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Surface stress waves in a nonhomogeneous elastic half-space
Part I. General results based on spectral analysis
Existence and analyticity theorems

T. KLECHA (KRAKOW)

EXISTENCE of surface waves in a nonhomogeneous elastic half-space is proved on the basis of the
stress elastodynamics formulation (cf. [1]). It is demonstrated that in the case when nonhomogeneity
depends on depth of the semi-space, both the velocity and amplitude of a surface wave are analytical
functions of the wave number.

1. Introduction

IN 1971 (cf. [1]) J. IoNACzAK showed that the problem of surface wave propagation
in nonhomogeneous isotropic elastic half-space can be reduced to the following
eigenvalue problem: find a positive number A and a real-valued symmetric tensor
field

ai; = aii(x2) (i € C[0, ), i,j=1,2)

satisfying the following equation:

(1.1) A(s) o — A\Box = 0,

together with conditions

(1.2) a(0) = a12(0) = axp(x) = ap(x) =0,
where

(1.3) a(zz) = [ani(r2) an(r2) a(e2)]’,

‘\2 b
I 0 Zh
0 0
1 1
(1.4) A = A(s,p) = 0 -D-D sD—
0 ]
" 2
bt in Toptp
L 0 0 o o
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Tensor a defines the stress tensor amplitude and symbol D denotes differ-
entiation with respect to x; (D = d/dz;). Number s is the wave-number, and

= o(z3), o = p(z2) and v = v(a;) are density, shear modulus, and Poisson’s
ratio, respectively (0 < zg < ).

The formulation (1.1)-(1.5) is based on a pure stress method of classical
elastodynamics.(!)

In an earlier paper [4] J. IGNACzAK showed, that the problem of surface wave
propagation in a nonhomogeneous isotropic elastic half-space with shear moduls
j¢ and Poisson’s ratio ~ depending on x5, and with constant density, can be reduced
to the following one: find a pair (cg.J(x)) satisfying the ordinary differential
equation of the fourth order

11 i 8 (s s K
(1.6) (;zl)m1)—1> —— [0 (1 - 28)]

I — N e — .(_)
1 5 1 1 -1
+4|——D" - D——D———| 3 = f ;' 0.0
[2—9 7, 242} & fo g€ o),
and the boundary conditions
B(0) = B(oc) = 0,
(1.7) 1 ? 1 :
D? - $2(1 = 2x)| B — 45 ,3} = 0,
.RZ(Z—Q)D{Z—Ql—H[ ( ’)] 2-1 ’izz“ .
where
o 1 — 2u(asp) o r:i,
(1.8) K(ap) = 3= 2(ry) 2(x) = e

(') The problem (1.1) = (1.2) can be discussed in a class of square integrable functions, i.c.:
a=[ay on o]’ € LA0,0) x LA(0,00) x L2(0,00) = [L2(0,2)]> A B € [L3(0,00))%,
and it is correctly posed when the condition [(A) = R(B) is satisticd; £2(A), (B) denote the ranges of
operators A, B (cf. |2] p. 16). From cquality /2(A) = R(B) it follows that:

R(A) = R(B) = {(u..,uum.z) € 1C0, 00 :

£ - VO o .'2 ) — Uiy o2 J R
[ruse), Henmve)  fon)' g o),
2u 2 I

The differential equation (' = D) in brackets corresponds to the compatibility condition (cf. [3] p. 345) for the
problem.

http://rcin.org.pl
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The surface wave velocity cp is the eigenvalue of the problem ((1.6)-(1.8)).
Function 3(z7) describing the variation of normal stress is the eigenfunction as-
sociated with eigenvalue cp, (3(x2) = axn(xz)). In 1967 C.R.A. Rao [5] extended
the formulation (1.6)-(1.7) to the case when density p, shear modulus y, and
Poisson’s ratio v are arbitrary functions of z;. In the particular case, when

(1.9) o(z7) = 1, p(ag) = const, e>0;
vy = v(0), Voo = 1(00),
(1.10) o = v(0) (<)
vy — Voo _2 ~1
v(z2) =1 - (1 —vs) |1+ —(1 + €x3) ;
1 -1y

J. IoNAczAk (cf. [4]) obtained an analytical closed-form solution. C.R.A. RA0O (cf.
[6, 7]) investigated the problem in case:

(1.11) o(xz) =1, v(aa) = 1y, f(a2) = jioo + (o — o)™

using the power series expansion method.

The problem (1.6)-(1.7) was also investigated by T. Roznowski, (cf. [8, 9,
10]).

