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Surface stress waves in a nonhomogeneous elastic half-space
Part II. Existence of surface waves

for an arbitrary variation of Poisson’s ratio

Approximate solution based on perturbation methods

T. KLECHA (KRAKOW)

TwO APPROACHES to the solution of the nonlincar eigenvalue problem of propagation of surface
waves in a nonhomogencous isotropic elastic half-space are considered. In Sce. 1 the nonlinear
eigenvalue problem is transformed to the equivalent integral equation, and the method of solving
this equation is proposed. In Scc.2 Friedrich’s perturbation theory [6] is used to solve an cigen-
value problem describing the surface stress waves in a “weakly” nonhomogencous isotropic elastic
half-space. Two cases are discussed in detail: a) a half-space with a “weak” variation of density,
b) a half-space with a “weak” variation of the shcar modulus. In both cases an asymptotic solution
is obtained and numerical results are given.

1. Effective form of amplitude of surface stress waves in a non-homogeneous
isotropic elastic half-space

1.1. Formulation of the problem

IT1s sHOWN in [1] that the problem of propagation of surface waves in a non-ho-
mogeneous isotropic elastic half-space can be reduced to the following eigenvalue
problem: to find a nonvanishing pair (/3(z), ¢;z) satisfying the relations

(1.1) (]D : 1)—1) i [/)2—32(1—9@]/3

$271-0 i=n2=0
i s 1 1-02],_ B
+4 [2———3;}]) - 1)1_—61)2———_0] ,J, =0 for 2 € (0,00)1
and
3(0) = () = 0,
(1.2) 1 { 2 1 1,2 2 A ,21—9} _
Sz(z_Q)D oy s [1) s3(1 m)]J 475 5P ) =0
1‘2=:x)
Here
1-2v(z) . O _d
(1.3) @) K(2), 2x) = ok D= .
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514 T. KLECHA

in which v(2) and p(z) are the Poisson’s ratio and shear modulus, respectiv*ly,
while the symbol ¢z = p/s, where 27 /p is the wave period and 2r /s is the wave
length, denotes the velocity of surface wave. The eigenvalue ¢ corresponding to
the eigenfunction / is to be identified with the Rayleigh velocity.

Next we consider the case

B € C*0, o0),
(1.4) k = k(z) € C?[0, ), 0 < rp < K(x) < Ky < 3/4,
p(z) = po =1, z) = = C',zg

These hypotheses assure that the elastic energy of the half-space is stricly positive.
The system (1.1)—(1.2) subjected to conditions (1.4) is equivalent to the following
equations:

1

(1.5) 1_—’\(1) [Dz - 34 = .Quf{(.l,'))] = Clc"\/l—_ﬂuf + ("zr‘*mf_
(1.5} B(0) = f(c0) = 0,

”{1 @) [D? = 21 = Qos(a))] 6 - 4521 - 208 } -
(1.7) P e=0

D {] —_—:(_1') [Dz — .8‘2(1 — .Q()H(.l'))] A — 4.\2(1 — .Q())j} = {),

=00

where (') is an arbitrary constant, (' = 0, g € ([0, ~), () = 0.

The aim of this section is to transform the problem (1.5)-(1.7) to an equiva-
lent integral equation and to construct an iteration method of solving this equa-
tion. To this end consider the differential operator  associated with (1.5):

(1.8) L3 = —D?*B + s*(1 = 2or(2))8,
(1.9) B(0) = p(cc) = 0.

Let g = g(x.t;820,5); (x,1;52,8) € [0,¢) x [0,x) x (0.1) x (0,oc) be the
Green function for the operator [ with a “frozen” coeflicient «. In other words,
the Green function ¢ fulfills the relations:

()2

(1.10) W — (1= k(x))g =0 for t# =,
(1.11) g =10 for t =0,
dy ()q _
(1.12) Bt ~ = —1.
t=z+0 t=x-—0
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SURFACE STRESS WAVES IN A NONHOMOGENEOUS ELASTIC HALF-SPACE. Part 1. 515

For the operator with a variable coefficient «, the Green function & = G(z, {;
29, s) satisfies the following equation (c.f. [2], 123-149):

(1.13) G(x,t; 29, 8) = g(x,1; 29, 8)

=20 [ g, Q0.9 () — KOIGE 1 Do, 5) de
0

for every (z,t; £29, s) € [0, 00) x [0,00) X (0, 1) x (0, o).
It is easy to show, that the function g = g(z,¢; 2, s) fulfilling the conditions
(1.10)-(1.12) has the following form

( 1 — s\ 1=2yr(2)(t—2) _—s\/l-ﬂ(,p{(r)(t-i-r)}
2s/1=20rl2) [" ‘

(1.14)  g(x,t;20,8) = 1

2sy/1—gr(x)

for z <t <o,

[(,—s\ [ 1=Qyr(x)(x—t) _ Pl /1 —-nuK(J?)(i"i'.’l')]

for 0<£i <.

In the subsequent part, the properties of the Green functions (' = (/(a, t; {29, s)
will be investigated and the solution of eigenvalue problem (1.5)-(1.7) will be
expressed using the function .

