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On a meso-elastoplastic constitutive equation
with application to deformation-induced anisotropy
of a polycrystalline aggregate

HONG-QIU LIU (BEUING) and K. HUTTER (DARMSTADT)

BASED ON A 3-D MESO-MATERIAL MODEL of a polycrystalline aggregate, an elastoplastic constitutive
equation for finite deformation is derived. The emphasis is focused on discussing the anisotropy
induced by the heterogeneity in the material properties due to a complex deformation history, as
well as re-orientation of the crystals or the variation of the micro-structure due to finite deformation.
The theoretical predictions are in good agreement with experimental results,

1. Introduction

POLYCRYSTALLINE MATERIALS, such as metals, rock or ice, display distinct anisotropy
when they undergo complex deformation processes, like multistage rolling and
stretching connected with heat treatment of the material during the manufac-
turing process or large shear under creep. At greater depths in the Antarctic
or Greenland ice caps, glacier ice gives rise to re-crystallization due to extreme
stresses consisting of a combination of pressure and shear so as to result in
anisotropy of polycrystalline ice (THORSTEINSSON [1]). Therefore, much attention
is devoted to the deformation or stress-induced anisotropy in polycrystalline ma-
terials. Because the anisotropy induced by plastic deformation history in a poly-
crystalline material is load-dependent and thus very complicated, SzczepiNski [2]
proposed a theoretical description of the deformation-induced anisotropy, which
is treated as an existing property of the material, without connecting it with the
previous deformation history, and discussed the corresponding experimental de-
termination of the coeflicients of plastic anisotropy (SOCHA and SzCzEPINSKI [3]).
This description involves the introduction of structure tensors. DAFALIAS [4] ap-
plied the representation theorems for isotropic functions in conjunction with the
concept of tensorial structure variables to provide explicit forms of constitutive
relations for the plastic spin, and developed a general constitutive formulation em-
ploying multiple constitutive and plastic spins for the tensorial internal variables
(DAFALIAS [S]). Ranieckn and MRrOz [6] proposed that the texture orientation can
be specified by a rigidly rotating triad; the plastic spin is then the difference of
the material and texture spins.

Many factors can cause anisotropy of a polycrystalline material. Generally,
in macro-experiments one measures the anisotropy induced by the heterogene-
ity in the material properties of a body undergoing some deformation history
(Szczepinski [7]). With the development of micro-observation techniques, the
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micro-experiment is focused on the re-orientation of crystals or the variation of
micro-structure (STEINEMANN [8]). Consequently, theoretical descriptions of the
orientation of crystals or the micro-structure of the material became feasible. RiBE
[9]) VAN DER GiesseN [10] and SvenpseN and HutTer [11] applied the concept
of an orientation distribution function (ODF) to modelling induced anisotropy
in polycrystalline materials. LipiNskI et al. [12] had let 100 ellipsoidal inclusions
replace FCC crystal grains as a polycrystalline aggregate and analysed the varia-
tion of grain orientation and their influence on the macro-stress distribution by
a statistical approach.

In fact, a practical polycrystalline material consists of hundreds of thousands of
irregular single crystals. Its micro-structure is so complicated that we can hardly
describe it clearly, let alone its evolution during deformation. Since polycrys-
talline ice or metal are aggregates of randomly oriented grains of single crystals,
they can be considered as initially isotropic materials. Generally, the bulk me-
chanical response of the polycrystalline aggregate is the average result of interac-
tions between various micro-structures, in which some physical actions observed
on the microscale have little influence on the macro-response of the material
so that they can be neglected. Experimental results show that the sliding oc-
curring between grains is mainly a plastic deformation mechanism of polycrys-
talline materials, while the deformation of the grains is very small. Based on
these experimental facts, equivalent slip systems are introduced, which are basic
components distributed homogeneously in the 3-D space. Thus a meso-material
model is composed of the equivalent slip systems and elastic grains. With the
aid of the model under small deformation, LIANG et al. [13] and Liu and LiANG
[14] discussed the active hardening, latent hardening and Bauschinger effect, and
predicted the evolution of subsequent yield surfaces and stress-strain responses
under complex and cyclic loading, respectively. Here, a meso-elastoplastic consti-
tutive equation is derived for finite deformation. Emphasis is laid on discussing
the deformation-induced anisotropy and its evolution due to the variation of the
properties, and re-orientation of the equivalent slip systems due to the defor-
mation history of the polycrystalline material. Numerical results are presented
and compared with the experimental data (SzczepiNski [7]). The re-orientation
or re-crystallization of polycrystalline ice induced by creep deformation will be
discussed in later papers.