In [8] a solution was found under the assumptions that density and Poisson’s
ratio are constant, and shear modulus 4 is a “weakly” variable exponential func-
tion such that the term

1 d® d 1 d 1- 02(x7)
1. 4|l —mr~-—5—-— — 3
(1.12) (2 — 2(xy) (l.z'% deg 1= () dry 2 - 2(x2)

can be neglected.

In [9] T. RozNnowskr analysed the equations of motion for a transversely
isotropic nonhomogeneous elastic semispace, using the stress motion equations,
and formulated the problem of surface wave of the Rayleigh type. He showed
that the problem can be also reduced to an ordinary differential equation of
the fourth order with variable coefficients. T. Roznowski in [10] analysed five
particular cases of the wave phenomena:

a) transversely isotropic body with a “small nonhomogeneity”,

b) “weakly anisotropic” nonhomogeneous body,

¢) “weakly anisotropic” body with a “small nonhomogeneity”,

d) transversely isotropic homogeneous body,

e) isotropic nonhomogeneous body.

The surface wave problem can be formulated in an alternative way starting
from the displacement equations.

A.G. ALENITSYN (cf. [11, 12, 13, 14]) investigated the equations of motion in
the displacement formulation for large wave numbers using asymptotic methods.
As a result, he obtained an approximate dispersion relation (cf. [15]).
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In this paper some new properties of the surface waves will be presented.
The stress formulation will be used. This paper consists of four sections. Sec.2 is
devoted to general formulation of the problem. In Sec. 3 qualitative properties of
the solution are discussed. It is demonstrated that for density, shear modulus, and
Poisson’s ratio being bounded and of class ([0, o), the wave velocity and stress
amplitude are analytical functions of the wave number. In Sec. 4 it is shown that
at least one solution exists (and at most a finite number of solutions) under the
assumptions, that density and shear modulus are constant and Poisson’s ratio is a
bounded function from C?[0, ). The obtained results are limited to the surface
waves propagating in a nonhomogeneous half-space under isothermal conditions.

2. Stress formulation of a surface wave problem

Let us consider the two-dimensional stress equation of the linear elastody-
namics (cf. [1]) for a nonhomogeneous isotropic medium (%)
92 ()2

1) (@) %n,ﬁ(m.:)-u(.z-)(s,.,,,—rﬂ‘,(;,-,/)} = [ﬁ,-l(.z-)rl,m(.z-,z)] ﬂ

ot?
- [L’_l(-‘f)rxf"m (z, ’)} =9,

s

where
Tap = Tap(z, 1), (o, 3) = (1,2), [z = (21, 22)]
denotes nondimensional stress tensor, y(x), o(+) are nondimensional shear mod-
ulus and density, () is Poisson’s ratio. Nondimensional time is defined by the
formula
1/2
T/lo/

.r?o_{_)(l)/2

(2.2) [ =

where 7 is real time and g, pp and xo are units of stress, density and length,
respectively. Moreover

. UT{:U . UT(: 3
’ Tapqy =

du.,

It is assumed, that the functions o(x), j(x) and v(x) depend on 2y (22 € [0,¢))
and o(z7), pu(xa), v(xy) € (5[0, ), and
0 < o < o(a2) < 01 < 00,
2.3) 0 < po < pfay) < 1y < o,
“1 <y <v(e)<ry<1/2 for a9 € [0, x).

(?) Sce lanaczak [4], Rao [5].
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The triplets (oo, tto, ¥0) and (o, jt1, 1) represent minimal and maximal values of

(0 4, ).
The solution 7,5 of Eq.(2.1) will be considered in the half-space

(2.4) U= {(z1,22): 2220, —o00<z< 00},
for every t € [0, 00). We shall look for a solution in the form:
iz, 1) = Reay(x) exp[i(sz, — tVA)],

(2.5) ma(z, 1) = Rean(xa)exp[i(sz — tvVA)],
ma2(z, 1) = Reiagn(zz)exp[i(sz — tV )],

where i = /—1,s > 0, A > 0 and Re stands for the real part of a complex-valued
function. Moreover it is assumed that the solution satisfies the conditions

(2.6) 2(21,0,t) = 12(21,0,1) = 0 for ) € (—0,x), t>0,
(2:7) (2, 00,t) = T12(2y, 00, 1) = (21, 00,1) =0
for 2y € (—x,x), t>0.