1.2. Integral equation for Green function

Let us denote by X' the Banach space of real functions A(a, 1), (z,t) € [0,00) x
[0, 00) with norm ||+|| x given by

(1.15) A Ol = f {f|,l(.1-,r)|2(u} ds & 00,

0o \o
Let N be the operator in X" of the form:

o

(1.16)  NA(z.1) = s292 / 9z, & Q0. 8) [5(z) — w(E)] A€, 1) de

0

where g(z,&; 2y, s) is defined by Eq. (1.14).
One can observe, that for every (2,£) € [0, ) x [0, ) there exists such m,
that

(1.17) |k(2) — K(E)| < m|x — €|

The existence of m follows from assumption (1.4) and from the fact, that x(z) €
(%[0, o0). It can be assumed that

dr

m = sup

#€[0,00) dx
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516 T. KLECHA

The following lemma is valid:

LemMma 1. If the inequality
(1.18) g= 2om(l - 2gr1) %71 < 1
is satisfied, then operator N is a contraction in the space X, i.e.
IV Allx < qllAllx -
Proof. Due to (1.16) and (1.4) we obtain
NA(z,t) = M(z,t, 52, 5)

= %590/(1-90ﬂ)—1/2 [g—s\/‘-f’n”(fﬂ? - p-svl-ﬂ"hf”f)} [(x)—r(E)]A(E, )dE
+%5-QO /(1 _005)-1/2 [F—.-:‘/I—H(,,;(J-_E) - F—.s\/l—n(,rc(.r-}-f)] [h(i)—h({)]l(f f)(l{;'
0

= a(x, t; 20, s) + bz, t; 2, s).
Hence, the following estimate can be deduced
(1.19) | M (z,t; £29, 8)| < |a(z, t; 29, 5)| + [b(x, t; 20, 5)|.

Estimating from above the function a« we get
1 T
(1.20)  a*(x,t; 82, 5) < Z.@Qg-{/(l ~ k)" V2

e/ _ o0 ) - (@)1 0 ds}z.
From the inequalities (1.17) and (1.4) we have
(121) (1= 2y 2o IR =TT ) O A,
< (1 = Qowy) 2= VI=mE D (e — 2y | A(E, 1),
and finally

(1.22) a®(z,t; 02, 5) < %32_”)2_0[2](1 = Qory)

0o 2
. {/(5 - gf)ﬁ-S\/l—ﬁf"f(f—f)]_a(g,:,)|dg} .
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SURFACE STRESS WAVES IN A NONHOMOGENEOUS ELASTIC HALF-SPACE. PARrT I1. 517

Integrating inequality (1.22) with respect to 2 on the interval [0, oc) and chang-
ing the variables we obtain

(1.23) /az(w,l;Qo,s)rl.r < ‘]—1”12(2(2,(1 B Qoﬁl)_3.<'2/|,‘l(:r.l)|2(lar.
0 0
Integrating the inequality (1.23) with respect to ¢ on the interval [0, co) we get
1 —3/2 —
(1.24) llagz,t; 20, 5)llx < 520m(1 = 2051 27 A, )| x -

Now we shall estimate the norm ||b(z, t; 29, s)||x. From the definition of the
function b(z, t; 129, s) we have:

(1.25) bz, t;2,) = %SQO/U — k)12
0

[emV/ITte=0) TR0, [u(a) — w4, O] de.
The inequalities (1.26) and (1.4) lead to

(1.26)  b*(x.1; 2, 8) < 3—152(20;112(1 — Qg )"

z 2
{](1 _ E)C~S\/]—n()Nl(l'—f)I‘,.l(é"f)l ,15} .
0

Similarly to the case of inequality (1.22), from (1.26) we get the following estimate

]
(1.27) 16(z, t; 29, 8)||x < 5rzom(l — 2or1) Y| A, )] x -

From the inequality (1.19), (1.24) and (1.27) it follows that the operator N is
a contraction in the space X, if
(1.28) g = Qom(1 = Qor1) 2571 < 1

which ends the proof of Lemma 1.
In the further analysis it will be convenient to introduce two other Banach

spaces .\';”. .\']("1/2) with the following norms
(1.29) lA@. IR = sup [ A )] de,
& v€[0.00)
[ lAG.y)P
1.30 Alz, 2y = su /——l—_([.r.
( ) | A( y)H\f 1/2) _uGIO.Px')O _,,.2[] — Qor(x)]
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518 T. KLEcna

The following lemma are valid:

LemmA 2. The operator N given by formula (1.16) is a contraction in Xé”,
ie,

(131) ”.NA”X;I) S (]lll.fllll\,il) . if g = \/(7 < 1.

Here ¢ is defined by the formula (1.18).
LemMA 3. The operator N given by formula (1.16) is a contraction in _\'5_1/2),
ie.

(132) [l;’VA“X:_Uz) < ([”:l”‘\.:—l/;’) N if q < 1.

Here ¢ is defined by the formula (1.18).

The proof of Lemma 2 and 3 is given in the Appendix I (/., [, I; and iy).
We need the following lemma:
Lemma 4. For every (£2p,s) € (0,1) x (0,0) the functions g(x. t; £, <),

(')g(;lf‘t;ﬂ()..‘-:) Ozy(ﬂ',f; .Q()..\') (1) - (=1/2)
o , 52 belong to X,", X .

dg(a.t; 82y, s)

P r o o f. First, we show that the function belongs to R L

Indeed, differentiating the functions defined by (1.14) wnlh respect to ! we odtain

715 [(—s./1_n‘,.;(,4-)(1+_,-) —F —.s'./]—f2|,p;(.|‘){f~.1')]

dy(x.t; 20, 5) for <<,
at [( —sy /1= Qun(a)(r=t) _ (—s\/l—!}mc(.r)(Hu')}

for 0<d €,

(1.33)

t9l—

and we obtain the estimate:

(1.34) /
0

dg(x. 1; 829, 5) s)
ot

1 s\/1=8yr(x)(t+r) _ —s\/l—.fz.,h-(_,-;(;_;)‘ i
2

1- !ll,h( (r=t) (‘—.5'\/]—.QUN(J.')(J’"H)

dt

(89 |

<3
ol

5
-<_ 1 ( (—s\/l—ﬂ“r\'(,r)(i—r) di + /C—S\/l—.(?‘,n‘(r)(.z'—l)’u

l —s\/l Qorp(t- J)‘[’
2

AO'
~

—v\/l Dgk(x)(t+r) (“)
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SURFACE STRESS WAVES IN A NONHOMOGENEOUS ELASTIC HALF-sPACE. Part T1. 519

(1.34) + /(_—.s\/l—n.,h-,(f—z)d, + /'()-s\/l—rzl,h-,(rm-){u)
[cont.] "
0 0
_ 1 ( -1 VAR (B ‘=” ~sy/T-Zymr(t=2) |
2 \sy/1 = 29Ky t=r  8y/1— QOM t=0
+ ~1 o s\/1— Q[;h|(£+.1) l ( 1 1
sv/1— 24K, t=0 W1 — .Qghl sv/1 — 29K
. 1 es\/ 1— gy 1 6—25 1-2yxyx
sv'1 — 24k sv 1 — 29K
+ 1 e—b\/l—f)(gh'lil'> < l ( 3 )
S\/l = .Qoh'l -2 sy/1 — Qgh‘]
due to
1 eS s\/ 1=k 1z < 0 . 1 (,—23 -2k 2 < O,
\/1 = .00.‘\, S\/l = .Q()hil
and

1 (7‘—5\/1—..()(”{]1‘ & 1 i
s\V/1 — gy T sVl = 9y

And finally

710 3
Dl € — e < .

2.‘»‘\/ 1 — Qgi{l

(1.35) sup
J:G[O,-xr)-o

G i (s, t; 29, s .
This implies that M € ,\é'),

For the other functions the proof is similar.
Using the formula (1.16), Eq. (1.13) can be written in the form

(1.36) G(s,t; 20, 5) = g(s. 6 20.8) — NG (s, 1; 0, 5)

and a solution to this equation can be obtained by the iteration procedure
(I3 pp. 30-31)

(137) Jur1 = —Ngn + g0,
where
(1.38) g0 = g(s.1; 2y, 5).
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520 T. KLECHA

1.3. Time derivatives of the Green function ¢/

From Eq. (1.13) by formal differentiation with respect to ¢, we obtain:

0G (s, t; 820, 5) _ Dg(s.t; 82, 5)
ot B ot
-2y [ (0,15 20, () = KO- GE: 1 2o, ) e,

0

(1.39)

From Lemma 2 and Lemma 4 it follows that the solution of Eq.(1.39) beongs
to the sz space. It is easy to show:
dG(s,1; 129, 8) .
Jt
(z,t;£29,5) € [0,00) x [0,00) % (0,1) x (0,1)

THEOREM 1. Function is continuous for every

such that t # .
P ro o f. Equation (1.39) may be written in the form:
OG(s,1; 820, 5)  Dy(s, 1520, 5)
ot at

= _52_()0/!/(,1'56;,(20,-‘3)[“(-")_ (f)]
0

(1.40)
()r/(£ I QQ s)

oo

2 IG(ELt; £, 8 dg(&,t; 20, s
~200 [ o, 20, 9MnC )—h(&)]{‘ et o] Pl ci T }m.

0

Applying the estimates similar to those used in the proof of Lemma Z one
can show, that the function

0y(&, 15 20,5)

(1.41)  Il(z,t;2,8) = —s -Qo](/(l & 120, s)[r(x) = k()] T

0
is continuous with respect to ¢, for every @ € [0, o¢) and (§2y.s) € (0. 1) x (I, o).
Indeed, the integral is uniformly convergent with respect to ¢, due to the estinates
used in the proof of Lemma 2.

Continuity of { with respect to ¢ and Eq. (1.41) imply that % - % beongs
{
to X, X" or X712 if the condition (1.18) is fulfilled.
Applying the iterative procedure to Eq. (1.40) one can show, that the fuiction
g{-(:’(:l:, t; $20,5) — (%_{/(I. t; 12, s)

is continuous with respect to t, for ¢t # x, which ends the proof.



SURFACE STRESS WAVES IN A NONHOMOGENEOQUS ELASTIC HALF-SPACE. PART II. 521

One can prove:

THEOREM 2. The function (,%( /(2. t; 82, ) has the same points of discontinuity
as the function (_%g(.r, t; 129, ).

P roof. From formula (1.33) it follows that

g(z, t; 20, 3) =-1.

)
(1.42) 3790, 5 Do, s)‘ -y

10()!

oG (z, t; 29, 5)

Due to Theorem 1 the function is continuous with respect to

t, except ¢ = x, where the discontinuity of the first kind appears, i.e.
dG (x, 15 829, 8) AG(z, t; £29, )
ot t=r+0 Ol
The type of discontinuity of function ¢ follows from the definition of the

Green function for the operator L. In order to establish the properties of the
second derivative with respect to t, we shall transform Eq. (1.39) to the form

(1.44)  L(x,t;20,8) = I(2,1; 2. 5)

=-1.

