known [1, 2] that Cauchy’s
initial-value problem for symmetric hyperbolic quasi-linear system is locally well-
posed in the Sobolev space I/°, with s > n + 1, where n is a number of space
variables. The quasi-linear systems of continuum mechanics usually are not for-
mulated in symmetric forms. To make use of the above well-posedness result, it
is desirable to transform such systems into symmetric forms, by the appropriate
change of the unknown variables.

The aim of this paper is to symmetrize the equations describing a non-equi-
librium heat conduction problem in a rigid conductor governed by a modified
Fourier law. The system of equations is of the second order in the scalar variable
A3, called internal state variable (or a semi-empirical temperature), and of the
first order in the absolute temperature #. In the general 3D case, this system
can be transformed into the first order system in five unknowns. We symmetrize
this system with the help of entropy function using some results of FRIEDRICHS,
BoiLLat, RUGGERT and STRUMIA [3 -5]. Instead of deriving the exact form of the
entropy function from thermodynamics, we postulate the family of suitably cho-
sen entropy-like functions that are then used to get the new dependent variables
(the main fields).

In order to pick up the entropy from our family of postulated functions we
formulate a general symmetrizability condition. It turns out that this condition
is in fact the model compatibility condition which, on the other hand, can be
obtained from the second law of thermodynamics. This symmetrizability condition
can be easily fulfilled not only in the Debye’s model, which we analyze in details,
but also under some more general assumptions.
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2. Model with semi-empirical temperature

Recently in a series of papers [6-9] a thermodynamic, phenomenological the-
ory of heat conduction with finite wave speed has been developed and applied
to thermal wave propagation problems, mostly 1D. The theory is based on the
concept of a gradient generalization of the internal state variable approach, in
which the gradient of a scalar internal state variable /3 (called a semi-empirical
temperature) influences the response of the material at hand. The quantity 3
cannot be measured directly. Here it is considered as a potential, with the anal-
ogy to the classical heat conduction Fourier law. In the new model the heat flux
is proportional to the gradient of /4, instead of to the gradient of the classical
absolute temperature 6.

In the model considered (cf. [7, 9]) we assume that the evolution of 3 is
governed by the following equation:

@.1) O = 10.5) = FO + 1)

(with f}, f> being real functions such that df;/d3 < 0), while the energy balance
law reads:

o< .
(2.2) % +divq™ = o,

where (') o is the mass density, ¢ — the specific internal energy, » — the body heat
supply, and q~ is the heat flux vector. We also assume that the second law of
thermodynamics

don®

ot
is satisfied, with 7™ being an entropy. Moreover, in our model we make the two
additional simplifying assumptions:

(=

(2.3) + div % >

7

(A.1) q~ depends linearily on V3,
(A2) ¢ is a function of ¢ only.

From the second law of thermodynamics (2.3), under the assumption (A.1) we
can express the heat flux as:

(2.4) q = —a"(0) VA,

where o~ is a positive function of dimension of the thermal conductivity coeffi-
cient. Also from (2.3) and from the assumptions (A.1), (A.2) we can derive the

(') Throughout this paper we use dimensionless variables. However, the following units have been assumed:
temperature (6 and 3) in K, length in cm, time in s, speed in cmljis, encrgy in J.
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following form of the entropy function:
_ 1
(2.5) n7(0. VB) == 17(0) — 3¢ V32,

with ¢ being a positive constant.

3. Basic equations in a quasi-linear form

In order to express the system (2.1), (2.2), (2.4) in the conservative form we
introduce the following vector of new dependent variables u:

u(@, ) =[e,q,8, R, 1eR,  q=[n @ o)

where e = pe is internal energy and q = —Vj3 is the rescaled heat flux vector
(cf. (2.4)). Moreover, we introduce the flux matrix F(u) and the vector of external
influences b(u) as:

ale)q
F) = [ AOL ], b =or, P a i) + 5209
) |

where I3 is the 3 x 3 identity matrix, « is a positive function of dimension of the
thermal conductivity coefficient, and the function f is /; from (2.1) expressed
as a function of e. In what follows we denote:

divA = VA’

. g d 09 . . .
with V = [— — —} and A being an arbitrary 3-column matrix. Now, af-
day day dus

ter some calculation, we can describe the process (2.1), (2.2), (2.4) of the heat
conduction in a rigid medium in the form of the following first order system of
balance laws:

(3.1) % + divF(u) = b(u).
(
The quasi-linear form of this system is:
(3.2) QE+£A(1)OU = b(u)
B ar T g T
with: 3
T a() &
Auy= | &° " i =1.2.3,
dfy o1 0
= 4
de

where 04 is the 4 x 4 null matrix and §, = [1,0,0.0], &, =[0,1,0,0], &§; =
[0, 0,1, 0].
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4. New dependent variables

In order to symmetrize our quasi-linear system (3.2) we make use of a well
known fact [10, 3, 5] that a system of hyperbolic first order balance laws can be
symmetrized, provided that it is equipped with a convex entropy function satis-
fying supplementary conservation law. More precisely, such a system of balance
laws becomes symmetric in the Friedrichs’s sense when one takes the gradient
components of the entropy function 7 as the new dependent variables (main
fields) v:

v = grad 7.