The wave velocity, wave period and wave length are cp = VA /s, T = 21 /V/A,
and | = 2r/s. The functions oy (z,1), ax(x,t), aja(x,t), and the velocity cp
should be chosen in such a way that tensor field T(z,t) defined by (2.5) should
satisfy the field equation (2.1) and the conditions (2.6)—(2.7).

Introducing (2.5) to (2.1), (2.6), (2.7) we obtain (cf. [1])

o™ (san + s 12) = A@p) o — vag,) = 0,
(2.8) o7 (dn — son)| = M@)oz - vay,) = 0,
- [Q—l(-—“’-'Y 12+ m11)] "= so7 (fa — san2) = M2w) 12012 = 0
for 25 € (0,),
and the boundary conditions
(2.9) a2(0) = a12(0) = ax(o) = aj(x) =0,

where
a = [(\‘“ (450 (]12]1 - [C'z[O,oo)]B,

Starting from Eq.(2.8), the dot over a symbol will denote differentiation with
respect to z,. We shall also use the symbol D for the operator D = d/dx,.
C.R.A. Rao showed (cf. [5]) that the linear eigenvalue problem (2.8)-(2.9) can

http://rcin.org.pl



498 T. KLECHA

be further reduced, by elimination of a;; and a7, to the nonlinear eigenvalue
problem

(2.10) [{[D - (!h = 22_’1!?” - 1 [0 = (1 -26)i1] - 1}

2 2
{2_91_ (D +hD—b)}

2h 1 a?
- D_(HIHZ—Q) uz—ez[D (1—2h)[[] 5 apn =0

for 23 € (0,0),

1 2
a2 + 4 {m(]) + hD)

(2.11) an(0) = ap(x) =0

1
(2.12) {(1 [D - (1 - 2r), L—{D%h/)w
(A

2 _ (_,2 L) 1 —
4a2(1 — &
_—————(!2 )]uzz} =5 )3

() = ] = 21/(,172) il 3 1— 2}\'.(,1-2)
w(2) 2 - 2u(ry)’ (r2) 2 — 2k(x3)’
_1 ho(az)
(2.13) h = poD(e™"), 2(x7) = AR
Q= s2(1 - 0), b = s%(1 - 2x),
I = [2/@2 - D[/ Q2 - 2x)], e? = DIl - (1 - 2x)11E.

From a solution (A, a22(x3)) of Egs.(2.10)—-(2.12) one can obtain the functions
aqi(a2) and ajz(x2) using the formulae

- 1 2 2
(214) Crn(.’lﬁz) = —m{ [H 2+ 2(]) + h D)] Y22

ot (D (1= )] [1)2 +hD 12
4(:2(1 - K)
“——Q-"]“zz},
(2.15) — 2saqp(a2) = L [P~ (1 - 28)II; 1 [/) & Ah -8
a? - ¢? I

4a?(1 - H)]
7,

Q2.
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For the special case when the density is constant, o = 1, h = oD(0™') = 0

and Egs. (2.10) - (2.12) reduce to (cf. [4])

(2.16) (1 Dl—_l—gl) 1) 1 1“ % [? - 201 - 29)] am
+4 [-2—91)2 = Dﬁl); “g] ap =0 for € (0,00),
(217)  an(0) = an(x) =0,
[D {2—95 1% [1)2 (1 - m)] o= 4b 21 = ‘gun}] o =0
20
(218)  ay(xz) = _32(2%0) (.e2rz + 21)2) —
219)  anz) = 53(1__1 P {2 fﬁ 1 ! (07— (1 - )] e

1 -1
4,2 ‘
) 2 - .(2”22} '

Clearly, in the eigenvalue problem (2.10)-(2.12) (or (2.16) —(2.17)) the eigen-
value A enters in a nonlinear way. Also, note that the problem (2.1), (2.6), (2.7)
is not a regular one (*). Indeed, writing (2.1) more explicitly, we have:

rl—v —v 1 [ 92
— 0
J 1 gz’
—v 1—w 2
2.20 — 0 LS.
(2:20) H It T
1 92
0 0 . L‘J’ 2
. ped Lge2 ]
r, J J J d T
o P 2—p~l—
drq e day 4 iy g drn
; ; . : LA%!
= 0 Z.iw IT(L Z.Lf'_l.i T2 | -
duay iy diry dry 1
R N R R A )
L dury™  day dry- daa U.I'zg dry  drym day
The characteristic determinant associated with R.H.S of (2.20) takes the form
-29—‘612 0 20™ 5152
(2.21) 0 ~2071¢¢ —207166
—07'66 -0k —oTU(EG+ )

(*) Sce [16, 17, 18, 19].
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and it is equal to zero for any point (1, &). It can be shown that if suitable restric-
tions are imposed on T at ¢ = 0, Eq. (2.20) implies the compatibility condition of

the two-dimensional elasticity theory (*)
(2.22) {u_l[(l —v)my — 1/7“22]}‘22 + {,u_l[(l — V)T — m'“]}‘“
- = "
~2{u “2}‘12 =0 for (z,t)€ U x[0,).