(1.43) e &

> o]

—s%12 / g(x, & 29, s)[s(x) — (E)]L(E, t; 20, 3) dE,
0
where
. d d
L(x,t;82,8) = m(:’(:r.t;ﬁo,s) - _—y(.r. t; 129, s),
(1.45)
- OL(E, ;29,8
(.1 20.5) = —-“290/J(1 6 20, )ls(e) - e ZEEL20 D g
0
Taking the derivative with respect to ¢ we obtain
ac _ ol 7
(1.46) ¥ il i 52.00/ g(x,&; 20, s)[r(x) — k()]
0
WA I g
L5 o, 9) )(fz;’ far 2.

ot
Denote the first term on the R.H.S. of Eq. (1.46) by mi(z, t; £2y. s) and consider
the equation

(1.47) M(x,t; 029, 8) = m(z,t; 2, s)

(> e]

.5 rz(,/qo € 20, 9)[K(2) = K(E)M(E. 15 20, ) dE

0
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522 T. KLECHA

in which M (z,t; 29, s) is an unknown function. It can be shown that the function
m € X{‘lm. The proof is analogous to that proposed by KosTuCENKO [2].
From Lemma 3 it follows that if

g = '(")0’”(1 - .(20!{1)_3/2‘\'—1 & ]_

then a solution of Eq. (1.47) belongs to .\'f—l/z). We are to show that this solution
for t # z is identical with the function

32
5alG .t 20.9) = (o, 1 2. )],

In order to do this we integrate (1.47) with respect to ( over the interval [0. ¢]
and we get

t
(1.48) /AI(J,‘,T; 29, 8)dl = /772,(:1:.?; 29, s)dt
0 0

—3290/g(.r,E;QO.x)[r.‘(.z') — K] {f M(ET; QO,.«)(/T} de
0 0

From (1.44) it follows that the equation

(1.49)  L(z.t; 20, 8) — L(x,0; 20, 5) = (. t; Do, 5) — 1. 0; 2, 5)

(o,

=200 [ 5. R0u5)KGe) = KONLE 15 0.5 = £, 0; 2o, 5)]

0
and existence as well as uniqueness of the solution of Eq. (1.48) imply that

t
(1.50) /M(.r,?; Q0. 8)di = L5 Qg s) — L. 0; 2y, ).
0

The last relation implies

(1.51) M(a,t; 82y, 8) = ;—)[L‘.(.’r.f;.()(].,&:)

J
=5 |; (Olf00—~ﬂzi%m)
a? e
Because 2J('r t; 29, s) for x # ¢ belongs to \ ). therefore —- FT belongs

G

22 € 4\'1_1/2) and Eq.(1.51) we obtain:

to Xl(_llz). From
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THEOREM 3. If ¢ = Qqm(1 — 2gr1)~ 32571 < 1, then G(x,1; 8. <) satisfies the
equation

DG (a, t; 0. s ) |
g__% —_ _.,"'(] = ‘(-)l),;(’))(q'(‘l.-[; .{IO.,‘G).
(1.52) 7
G, t; 2. 8) = Gt 2582, 8),

and conditions

G, t; 20,810 = 0,

dG(x,t; 2. 5)
t=x+0 Jt

(153)
G (x, t; 52, 8)

ot

|
|
—_—

t=2-0

In other words, (/(x, t; £2y, ) is a Green function for the boundary value prob-
lem:

LA@x) = 0.

LN 3(0) = 0.

Clearly, a solution to (1.5)—-(1.6) expressed by ¢ takes the form

(1.55)  B(x;20,8) = C4 / Gy 5 Q0. )1 =k ()]e™*V It @1 (C; = const).

0

Since condition (1.7) can be written in the form

(156) ,’j(O, .(20..“) = —('1 .(2()\/ 1 - !20/4\(] == J?()),

a solution to the eigen-problem (1.5)-(1.7) is defined by the pair (2, #(2)) in
which {2y is a solution to the equation

(1.57) [ [(—%(J [1— k(D] V=2 dt + 29\/1 = 20/4s(1 = 29) = 0,
0 ’ r=0

and f(x) is given by the formula (1.55).

Using the formulae (1.37)-(1.38), (1.55) and (1.57), we get a solution of the
eigen-problem if ¢ < 1, e.g.
(1.58) Rom < s(1 = Qory )2

In general, the Eq. (1.57) has a finite number of solutions 25 = 24(s), (cf. [4]).
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524 T. KLECHA

2. Surface waves in a weakly nonhomogeneous isotropic elastic half-space
The problem of propagation of a surface stress wave of the form

m(z1, 22,) = ap(z2)cos(szy — 1VA),
(2.1) T(xy, 22,1) = ax(xz)cos(szy — i\/X)
ra(z1, 22,t) = —app(z2)sin(szy — tVA),
in a nonhomogeneous elastic half-space
X ={(z1,22): 2220, |21] < o0}
reduces to the following eigenvalue problem [5]: find a real symmetric tensor field
a;; = a;j(z2) (a;; € C?*0,); i,j = 1,2) and a real number A (A > 0) satisfying
the system of equations
o' (sPan + sd2) = A2p) (o - vas,) = 0,
(22) —[o7 (& + san)]” - A2u) (a2 - va.,) = 0,
—[o7 ! (s* Gz + san)]” — so” (G — sar2) — A2p) 2013 = 0

for 2€ (0. x) (v =12)
and the boundary conditions
(2.3) a2(0) = a12(0) = an(x) = ap(x) =0,

s being the wave number (s > 0), and ¢ = o(x7), pt = ju(x7), v = v(r;) denoting,
respectively, the density of the medium, the shear modulus, and the Poisson ratio.
The functions are assumed to be of the ("?[0, ~c) class, and to satisfy the following
inequalities

0 < g0 < o(22) < 01 < x,
(24) 0< po £ pufr2) €y < 0,
1<y <v(r) < <1/2.

A dot over a symbol denotes differentiation with respect to the variable z,; we
will also use the symbol D to denote the derivative.

The aim of this paper is to give an approximate solution of the eigenvalue
problem (2.2)-(2.3) in the following two cases:

1) density o = o(z7) is a “weakly” variable function, and p and v are constant;

2) shear modulus g = p(xy) is a “weakly” variable function, and ¢ and v are
constant.