In the case of our system (3.1), having in mind the formula (2.5), we take as
the candidate for the entropy 7 the family of functions that can be expressed in
the following form:

1
(4.1) n(e,q) = n.(e) + 5¢14°4,

where ¢; > 0 and 7, is the so-called equilibrium entropy that will be detailed in
the next section. Consequently, we obtain:

dn,
grad, n = {l—' Clq1~ C162, €13, O] .
e

Since semi-empirical temperature /3 is not involved in the divergence term in
the quasi-linear system (3.2), we are free to put an arbitrary function as vs (e.g.:
vs = c/3 with ¢3 = const). Hence, our main fields v are:

i,
(4.2) =[vy,...,vs5] = [ S CLY1 C1q2 €13 (:2/1] .

Using the main fields (4.2) we obtain the symmetrizing matrix H for our quasi-
linear system (3.2) in the form:

) d*y,
(4.3) H = grad, v = diag o CheL e e

where grad, v = [grad, vy, grad, vy, ..., grad,vs]? and diag[-] denotes a diagonal
matrix with the diagonal [-]. We can choose an appropriate sign of the constant
¢ to make our symmetrizing matrix H positive definite.

5. The symmetrizability condition

The matrix H of the form (4.3) symmetrizes our quasi-linear system (3.2) if
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and only if, by the definition, the following matrices B;, ¢ = 1,2, 3 are symmetric:

da (12116 d?y,
T — ' S
(.1) B = HoA = | dc d? = de . =123

Since the equalities of the corresponding off-diagonal elements of the matrices
B; do not depend on i, the condition (5.1) is reduced in fact to a single, general
symmetrizability condition in the form:

5.2) ae )(l 771/(1f1

de

We remind that ¢; is a constant appearing in our family of functions (4.1). It
can be shown that ¢; evaluated from (5.2) coincides with the constant ¢ from
(2.5) which, on the other hand, is evaluated on the basis of the thermodynam-
ical considerations. It is also worth mentioning that under our assumptions the
equilibrium entropy 7. is a convex function of e, provided that df; /de > 0.

6. Specification of the equilibrium entropy

Under our assumptions the equilibrium entropy 77, as a function of the clas-
sical temperature #, is the derivative of the Helmholtz free energy vy:

dyy
Y| () = 3
(6.1) ne(®) = ——r
where 1, satisfies the following ordinary differential equation:
dy 1 ~
0L oy = -8
6 70 + (( )

with € being e as a function (?) of 4. Hence, v takes the form:

0
0 [ eé(s
d’l(‘g) = ¢ — —f F(;) ds, cp = const.
0 s

0

Substituting the solution ¢, into our postulate (6.1) we obtain the the equilibrium
entropy as the following function of #:

s}

4
(6.2) n(8) = F(g) ] S) ds — ¢q.
0

(?) In order to distinguish between a variable (e.g. e) and the same variable treated as a function of another
variable (c.g. e as a function of §), introduce the symbol  to denote the function (c.g. €(6)).
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All that we need now is to express the equilibrium entropy as the function of the
internal energy ¢ only. To this end we introduce the specific heat ¢, that relates,
by the definition, e to # in the following way:

_ 1.dé(b)
(6.3) =g

Hence, e as a function of # reads:
20) = o / co(8) 6.

Under the assumption that the specific heat ¢, is a positive function of 6, so that
€(#) is monotonic, the inverse function

8:e—0, 8()=7c"'()

exists and the equilibrium entropy 7. as the function of the internal energy e
takes the following form (cf. (6.2)):

O(r

= = ~ ) ds — ¢
(6.4) ne(e) = n(0(c)) = ”6(() %= / = iy

.\
0

In terms of such 7,.(¢), our general symmetrizability condition (5.2) takes the
form:

]
”({) dll (r)
(6.5) PO
l
o Iy
(e
and the symmetrized matrices B, are:
da
D[l at,
(6.6) Bi= —— 20| " de . i=1.23
0 g2 de T
ag, 0

7. Specification of f; for various a(¢)

We may reformulate the symmetrizability condition (6.5) to obtain, after inte-
gration, the general form of the function f; such that it allows the symmetrization
by our method. The function f; in this form is expressed in terms of a(¢) and
the constant ¢;:

a(e) 1 1 da(e)
- de .