So, the system (2.20) subject to the condition (2.22) can be considered as a regular
one.

The condition (2.22) follows from (2.20), if the stress field 7,5 is sufficiently
smooth on U x [0,00), and the L.H.S. of Eq.(2.22) together with its first time
derivative vanishes for ¢ = 0. The last conditions are equivalent to the assumption
that deformation and its velocity satisfy the compatibility condition for t = 0.
Vanishing of the determinant (2.21) implies that the operator

r. 0 J
2—p 1 — 0
‘ BJ:IQ U:I:l
J 4]
2.2 ke ) = P g™
( 3) ZT ﬁ(l ) O U.J'ZQ U.L‘Z
Jd _, 0 Jd _41 0
L ('?;1:2£ dxs daq dro
2—_5)——0*1# ]
dry~ Oy
p : T11
Z.LQMI,L ™
Jdxy dxy Fa
Jd 4 0 N d 51 0
(').1'20 dry  dry  Odxq

defined on the domain

D(Z) = {(ri1, 722, 712) € [CAU x [0, 50))]* :

m22(21;0,1) = T12(21;0, 1) = ma(x1500,1) = Tp2(21;00,1) = (215 00,t) = 0}
or

Dy(B) = {(r1, 22, m12) € [LA(U x [0,0))P :

722(21;0,1) = T12(21; 0, 8) = T22(21; 00, 1) = Ti2(21;00, 1) = Ti1(21;00,1) = 0}
is not invertible, unless the condition (2.22) is satisfied.

(*) The compatibility condition restricted to the ficld o takes the form:

{;L_l{(] — oy — uazz]}' Tos {,u_l[(l — v)ap — uu;l]} +2s {ﬂ_lt}]z}’ =0, ( = ;S—z) :
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3. On the analytical dependence of velocity and amplitude of the surface wave
on the wave number

In this section we shall analyse the problem (2.8)-(2.9) using B-holomorphic
perturbation theory for linear operators proposed by T. Kato (cf. [2]). We will
demonstrate that velocity and amplitude of the wave are analytical functions of
the wave number s.

In the complex Hilbert space I/ generated by the scalar product (°)

(3.1) (a,p) = f(ﬁnﬁn + @ty + @i2f2) duy
0
with norm
(3.2) llex||? = /(|f-m\2 + |an|? + a1a|?) day < o,
0

Eq. (2.8) can be written in the operator form

(3.3) A(s)a — ABa = 0,

or in the expanded form

(3.4) A(s, p)a — AB(p, v)a = 0.

The domain of operators A and B may be defined as follows

(3.5) D(A) = {a: ai; € C0,00); a12(0) = an(0) = apa(oc) = ag(oc) = 0},

3.6) D®) ={oca;eC?0.x)}.  ij=12

The sets D(A) and D(B) are dense in /1 since the set C§°[0, ) x C§°[0, 00) x

C§°[0,00) is dense in I/ and is contained in P(A) and D(B). We have
ProrosiTION 1. Operators A and B are symmetric in the Hilbert space /.
The symmetry of operator A results from the fact that operators on both sides

of the principal diagonal are formally adjoint, e.g. > D with —sl);, —;;D with
o £
1

sD—.
o

*) In oder to be able to apply Kato’s perturbation theory, we have to extend the problem to the complex
; PPlY p Ty P P
plane.

http://rcin.org.pl
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For arbitrary a.3 € D(A) C Il we have
Aa.P) = ]{0_1(527?11 + 5@ 1) - [L’_](ﬁzz + -“ﬁl.’.)]. B2
0

- [0_1(7? 12+ Sﬁn)} Bz — so” (@ 12 — san)Bia}dry.
Integration by parts with the use of boundary conditions shows that

(Aa.P) = (. AB).

The symmetry of operator B is obvious. Matrix B is positive definite and for
every o € D(B) ¢ Il we have(®)

(Bo, o) > ko, o),

where

k= min (

1-2r 1 || )
12€[0,00) )

2 T 2
Let us consider the forms M[a] = (Aa, ), Bla] = (B, o) described by the
formulae

o0

(Aa, o) =_/% [

0

iy — .m]g|2 +|ap+ .m”|2J diy .