In both cases we obtain the approximate solution by using the perturbation
method proposed by FRIEDRICHS in [6].
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2.1. Analysis of the case e = -
o(r2) o

Let us consider in the real Hilbert space H generated by the scalar product

G Tizi n(rz) = p, v(xr2) =

(a,8) = /(0‘11/311 + apfn + apfiz)d;
0

and satisfying the condition

o0
”Q”z = /(ﬂ%l + ﬂ%z + (sz) (l:l'z < 20,
0

Equation (2.2) written in operator form

(2.5) Aa = ABa = 0,
where
(&38|
o= ((\22) ,
a2
2 : 7
2 0 *p
0 0
1 1
A= A(s;p) = 0 -D-D sD—
14 0
1 S 1 &2
—sD—- —=D -D-D+ —
L 0 0 0 0 |
rl—w —v
2w
. —v 1-w
B = B(H,U) = 2—.‘1 2“ 0
1
0 0 -
L 1

The domains of operators A and B may be defined as

D(A) = {a: a;; € C2[0,00), a12(0) = ap(0) = ayp(se) = an(x) = 0}-

2.6
B D(B) = {(r: oy € C'z[().oo)} , Ly =1,2.

The sets D(A) and D(B) are dense in H since the set C5°[0, 00) x C5°[0, 00) x
C5°[0,00) is dense in H and is contained in D(A) and D(1).
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526 T. KLECHA

It can be demonstrated that operators -1 and 7 are symmetric. The symmetry
of operator A results from the fact that operators on both sides of the principal

g ot 1 s —3
diagonal are formally adjoint, e.g. —s— and 2D, sD=and —=D. For any a, 3 €
0 0 0 0
D(A) we have

o

foe)
(Aa,B) = /{0_1(52011 +san)in - [0’](5' 2 - 3012)] B
0

p— [9_1( o 12+ San)] 'ﬁIZ . 50-1(52 o 12 — .N(szz);jlz}(l.lfz.
Integration by parts with the use of boundary conditions shows that
(Aa, B) = (a, AB).

The symmetry of operator B is obvious. Matrix B is positive definite and for
every a € D(B) C 'H we have (1)

2.7) (Ba,a) > ko, a),
where
I i (1 -2vr 1 1 )
b = n s = 5
22€(0,%) 2 ' 2u
If in Eq.(2.5) we put p = d = const, g = i = const, v = I = const

(homogeneous medium), the problem has precisely one solution ((7.5\) of the
form
~ T 2+8(1-28) _.%
-3 [(;—wzhz _ F)( - ¥ )(—12"'1]

el W

(2_8) 5‘(5,/7,17) = 30 [(_—1'2/12 . (.—J-zhl]

where

1-25 : "
e ho=svVI—oR, hp=s/T-

2-2p"

and @ is a root of the equation

(2.9) 2-5) = 4,/(1 - 2)(1 - TF)

1-2v 1 1 st s ; ; ;
T From the theorem in [8] saying that a symmuetri: matrix
1 H H

B is positive definite iff all its cigenvalues are positive and (Ba, o) > min A, (o, o), results the Eq.. (27).
1

(") The eigenvalues of matrix B are
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such that 0 < & < 1; [ is an arbitrary real number. The surface wave velocity in
this homogeneous medium is given by

Cr=

=

The relation between A and (' is of the form

V3 = s6r.
Let us consider the case when
1 1 €

= — + o~ 2
o(xz) o1 0(r2)
and ¢ is a sufficiently small positive real number. Moreover, o; is a positive
constant, and 9(z2) is a positive function (cf. (2.4)). After substituting (2.10) into
(2.5) we get the equation

(2.10)

v =1, H = My

(2.11) Agav + eVa = ANer |
where
;‘1[) = »l(g, L)]),

V(s 8),
Blu; ).

The constraints on p (cf. (2.4)) and (2.10) yield the constraints on p for 3 €
[0, 00). Hence for every a € D(A) =D(V)C H

I

3

Il

(2.12) (Va,a) < .

Moreover the operators Ay, V" and /3 are symmetric in the space ‘H. From the
fact that A(pq. i1, 1) is a simple eigenvalue (the eigenspace is one-dimensional)
it follows that (A9 — AB)~" is defined in the subspace H orthogonal to the
vector a(py. i1, 1) (?). Hence for sufficiently small = in a neighbourhood of
(X(Q[,Iﬁ.[l;).5(91,1/1./11)) there exists a solution (A.,a.) satisfying Eq.(2.11),
analytical with respect to ¢, of the form

X+5/\]+52/\2+....
& +cop ¥ oz + o,

(2.13) A

(2.14) e

() Frienricus [6] formulates the following assumptions of a perturbation theory; the operator must be
symmetric, it must allow for a spectral decomposition, it must have a simple cigenvalue X with the corresponding
cigenvector a. Henee the equation [y — .«\'B]n = ¢ has a solution for any right-hand side of & orthogonal to
a in the space H. It is easily scen that Friedrich’s assumptions are satisficd for the problem (2.5)-(2.6).
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where &
t
%11
a; = ”(212) . l=1.2.3
af?

Substituting (2.13) and (2.14) into (2.11) and comparing the expressions appearing
at suitable powers of ¢ we get

(Ag — AB)&@ =0,
(Ag — AB)ay = —(V — A1 B)&,
(2.15) (Ag — AB)ay = —=(V = AiB)a; + A Ba,
(Ag — AB)asz = —(V = M\ B)ag + M\ Ba; + A\3Ba,

Multiplying the first equation by a; and the second by @, and subtracting we
get

_ (Va,a)

(2.16) e

Analogously, multiplying the first equation by a,, and the third one by a and
subtracting we obtain

("’y(l'l. (T) = /\1([}!}1 § (~|)

In general, we get A; ( > 3) by multiplying the first equation by «;, multiplying
the (i + 1)-th equation by a and subtracting both sides of the relations.