2. Fundamental assumptions of a material model

The polycrystalline material is assumed to consist of a vast number of micro-
grains. Sliding is heterogeneously and randomly distributed in the 3-D space; it
occurs principally between grains or on their boundaries, while the deformation
of the grains is usually small. Basing on various experimental observations, we
postulate several basic phenomenological features of polycrystalline aggregates
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in deformation and attempt to build a material model that has characteristics
consistent with the material and can predict the behavior of the material during
complex loadings. Here, we assume that

1. The sliding between grains is the only plastic deformation mechanism. Then, a
basic component of a material model is an equivalent slip system, which is composed
of many intermittent micro-slidings in a direction m on slip planes of grains with
a unit normal vector n. The sliding driving stress T is the objective scalar equal to
the macro resolved shear stress associated with directions m and n:

(2.1) r=T:m@n=T:P,

where T is the Cauchy stress, and
1
(2.2) P=§(m®n+n®m)

is the symmetric orientation tensor of the slip system. The sliding rate is work
conjugate with the resolved shear stress rate of the slip system. The relation be-
tween them is determined by the slip hardening law proposed by LIANG et al. [13].
Because polycrystalline aggregates can be considered as initially homogeneous
and isotropic, equivalent slip systems are homogeneously distributed and oriented in
the 3-D space.

2. The deformation of grains is small, so that grains in the aggregate are supposed
to form an isotropic elastic medium. Thus, its constitutive equation may be stated
in the form

(2.3) T=1K,:Dg,
where T is the Jaumann rate of the stress T, i.e.
(2.4) T=T-W.T+T.W+ tr(D)T,
D the overall strain rate, Dy the strain rate of the grains and IK, the elastic
stiffness tensor of the grains.
3. The overall strain rate of the aggregate is the sum of the strain rates of the
grains Dy and the slip system, D, i.e.,
(2.5) D = D, + D;,

where Dy is the strain rate produced by sliding.

4. The slip systems and their orientations deform as material lines and surfaces,
respectively. Therefore, the rates of unit sliding direction m and normal vector n
are derived, respectively, as

m

Lem—(m@m:D)m,
(2.6)

n=-n:L+Mn®n:D)n,
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where the deformation velocity gradient L = grad v of the aggregate is
27 L=D+W.
With these, the rate of orientation tensor of a slip system is expressible as

(2.8) P=DR-R:-D-P-W+W-.-P+P@(n®n-m@m):D,

; ; 1 ;
where W = skw L is the spin tensor and R = ;( m @ n — n @ m) the antisymmet-
ric orientation tensor of the slip system. -
It is noteworthy that two forms of the tensor products, ® and w«, defined,
respectively, as
(29) (A ® B)l'j;‘-; = (.»'l),'J' (U)_u and (A =5 B),'J'H = A:'k BJ'II

are used in this paper.

3. Elastoplastic constitutive relation of the aggregate

In the current configuration, the overall rate of work dissipated in a unit
volumetric element is equal to the sum of the powers dissipated by all active slip
systems

(3.1) he=T:D;=T: %ff‘y PdR2dv
n v

where J = detF is the Jacobian of the deformation gradient F and 4 is the
equivalent sliding rate with normal vector n within a solid angle df2, and slip
direction m within a plane angle d¥. Therefore the strain rate Dy produced by
sliding is obtained as

1 .
(3.2) B = j]/ 3PNV .
o w

According to the slip hardening law proposed by LIANG et al. [13], the sliding rate
is contributed by active hardening and latent hardening, respectively, i.e.,

- 1 .
(33) § = 2(+ - xP:Dy),

where A is the active hardening modulus, while x is the latent hardening modulus.
Using Eqgs. (2.4) and (2.8), the resolved shear stress rate Eq.(2.1) on the current
configuration becomes

(3.4) F=P:T+P:T
=P:T+[R-T-T-R+(T:P)n®@n-m@m-1)]:D.
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Substituting Eqgs. (3.3) and (3.4) into Eq.(3.2) and using Eq. (2.5) yields

- [fl(P@aP)drzdw] |
J . I

Sy

nwv

(35 D-D =

| —

\PRPdRd¥| : (D - I)g)

]

[

:D.