0o

(Ba, o) = [(2,1)—1 (1= »)lanl? + (1 = )aznl* + 2ja1* - 2Re (ana)|dey.
0

In view of (2.3) we have (Ao, ) > 0. Operators A and B being symmetric,

are closable in the space /7. Let A, B denote the closures of operators A and B.
Let us set in /I the form:

(3.7) U] = Zlf(i)(-“())[Q](S — sp)'

i=0
for = belonging to a certain neighbourhood of the real semi-axis s, sq € (0, 0c)(7),
where

oo

(3.8) UVl = (Asp). o) = / o~} (| drag — sgagg|® + | dpg + .sounﬁ) duy |
0
" ; i 1-2v 1 1 g . : - e B i
(°) The cigenvalues of matrix B are S i = The symmetric matrix B is positive definite iff all its
iz o

eigenvalues A\, are positive and (B, a) > min \, (e, o) (cf. [20]).

1 2
and = ¢ (—00,0] b where b = =, ¢ = =,

T an Z (—nc ]} were b o :
&£ > 0. We can expand the region of holomorphicity by choosing a suitable . The meaning of b, ¢, £ will be

made clear in the sequel.

(") The neighbourhood is a set: V' = {.:: |z — s <

http://rcin.org.pl
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o .
3.9) U (sp)le] = / ;{Zﬁolfnzl2 + 2sglaqy|® - 2Re (012 @ )
4 e

+2Re (ﬂ‘“ é n)}(!.l.‘z ”

(3.10) UP (so)[a] = /% (|(Y12|2 + |(r“|2) dzy ,
0

(3.11)  U™(s)[] =0, n=3,4,....

The form UM(sg)[a] is a derivative of (A(s)a,a) with respect to the real
parameter s at s = s,

3] = fim BE-0)—Blnja. o)

S350 & — 80

Similarly,

U o] = lim Ao = UG

S5 8 — 8

UMD (so)[a] = lim

S8 8 — 8

We shall prove the following lemma:
LemMa 1. The closure #4(=) of the form #/(=) generates a family of operators
A(z) which is B-holomorphic(®).

In order to demonstrate that A(z) is a B-holomorphic family of operators we
shall use Kato’s B-holomorphism criterion(”).

Let 44" (sp)[a] be a sequence of sesquilinear form in /I (n = 0.1,2...), and let
the form 2/ (sg)[a] be sectorial('?) and closable, and with the domain D) =
D. Assume that the forms ) (sg)[e] for n > 1 are bounded with respect to
U], ie. D C D), and

0 o] < T alle? + sRet O (so)a).
aeD, n>1, ab>0, ¢>0.

Then operators A(z) corresponding to the forms /(=)[a] are a I3-holomorphic

family of operators for |z — sg| < e
v
To show that the assumptions of this criterion are satisfied, let us observe that

UO = YO (s)[a] = (A(sg)e, @) is a non-negative, symmetric and hence the

(*) (cf. [2] p. 395-397).
(®) (cf. [2] p. 398).
m) (

(1) (cf. [2], p. 310).
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sectorial form fixed in the dense set . The density of D results from the fact
that the set P(A) C D C H and D(A) is dense. Thus the form /(%) is closable.
From the inequalities('")

oo

1 . 3 =
(3.12) |U(l)(30)[0‘.]| = / E[_EIZ( 2 — spag2) — (@2 — sp0r12)12

+ap(da + sgaq) + (a2 + -“0511)“'11]111'2

- 12
2
([—lfnzl fflz) (/ dyp — ‘*0012‘ dap
0

f:)|—-b

00 0o 1/2
1. 2
+ [—](112| day f— (V9p — .q()nn‘ day
0 2
0 0
% 1/2 1/2
+ /—l(l“lzll.l'z /
0
0 0
@ 1/2 ; 1/2
+ / —l(lnlz (1‘1'2 / —] a2 4 .A‘U(l‘”[z (l’.‘]':.\
0 0
0 0
[ i 1/2 i 1/2
=2 /_'“12]2([-"2 /—l (g — -*‘0“12|2f1~t‘2)
0 0
L \o 0
% 1/2 %y 1/2]
+ / —|(¥1]|2 (1.1'2 f —-l (.) 12 + Spa “IZ ([.1'2
e o
0 0

o0
<¢ (/ |“11|2+ lan|* + |0'12|2) dry
01){;
0

. . € 1
(1422 = soanal® + | dia + soon |*) diea = %HOLH2 + U ()l

1D|-—l

oo
1
fo=
£
0
(') To prove inequalities (3.12), (3.13) we usc the inequalitics

el ([Znte) ([ Err)"