Equations (2.13), (2.16) and (2.17) effectively determine the approximate
eigenvalue in the problem with weakly variable density in the considered half-
space.

We now proceed to construct the series «;. It is easy to demonstrate that the
right-hand sides of the system (2.15) are elements of a subspace H orthogonal
to the vector 5~. The construction of the series «, is thus reduced to finding an
operator [Ag— A(o1, 1, v1) B(pe1,v1)] 7" on a subspace orthogonal to a(oy, i1, ).
To this end, let us consider the equation

(2.18) Apé — Mer, 1, 11)Bé = g,

apy g1
a=|axpn]|. g=192]-
ap g12

where
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and g is a vector of the subspace H satisfying the condition

(2.19)

(¢,0) =0.

The vector o, given by (2.14) should belong to D(A). Thus to construct «; it is
enough to find & satisfying (2.18), (2.19) such that @ € D(A). It can be shown
that vector a is of the form

(2.20)

where

(2.21)

(2.22)

[ K1(zq, ) F(t)dt
011(;1‘2) 20 GII(IZ)
a= [&22(1‘2)} = f [‘,Z(J’Z»t)F(t)‘“ + ':GZZ(xZ)J 3
az(z2) % Ga(22)
' | K3(zp, ) F(1)dt
L0 J

I\'l(l'z, t) =

Ka(22,t) =

[3P—5\/ l—wky(t—22) + l4("—SV 1—;(!—1‘2)
$ [M] are=*V 1wk (t+z2)

)
et [2(1 - J)'{l) ¥ ‘:‘] a —s(y/ ]—;f'f‘\/l—;h:],ﬂz)
5 -2 #

_bl(\—s(\/ l—;KlH-\/]-;.rg) _ 626—5\/ 1—5(1‘+.r2) for ¢ > 3,

]3(_;—5\/ 1—wny(z3—t) % ’46_—.9\/ 1—w(zy—t)
4 [2(] - C)Hl) + ‘:"} “16—3\/ 1—wry(t+a3)

3 —

4 [2(1 — W) + 5] ”2(,-5(\/1—$z+\/1—5,;,12)
2 2

",JI("_S(V l1—wryt+\/1—@as) . 1)2(‘—-3;\/ 1—w(t+xa) for T > t,

13V 1=0m1G2=0 4 o=V 1020 4 o=sV/1=Gmi(t+22)
+age— V1=tV 1-0r122) o o =s(V1=Gmit+V/1-T)
+1)2€_3m(‘+”) for t > x,,

LV 1m0 oV 1=G=t) 4 g = sV 1=omi(the)
+ape sV 1=0tV1=Trian) 4 =5V 1TtV 1-T)

I ) B
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f e~V l—wry(t—a7) + l(’(—s\/ 1—G(t—a3) s (”[7(—3\/ 1—wry(22+t)
+”217r-s(\/1—$1+\/1—$x,r2) + bllb_(,—s(\/1—Imlz+\/1—5_r2)

+[les(;’_sv l—w(rz+t) for ¢ > 27,

(223) ]\'3(272,i) =
_15(,3\/l—w1\|£ ry) sV 1=a(t— .i_)+“ll7( sy 1- wn|(12+t)

+aylye 2V b-aatit -] 4 bylge ™V =i+ 1-Gr)

+lplge ™V L—wfi+2s) for ay >,

(2.24) F(t) = —m Dz—kﬂ g2(t)+ 0157 [2— 20— 2 +Tky] [1)2 + lu%] g1 (1)
+2015(2 = &)(1 - x1)27 Dara(1),

(2.25) Gu(rz) = w7 7)( = g1
(2.26) Gy} =0,
2.27) Gsler) = D

The coefficients !y, 1y, ..., Iy, k3. k3, a1, az, by, by, appearing in Eqs.(2.21)-(2.27)
are given in the Appendix II.

Using Eqgs. (2.18)—(2.27) and the relations (2.16) and (2.17) we can find suc-
cessively (A, a;).

Let us now analyse the eigenvalue A. (cf. (2.13)) in the case when the function
0 = o(x3) (cf. (2.10)) is a monotonic function of the half-space depth coordinate.

Assume that

1 1 €
. = e, - 7—11.)'2 ! > : A,\,’ "
(2.28) pr o e + E-x,(] e ) (« >0) (00 > 0)
1 1 1 1 1
Since — < < — we have on the one hand max = — and on the
0 11(12) 00 22€[0.22) l)(l ‘)) 00
1 1 5
other hand, max = — + —. Comparing these values we get
23€]0,00) l)(lz) 23 yx
1 1
(2.29) £ = Do (— - —) .
00 01

where o1/09 ~ 1.
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Substituting (2.28) and (2.29) into (2.16), taking into account the relations

1-21n
2 -2

de = (CR)es®, A=C%s?, A =(Cihs®, w1 =

and limiting ourselves to two terms in Eq. (2.13) we get for the square of surface
wave velocity the relation

_ 1 1 Lna
(230) (CR)e=Ck+ ( ) 21 -w)

00 21
Po(@) (@)

\/l—wh;(a—i—Qs\/l—wm) V1=3&(a + 2sv/1 - &)

(@)
(\/1 — @+ 1 =0r ) a + s/1T -0+ sy/1 —u.)h]]

x[ JEN Pa(w'-h'l) N P5(3, k1) -
vV1-o V1 — OKy V1 -3+ V1 =30k

(the polynomials Fy, Py, 2, I3, P4, Is are given in the Appendix IT). Introducing
the following notation