47

Rewriting the above equation, thereby using Eq.(2.3) in the form D, = lKg“ ¥ |
the explicit form of an elastoplastic constitutive equation for finite deformation
takes the form

/}{P@[R-T—T-R+(T:P)(n@n—m(ﬁjm—l)]]rf!?d'}f
J b

1 1
(3.6) [Irml+ ~[\P®P-P®(R-T-T-R)

& I
—-P:TYP@(n@n-m@m-1)]jd2d¥| :D
= [K=1 4 lffl(Pc;:P+ POP:K ) dodw| : T
T J4 BT e o
v
Under small deformation, this simplifies [13] to
3.7) [lml-bff%l’@Pde!P] D
Qv
e “ :
s {l\gl*-/ E(PC§P+1PFQP:KEI)11'Q¢IW : T,
Qv

Equations (3.6) and (3.7) give two variants of the explicit form of the constitutive
equation with two kinds of material parameters  and y. The Bauschinger effect
B = (Ter — T—er)/ 270 18 reflected in the activation rule of slip systems (LIANG et
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al. [13]),
¥ >0,
) = : Ta=T=hy +xP:D?
if 7 =7 and T > T aent, then “ I
and
Teor = Tor = 2 Ter0)
¥ <0,
: : ; T _a=T=hy+xP:D?
ifr=7_gand 7 < Tyen, then & TTX
and

(8 Toar = Toar+ 2BTcr{];

( Tea=xP:DP

if 7 latent > 0, then { and
P o= Fe— 28T,
T-caa=xP:DP

if 7 latent <0, then ¢ and
Tee = Tog+ zéfcro‘

otherwise § =0 ¢

\

where 7. and 7_¢, are the critical resolved shear stresses corresponding to positive
and negative sliding directions, 7 is the initial critical resolved shear stress.

It should be noticed that it is not always convenient to apply Eq.(3.6) or
(3.7) directly for numerical analysis, because material parameters depend on the
deformation history and the activation states of the slip systems. Usually, using
the slip hardening law, Egs. (3.3) and (3.2), yield

(3.9) D %-—ff(r" P)3 dndv

n v

where the tildas mean that the corresponding variable is a function of the integral
variable. Under small deformation, the above equation is a standard Fredholm
integral equation with symmetric integral kernel P : P = P: P. If the coeflicient
h > 0, there exists one and only one solution. By dividing half of the spherical
angle, orientation range of n, into N equal parts and half of the plane angle,
orientation range of m, into M equal parts, a discrete model with M N slip
systems will be obtained for numerical analysis. In this case, Eq. (3.9) becomes

) 2?T MN 1 .
= (J) pl) . pldy 2 0 _ . (7)
(40 T4 N MN .-’t(J) Z[ Pl ) ©

(for all activated slip systems).

http://rcin.org.pl



ON A MESO-ELASTOPLASTIC CONSTITUTIVE EQUATION 59

As far as all activated slip systems are concerned, Eq. (3.10) is a set of equa-
tions with a symmetric and positive definite coeflicient matrix. However, the de-
termination of activation state of slip systems must be combined with the activa-
tion rule of slip systems. Therefore, it is generally solved by iteration. For finite
deformation, terms 7 () of the above equations are functions of D, so that the
iteration is more complicated than that for small deformation. When all slidings
are determined, the macro-stress or strain and the stiffness or compliance tensors
can completely be determined.

4, Discussion of deformation-induced anisotropy

The initially isotropic assumption of a polycrystalline aggregate can be tested
by macroscopic experiments as well as microscopic observations. The anisotropy
that follows is then deformation-induced. Based on the material model proposed
in this paper, the material element is divided into MN= 876 discrete slip systems.

10 M A A R
- . . - . .
o I -
Ch s . - - .ty
o . . P B SN
L _"., : - " ' . SN |
G LF S R L A
.= e .:. L A, . dl i .'-:"
. Ll - . "
H3 Y L I Y
W w S w W N SIS b |
- = & - - . o el
0t - - ' Ve . - e . . .
bl I . . - L . *'%
. = . - . LI
'. - » . - - " LES ‘!'
H P ERR U T R ! _'._‘!_:
* A LR ¥
. - . . . . . - - b
. _ I R e,
- - . e . . . - -
as i . Tl -
“ g L s
- - PLI- oo e
agg T o 1 v’ “d
faad rt L )
"
-10 -05 0 05 10

FiG. 1. The initial distribution of the discrete slip systems in the model material, here projected
on a plane.

Figure 1 gives the initial distribution of the discrete slip systems in the model ma-
terial, here projected on a plane. The evolution laws of the three kinds of material
parameters k, y and / included in the constitutive relation are, respectively (Liu
and LianG [13]),

(4.1) b= (ho—ha) 222" T 4 fiu,
Tmax0 — Ter0
HOINAD]
(4.2) X = xg% (for all activated slip systems),
7 i
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(4.3) B = (1-Ag)e o4 42,
t . .

where A = / PRl 7o 7 ) dt and 7, = \P:D’. The material constants are

2 Terd
listed in Table 1.
Table 1. Material conslants,
Material constant Symbol Value

Initial critical shear stress Terd 665 kg/em?
Latent hardening coefficient X0 0.7
Initial hardening modulus ha 6916 kg/em?
Saturation hardening modulus ha 5320 kg/em?
Nominal maximum shear stress Tmax ) 798 kg/em?®
Attendant Bauschinger coeflicient Ag 0.8
Saturation-rate cocfficient of A g 10