1
2ab < eal + —112,

where v; and u; are complex function, a and b are real functions, and ¢ > 0.

http://rcin.org.pl
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and

(3.13)  [UP(so)el| =

“"\g

2
= (lan? + lazal?) da
0
2 o0
< max = [ (jou+ anl® + anl) do,

72€[0,00) 0 d

[s.=]
2 17 s %
+c—2f — (I b — soana]* + | doa + Soﬂ'n|2) da,
T

2 2
= —llal* + SRet(so)let],

|m

it follows that D) > DU®), n = 1,2,3,..., and that there exist « = —,

0
1 2 ~
b = —, ¢ = —. Thus the operator A(z) forms a holomorphic family of type (B).

=)

€ 3
From Lemma 1 it follows that the following Proposition is valid.

ProrosiTiON 2. The form 24(z) given by (3.7) is defined for |z — sg| < ¢/2, and
for |z — sg| < £/3 it is sectorial and closable. The closure /(=) of the form ()
generates a B-holomorphic family of operator A() where A(z) is the maximal
and closed operator.

Now we shall consider eigenvalue problem given by
(3.14) A(z)or — ABa = 0,
where A(z) is the operator defined in Proposition 2 and B is the closure of B.
From Kato's theorems (cf. [2] p.416-423) it follows:

THEOREM 1. If the pair (A(2), (=) is a solution of the eigenvalue problem
(3.14), then it is an analytical function with respect to = for z € V = {z 1 |z — 5| <
£/3 and :z ¢ (—o00,0]}.

THEOREM 2. If the pair (A\(s), &(x2, 8)) is a solution of the eigenvalue problem
(3.3), then it is an analytical function of the wave-number s.

It means that
(A(s),o(az,8)) = (Z Au(s — 50)", a = Z o, (2)(s — 50)") .
n=0 n=0

where

1 /dm) 1 (0o
An = '7'1_" ( ) 5 (1”(.1'2) == ( ) 2 S0 € (O’OO) z2 2 0.
2 s=sy s=50

dsm n! \ dsn

http://rcin.org.pl
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The proof of Theorem 2 follows directly from Theorem 1 and from the fact
that each solution of (3.3) is also a solution of (3.14).
Natural approach to the considered eigenvalue problem

Ao — ABa =0
is investigation of the generalized resolvent
(A-¢€B)~L
Let us introduce the spaces .\ and Y defined by
B , 3 ayp —va; "
X = {(all,nzz.alz) € [LX0.)P, [C0,00)|: - [”T]
o ) ’
F o S G [“—‘2] =0, i=1,2 forevery ;> O},
2u I
v = {(@ng2.00) € [120. )P, [CY0,00)F:  — iy (r2)

+5%gp(r2) = s g 1a(wa) = 0, forevery ;> U}-

It is easy to check that the spaces X} are linear subspaces of [L?(0,)]® and
[C?[0, )] .

Let C(X,Y) be a space of closed operators from .\ to Y.

Let B(.X,Y) be a space of bounded operators from X to Y.

SmceAE(,(\ Y), B e B(X,Y)and B-! € B(Y,Y"), thus B~ IAGL(\ )=

C(X),AB~! € C(Y,Y) = C(Y) and the eigenvalue problems
Ao - ABa=0. B lAa-la=0. AB'a-)la=0

are equivalent (cf. [2] p. 417, 418).

To investigate the resolvent (A — £13)71, let us take the homogeneous case
o = const, ;¢ = const, ¥ = const, as an illustration.

A solution of the equation Aav — éBa = 0, a € DA)N D(B) C X is
a =[0,0,0]" if £ ¢ {w1,ws, w3}, where wy, wy, wj are the roots of equation

@-wl-4f1-w)(1-w)=0, s=(1-22)2-2)".

To prove this, note that a solution of the equation Aa — {Ba = 0, takes the
form:

. 24+ €601 -2k !
an = — {(“"31}2 - ——;(_ ¢ h)r_”"‘] 5

an = By [(-'_J'z"z - r_"zl"] .