(1:)(}(() 1o . (;(() de

(7.1) Ni(e) =

http://rcin.org.pl
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Now we specify f; for two different functions a(c):

Case 1
(7.2) a(c) = ag(B(e))?,  ag>0.
Then the function fi has the form:

file) = *% -

CasE 2
(73)  a(e) = —ag(l(c) = ) (B(c) = B2),  ag>0. 616, <0,
Then the function f; is the following:

ag {#(c) = (1 + ) In(B(©))} _ aotit
e cro8(c)

Ni(e) =

8. The example: Debye’s model
8.1. Arbitrary a(e)

Our general symmetrization formulas can be further specified if the explicit
form of the #-dependence of the specific heat ¢, is assumed. For example, in
Debye’s model with

(8.1) o =4eg8, >0,

the inverse function # becomes:

- e N\ 1/4
(8.2) i(c) = ( ) 3
€0 O

the symmetrizability condition (5.2), (6.5) reads:

o (1(() €0 1/%
(8.3) (L= -y ((5“3)

4 W -
de

and the equilibrium entropy 7, (¢) takes the following form (cf. (6.4)):

c (3 L
(84) i]c.((.) = (43'23 ) = (('0 + (_"_,0/3).

http://rcin.org.pl
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8.2. Specified a(r)

Let us recall that o is a positive function of dimension of the thermal con-
ductivity coefficient. Now we specify the symmetrizability condition, symmetrized
matrices B;, i = 1,2,3, and the function f; for two different a(¢) taken from
Sec. 7.

Cast 1 (cf. (7.2))

(8.5) a(e) = ag (8(e))* = ag o - ap > 0.

0Cy0

=

Then the symmetrizability condition reads (cf. (5.2), (6.5), (8.3)):

3 ag 1 1/4
(8.6) o=~ ((_UO(%S) .

de

the symmetrized matrices B, are (cf. (6.6)):

. o—=4f7 ,—4/3
QO { ql( / 2(' / Eljl ;

8.7 B=—-————— j=1,2,3,
&7 8 (cug 0)1/4 2 ¢—4/3 g;f 0

and the function f; has the form (cf. (7.1)):

o= ™

Cu0 €1 ‘_‘5

(8.8) ;
Poply = 2=,

c10

Cask 2 (cf. (7.3), (8.2))

o N\ 1/4 e \ 174
(89) (\((:) = —ayg (( ) — H[) (( ) -0y, ap>0, 6,0,<0.
! Cy0 O €y 0

Then the symmetrizability condition reads (cf. (5.2), (6.5), (8.3)):

o= 90 (01(c0 2)'/* — V%) (Ba(cup 0)'/* — ')
L (con ¢S o)1/ ‘
de

(8.10)
the symmetrized matrices B; are (cf. (6.6)):

v b b2 &
(8.11) B, “—“[ " '7‘&‘}, §= 023,

= ]6(Cu0 05)1/4 blgﬁ;" 0

http://rcin.org.pl
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where

bip = —qie™2 {(coo 0)/* (8) + 03) — 24,
bz = 4¢3 (c,0 0)V* — €% (02(cv0 )14 — €1/,

and the function f; has the form (cf. (7.1)):

file) = 20 { N LY

(8.12) c1 | \(cw00%) co 0
. ag 6, 6,
16 = =% {o - 22— 0y + 6) a0 70 |

9. Conclusions

The equations of a heat conduction model for a rigid medium in time and three
space dimensions are analyzed. Using the internal energy, the heat flux vector
and the semi-empirical temperature as the dependent variables, we formulate the
conservative, and the quasi-linear hyperbolic forms of these equations.

We successfully symmetrize our quasi-linear system by introducing the family
of suitably chosen entropy-like functions that are then used to obtain the new
dependent variables, and by formulating additionally a general symmetrizability
condition that allows us to specify the physically justified entropy function.

It turns out that this symmetrizability condition is in fact the model compati-
bility condition which, on the other hand, can be obtained from the second law
of thermodynamics.

We illustrate our approach on a detailed example of the Debye’s model with
specified different forms of the thermal conductivity coeflicients.

Our approach is effective when the classical temperature is an invertible func-
tion of the internal energy. Then we can always symmetrize our system of equa-
tions and the symmetrizing matrix is diagonal.
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