For initially isotropic materials, SzczepiNsk1’s [7] experiment can illustrate well
the deformation-induced anisotropy on the macroscale. A sheet of an Al-2%Mg
aluminium alloy, initially isotropic, was prestressed under small uniaxial tension
in the z-direction until 1.92% of permanent deformation was reached. Small
specimens were cut out in different directions making various angles « with the
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Fig. 2. The diagrammatic sketch of original specimen and small specimens.

z-axis (Fig.2). Then all these specimens were loaded by uniaxial tensions. The
experimental results show that the material evidently exhibits the Bauschinger
effect, and that the consecutive yield surfaces at the prestress point possess larger
curvature. The basic characteristics are the same as for other polycrystalline ma-
terials.
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Ty /Ter

2 0 2 6K

F1G. 3. Development of consecutive yield surfaces in a specimen under uniaxial tension
in the z-direction. Curve (/) is the initial yield surface and (2) a subsequent yicld surface.

Figure 3 shows two consecutive yield surfaces of the material measured by
the proportional limit of the material. The initial yield surface is just the Tresca
ellipse. The latent hardening and evident Bauschinger effect are embodied in the
subsequent yield surface of the material. The change of shape of the subsequent
yield surface indicates that the material behavior is far from isotropic. Figure 4
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FiG. 4. Stress-strain curves in a-direction for specimens which were subjected to a permanent

prestrain of 1.92% in the z-dircction. o indicates the direction of the uniaxial tension relative
to the r-direction.
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presents tensile curves along different directions after the material underwent the
1.92% of permanent deformation. The results demonstrate that the proportional
limits of the material are distinctly different in various directions. The propor-
tional limits near o = 90° (perpendicular to z-axis) are mainly affected by the
Bauschinger effect, and the ones near a = 0° mainly by the latent hardening. On
the meso-scale, the change is mainly reflected in the variation of the critical re-
solved shear stress of the slip systems. As is well known, the critical resolved shear
stress of a slip system not only depends on its activation state and deformation
history, but is also affected by the interaction between the slip systems. Because
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F15. 5. Evolution of the orientation of slip systems under uniaxial tension, a) is the distribution
of orientations of slip systems with a permanent prestrain of 1.92%, b), ¢) and d) are the
distributions corresponding to 31.8%, 47.9% and 71.8% of tensile deformation, respectively.
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the activation state and the deformation history are different from one slip sys-
tem to another, the distinction between critical resolved shear stresses naturally
results in the anisotropy measured by the macro-experiment. The evolution of
consecutive yield surfaces and variation of the critical resolved shear stress under
complex deformation histories have been given in reference [13] and will not be
repeated here.

10
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-10 a5 0 05 0 0 35 o a5 0

F1G. 6. Evolution of the orientations of slip systems under pure shear. (a)-(d) are the
distributions corresponding to the initial distribution, 26%, 44% and 63% of shear deformation,
respectively.

On the other hand, the deformation-induced anisotropy can be analyzed by
the density of the orientation distribution of slip systems. Generally, the tips of
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the unit sliding direction vectors m distributed in the 3-D space are points on the
unit hemisphere, and for isotropy this distribution on this hemisphere is uniform.
Figure 5a shows the distribution of the sliding orientations projected on the plane
perpendicular to the tensile axis after the material underwent a 1.92% perma-
nent tensile deformation corresponding to the above example. The variation of
the sliding orientation can hardly be seen. Therefore the anisotropy discussed
above is induced by the heterogeneity in the material property. However, under
finite deformation, the variation of the orientation of the slip systems plays an im-
portant role in the deformation-induced anisotropy. Figure 5b, ¢, d demonstrates
the evolution of the orientation of the slip systems corresponding to different
tensile deformation. With increasing deformation, the slip system orientations
accumulate around the tensile axis. The variations of the sliding orientations un-
der pure shear are shown in Fig.6. With the increase of deformation, the slip
system orientations accumulate around the 45° direction.

To sum up, the deformation-induced anisotropy of polycrystalline material can
be divided into two kinds: one is induced by the heterogeneity of the material
property due to complex deformation history, the other by the re-orientation of
the slip systems or the variation of the micro-structure due to finite deforma-
tion. The meso-elastoplastic constitutive equation for finite deformation is able
to predict the anisotropy mentioned above and the predicted results are in good
agreement with experiments. This analysis also indicates that Szczepinski’s exper-
iment may be used as a simple and feasible method to calibrate material constants
of the model with the active hardening, latent hardening and Bauschinger effect.
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