’3 s =N
2 06/” |:(—sz12 —e ~1|'|} .
hy = s\/1 = £k, hy = sy/1 =€,

K = ——
S
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Introducing such o to the compatibility condition (cf. [6] p. 7) we get

/JOL' —Jgsm i
Y- 00— ja=

Therefore if £ ¢ {w;,uz,ug,} then 2-€)? - 4,/(1 =6 - €x) # 0 and Sy = 0.
In this case (A — £B)~! exists.

Let us consider the multiplicity of eigenvalue A = 0. This problem can be
written in the form

A(s)a = 0.
As the domain of the operator A we take the set:
D(A) = {a = [anana)’ € [L30. )P, [C?0.~)]:
an(0) = a12(0) = an(x) = ap() = ay(x) = 0}.
We have

anr(r2) = Cr9"(22),
sayy -+ A 12 = 0 5
A(s)la =0 & { > 0 ® an(ry) = —s*Crp(22),
— 580 (i
. app(r) = —sC1'(x2),

where ¢ = (x3) is an arbitrary differential function. Selecting 2(.x2) in such a
way as to meet the boundary conditions, we obtain

ker A: an(ez) = C1(2 - dagay + afad)e k72,
np_g(:rz) = —,gz;,-%('l,_-—f*ki'z_
”12("'2) = —*H('|(2.l'2 — ﬂk;r%)F_(”“”.

where
Che R, aq € [0, 00), ag > 0.

It is clear that in this case
dim kerA = x.

Note that in the case, when the domain of the operator is a subspace of the
functions satisfying the compatibility condition,

dim kerA = 0.
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4. Existence of surface waves in nonhomogeneous isotropic elastic half-space
with arbitrary variation of Poisson’s ratio

The problem of propagation of surface waves in a nonhomogeneous isotropic
elastic half-space with variable Poissons’s ratio can be reduced to the follow-
ing eigenproblem (cf. [4]): find a nonvanishing pair (cp., a(r2)) satisfying the
relations:

(4.1) [———1-——1)2 - 1] — [D? = 52(1 = Qpi(a2))] aza = 0
' 2(1 = 1) 1 — k(x2) ‘ WRE) TR
for =z € (0,0),
ap(0) = an(x) =0

(4.2) { 20 1 2_ 201 Orr(eny] —ds2 1250 } _
N T [D s2(1— gt (12))] 4ty —pon - 0.
Here
oy 1 =20(ay) L c_ﬁf o
() K(@2) = 2 —2u(xy)’ Selg = o i dry’

v(z2) and jp are the Poisson’s ratio and shear modulus, respectively; symbol
cr = p/s, where 2r /p is the wave period and 27 /s is the wave length, denotes the
velocity of surface wave. The eigenvalue ¢ corresponding to the eigenfunction
app is to be identified with the Rayleigh velocity.

Now we consider the case

@.4) r(xz) € C0, ), 0 < kg < K(z2) € K < 3/4,
Ho = 1, .Q(.‘I'z) = .Qg = ('%‘,.

These hypotheses assure that the elastic energy of the half-space is strictly
positive. We shall look for an eigenfunction ay € ', where

K := {azz = ('122(.1'2) & C4[0 ), (\22(’)@) = 0}

The system (4.1) - (4.2) subject to the conditions (4.4) is equivalent to

1

[D? — (1 = Qon(22)] oz
= (') exp (—.w\/l - !20..~-2) for 23 € (0, ),
(4.6) an(0) =0,

£
(47) D {1_—&—12—) [])2 — ..,‘.2(1 — Qof{(.l?z))} Oigy — 4s2(] - .Q())(,l'zz} - = (.

http://rcin.org.pl



SURFACE STRESS WAVES IN A NONHOMOGENEOUS ELASTIC HALF-SPACE. Pant L. 509

It is shown in [1] that if there exists a solution of eigenproblem (4.1)-(4.2),
the eigen-value 2y = %, is strictly positive. This fact with (4.5)~-(4.7) implies that
an admissible 2y belongs to the interval (0, 1). Consider now the homogeneous
differential equation corresponding to (4.5):

T
1- H(.J'z)

which, by virtue of (4.4), is equivalent to

(4.8) (D2 — (1 = 20(22))] oz = 0

(4.8) [D? = (1 = 2or(x2))] a2 = 0.

We have the following theorem

THEOREM 3. Equation (4.8) subject to (4.4) has two linearly independent solu-

tions: , .
()22)(.1'2. 24, 5), (1(2._,)(;1'2, 2y, 8)

of the form:
(4.9) o) = a$(0, 2y, 5) exp / Elroo Bdr  (h=1,2),
0

where £(7, 52, s), &(r, 2. s) satisfy the inequalities

(410)  a<f<b<c<EH<d
for every (r, 129, s) € (0,00) x (0,1) x (0, ).