0 . { S -
=21 2=EL =15  (@el0.x)).
00 0] T
=12 2
; — ( R W= (('H
e &

we rewrite the formula (2.30) in the form

(231) w—w+(9 )2(1_W) {\/—T(u+4r\/l—T)
&
L= 0@ Yyl — 0

P
+
(V1-8+ V1T -3r)(a+2rv1 -0+ 211 - :)Hl“
[ P3 Py P ]~1
\/ \/1 = Lu:‘»] \/1 — Lu + \/1 o LAJ.‘\l I

It is easy to demonstrate that the function w = w(a,#, ;) described by (2.31) is
for every fixed # and «, an increasing function of the variable @. Figure 1 shows

the function w for: 1) xy = %, =11 2)x) = %_— 0 =101; 3)n; = %, f=1.
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03 0.6 09 1.2 a

Fig. 1.

2.2. Surface wave in an elastic half-space with a weakly variable shear modulus (°)

Assume now that

1 1 3
2.32 = — 4+ —, = 91, =t
. p(x2) o () e l
Substituting (2.32) into (2.5) we get
(2.33) A(s, 01)a — A[B(pr, 1) + € B(ji, 1n)]a = 0.

Operators A(s, 1), B(u1,11), B(ji, 1) are symmetric in ‘H. Moreover, I is a
positive definite operator. According to the perturbation theory, there exists a
solution of the eigenproblem (2.33) determined in some neighbourhood of (X, @)
which is an analytical function of the parameter <. The pair (A.,a.) is given by
(2.13) and (2.14), while (X, &) is given by (2.8) and (2.9), where 5 = oy, Ji = 11,
v = py. Substituting (2.13) and (2.14) into (2.33) and comparing the values at

suitable powers of ¢ we obtain the following system
[A(s, 01) = AB(u1, )] =0,
[A(s, 01) — ABQu1.v)]aq = [ABGi, 1) + M B(uy . n))a,

(2.34) [A(s, 01) — AB(u1, v1)]az = AB(ji, 11)ay + M[BQu, vy)ay + B(ji, 1)d]
+ Ao By, 1),

Performing scalar multiplication of (2.34); by «, of (2.34); by & and subtracting

by sides, we get

~A[B(fi.11)a. a]
2.35 A= 3
(2.35) LT B, vm)a, &)

(®) This problem was also analysed in [7], using another approach.
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Proceeding similarly as in the derivation of the series (2.16) and (2.17), we get

_ —-X[B(ﬁ,:/l)(\-l,ﬁ] - ,\l{[l')’(/q,vl)m.ﬂ] + [B(ﬁrq)ﬁ,ﬁ]}
[BQGu.m)a, a)

A2

(2.36)

The vectors a; are defined by the equations

ay = [A(s, 01) = AB(r, )] ' AB@, 1)a + M B(uy, ),
(237)  ay = [A(s,01) = AB(uy, )] HAB@, v)ag + A[B(p1, v)ay
+ B, vr)al + M B(p, v)al,

We continue similarly to the case of the half-space with “weakly variable” density
and we assume

1 1

ﬁ(;ltz) - Floo

(1 - e7%2) (@>0), rv=ur, o=o,

1-2). ne
T\ g/’ o

From relation (2.35) for the square of wave velocity we get

where

o
Il
=)

1 l =2 ])3
— — — | Cfan
noo ) e {\/1 Zh(e +2sv1 = B)

Py
+
(V1 -3 +T=30r))(a + sv/1 -0 + sy/1 - OKyp)

@38) (R = (

Ps
+ :
(V1 = @r(a + 2sv/1 - J)f;l)]
D -1
.[P3+P5~+ »14~]
VI-o V1I-0rk1 V1-0+/1-ar

Introducing the following notations

! ! s
'L—l=C'%, 0=I—1-, a= —a,
01 1o 2r
~12 12
o e R — (CR)S
w = U W= C,2 3
C’Z 2
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we reduce (2.38) to the form
Py
VI =G + 4rv1-3)
Dy

+
/1= + /1 = R )(a + 2rv/1 — @ + 25yl = my)

(239)  w=& -3 - 1) [

Ps
+ ;
(V1 —wri(a + 4rv1 — JHI)]
Ps Ps Py :|Al
X + + 7
[\/l—d} VIi-@r  V1-G+V1T-3kK
The function w given by (2.39) for a fixed ¢ and x; is a decreasing function

of the argument . Figure 2 shows the diagrams of the function w(#, xy,a) for
1)k =05, 6=1.1; 2)x; =05, 6=101; 3)x; =05, 6 =1.

Appendix I

I,: To obtain (1.23) from (1.22) we calculate the integral

oo 00 2
(A1) I, = /rl.zr [/ a(é - :I')(}(f)df} 3

0 e

where
(A2) a(p) = pe™*V i
D) = 1Al (> 0)
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Changing the variables in (A.1) and using the Fubini theorem, we obtain

00 o 2
(A.3) I, = /(LL' [] a(p)b(p + .'z,')d’p]

0 0
= 7(11‘ [7@(1})(}(1} + ;l')u’p] . [f(r(ﬁ)b(ﬁ + .r)(lﬁ]

0 0 0
= /a(p) dp + / a(p)dp -/(l.r[b(p + 2)b(p + 2)].
0 0 0

From the Schwartz inequality it follows

oo - 12 reo 1,2
(A.4) [ b(p + 2)b(F + £)dz < [ ] 2 + .1')([.1'] - [ / V(@ + ) (u]
0 0 0

V-

o /2
= U b2(€) ,15]1 /b ©dep < /bZ(S)dE-

P 0

Finally we obtain

(A5) I, < [ [aw dp} ] D(€) de.