Constants a, b, ¢ and d in (4.10) are defined by

a = —s\/1 = Ky, b= —sy1- Ky,
¢ = s\/1 — Ky, d = s\/1 = Ky .

The proof of this theorem is based on a theorem due to OLecH (cf. [21], p.323)
and will not be given here.

It follows from Theorem 3 and the conditions (4.6), (4.7) that an admissible
solution of Eq. (4.5) takes the form

(4.11)

(4.12) an(za, 29,5) = Ay exp (/f,—(r. s, 12p) (lr)

0 v

'y exp (—.sn-z\/l - .QO) ;

- 1252

where (£2p, s) € (0,1)x (0, o). Clearly, this solution belongs to the class C*[0, xc).
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Therefore, applying the theorem (cf. [21], p. 56) on analytical dependence on
the parameters to the equation

(4.13) ty —s*(1 = gr(x2))az =0
subject to the conditions

an(0) =1, anelk,

we conclude that the solution of (4.13) given by (.tgg) = exp (j{;jr s, §29) dr) is
0

analytic with respect to (2, s) € (0,1) x (0, o). o1
Therefore &,(7, £2y, s) is also analytic for (£2g, s) € (0, 1) x (0, ).
It is clear that analyticity of «o; satisfying (4.13) subject to a92(0) = 0, ag; €
%0, oc) implies analyticity of ay; satisfying (4.5) - (4.7). Substituting (4.12) into
(4.6) and (4.7), and using condition ('; # 0, we arrive at the dispersion equation

4T = 2061(0, 0. 5) _

(4.14) (2 — 120)* + 0.

Since
—sv/ 1= kg < (0, 29, s) < s/ 1 = 9Ky,
for every (2, s) € (0,1) x (0, >), thus

v
4/1 f?():l(0~ Q”“)+(2_Qu)

(4.15)  —4,/(1 — 2)(1 — ro) +(2-2)* <

< —4/(1 - Q)1 - Qomy) + 2 - 2P,

for every (129, s) € (0,1) x (0, ).
Now, introducing the notations

Jo(f20) = —4/(1 = 20)(1 = 2ori0) + 2 — 2)*,

(2,8 = D= 0alnd) o g e 2

Ni(fo) = ~4/(1 — 2)(1 - Ror1) + (2 — D)%,

S

we reduce (4.15) to the form

(4.16) Jo(R0) < f(20.5) < f1 ().

It follows from the definitions of fy, f/ and f;, and from the analyticity of
&1(0, £29, s) that the functions fy, f and f; are analytic for every (£, s) € (0,1) x
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(0, 00). Moreover, f and f; vanish for £y = 0 and for £ = ¢2, 2y = ¢3, respec-
tively. c% and ¢} are the squares of velocities of surface waves in the semi-space
with k(z) = kg, ¢ = 1 and k(z) = k), p = 1, respectively. Therefore, the analyt-
icity of f(£2y, s) for every (2, s) € (0,1) x (0, o) together with the inequalities
(4.16) imply that there exists at least one root (or at most, a countable number
of roots) of the equation f(£2,s) = 0 for every (g, 5) € [¢},¢3] x (0, ). This
completes the proof of existence of at least one solution to the eigenproblem
discussed in the present section. The Fig. 1 shows the graphs of f3(§2) and f1(1?)
corresponding to kg = 0.1 and x; = 0.7, respectively, as well as a hypothetical
graph of f over the interval 0 < 2 < 1.

/()

£ A(0.2637; —0.1907)
B(0.4780; 0)
C(0 5215; —0.4044)
D(0.8991; 0)

f, s = const
0 B / 1

FiG. 1.

We have the following theorem:

THEOREM 4. For every s > 0, the equation [(§2g,s) = 0 has at most a finite
number of solutions.

P ro o f. If the number of the solutions of the equation f(f2y,s) = 0 for a
given s > 0 is infinite, then the set 5 = { f({2.s) = 0} has an accumulation point
in [c3, 7). Since the function f(f2, s) is analytical in the domain (£2y. s) € (0,1) x
(0, 00), [ vanishes in the interval [c3, ¢}] which contradicts the inequality (4.15).

REMARK. If the branches of the dispersion relation (4.14) intersect, then the

intersection points are algebraic branch-points (cf. [23] p. 119 part II), (cf. [24]
p-174-181).
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