Similiarly we estimate the integrals /,, /., /1

(A6) I, = /(13,- {/(;y — &) VISR (€, 1Y) de
0 0

- ey e e

0

< s - 90'91)_2/ | Az, )| da,
0

(A7) / la(x, t; 29, 8)| da < ,17!20rn(1 — Dga)~3271 / [A(x, b)) dx,
0 - 0

(A8) I fu,(, t; 20, 8)| da < %Qom(l - .(?0,1-1)'3/2~"f|.rl(.r.l)|(1:z:.
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Integrating the inequality (cf. (1.19))
(A.9) INA(z,t)| < |a(zx,t; 29, 8)| + |0(x,t; 20, 8)|

with respect to = over the interval [0, ~c) and using the estimate of the integral
I. and I;, we obtain

o0 o0 o0
(A.10) /INA(x,t)| d € f|u(1f,l;!?0,s)| da;+/|b(r,t;.00. | da
0 0 0

< Rom(1 = 2gz,)~32s7! / |A(z, )| dz,

and finally

(A.11) ||NA(."c,i.)||";m= sup [ |[NA(z, )| da
2 lE[O,-n)O

< Qom(l — 2r1)>%s71 sup [ |A(x, 1)
IEIO.rx-)O

= Qom(1 = Qorr) 27 A, DI -

From the last inequality it results that N A is a contraction operator in Y i

(A.12) m=g<l.

Let us consider the integral

2
I, _/b_zg__!_‘QO_)h
(1 - .Q()h)

Due to (A.12) we get

Al13) I a5m? /
(A13) 4(1 o) 1—-.(20#»

2
, /(.r — &) exp [—sv/T= Qyra(z = )] [A(, 1) (15} dz.
0

Hence, by making estimates similar to those for the integral /, we obtain

152 2 32 [ 1AGY
(A14) ]e S ZQQ‘”I (l - .Qoh‘]) S b/m([l',
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and
(A15)  lbe,t; 20, 8)|% -1 = sup I,
i | >
1
< Zflémz(] — Qor1) s A, O -2 -
Ik

Applying a similar procedure to that used for integral /,, we get

7 21,[,0,5
(A16) Iy -f—Z(T(iQO+(J;)[

3,2 | Az, 1)
490131 (1 - .Qoh ) /ml

Since
(A.17) Az, 1) = a(, t; 20, 8) + bz, 1; 29, 5)
and
lla(x, t; 20, 31 = sup 1
l t€[0.%¢)
< %Q&mz(l Dgr) s 72| A, ’)“\( 1/2) 5
(A.18)

I|l’(Tvt;90~3)||i,«—|/2) = sup [,
- te[0,00)

1
< S Bm*(1 — Qi) 25 A, DI - »
4 Xy

the operator N is a contraction in ,\'](_1/2) if the following condition is fulfilled:

(A.19) q = Rom(l = Nory) 271 < 1.

Appendix 11

Py(@) = 25%(1 - @) + (°—w ‘o,
R@) = 33%1 - )2 - 3 + 5@ - ),
P(3) = —[43°(1 - &)2 - &) + (2 - &)*7],
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Ps(@,51) = 8 -4 + &® — 4ok,
Py(G, k1) = =32 + 8D + 240k, — 45K,
Ps(@,K1) = 8 + 510% — 83Ky,

kI = &~ 4s*(1 = B)(1 — k)@ — Gy — 1)),

k2 = $2(1 - @)(1 — 251)3[2 - 25 — 261 + &Kq]7T,

I = [28%6(1 - £))(1 = Gx )Y,

Iy = —[25%5(1 — k(1 - B)V3,

I3 = [2(1 — &ky) + D235 — k1)@ - 2)(1 = Gwry)Y,

Iy = [2535(1 — k1)1 = D)V,

Is = [-2(1 — Tk - £1)D + (1 = 251)(@ - 2)5 — 4@ — 2) — D21 = K1)]
x[85°(1 — k1 )*(@ - 1)@ - 2)&] ™Y,
Iy = [8s%(1 — k1)@ - 1)@ - 205 [-2( - Do~ (1 - 260 - 2%
+4(D - 2) + 5% - K1),
Iy = (1 -GV - £))E - 1DE - 2] 2501 —3k)) -5 - 26))(& - 2)
+4(1 - k)@ - 2) + 34,
lg = (1 - ok)Y16(1 — k1)@ — D@ - 2)(1 — DKy)] ™!
X [B(1 — @y ) — G(1 = 260 )@ — 2)° +4(1 — )@ - 2)° + 5@ - 2)4),
a3 = [8s3(1 — 51)2(1 = GG = 1)3)7 1201 — 5515 - (@ = 2)(1 — 261)3
+2(& - 2)(@ + 6)(1 — 1))
az = [1653(1 — £1)2(1 — Tr )@ — DSE - 227 [-4(1 — Trp)3(E - 2)°
+2(3 — 2)°(1 = 2w))0 + 16(1 — Tk (@ = DA = K1)
—8(@ - 2P°(1 - w1) - %@ - 2)(1 - w1)),
by = —[1683(1 — k1)2(1 — Zr))V3(@ = DIA( = k)H(S - 1)
—2(5 = 2)(1 - 251 )% + 8(& — 2)(1 — k1) + TH(1 — k1) +4(& - (1 = Tky)],
by = [1653(1 — 51)2(1 = TG — DSE - 2)7]7 x [4Q0 - Gr)HE — 2)?
2@ — 2)°(1 = 261)5 + 8(& - 2)°(1 - x1)3 + &G — 2)°(1 — K1)
+16(1 — &))@ — DA = 1))
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