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Influence of the Schulgasser inequality on effective moduli
of two-phase isotropic composites

S. TOKARZEWSKI and J.J. TELEGA (WARSZAWA)

Tuke aim of this paper is to study the effective transport cocfficients . of macroscopically isotropic
two-phase composites for the case, where diclectric coctficients Ay and \; of components are
real. As an input we take: (i) NV cocthicients of the power expansion of A\.(r) at = = 0, where
z = (A\y/\y) — 1; (ii) the analytical property of A.(z), namely A.(—1) > 0; (iii) the Schulgasser
incquality Ae(z)\o(y) = (M)?%, y = —z/(x + 1). By starting from (i), (i) and (iii), an infinite sct
of bounds on \.(z) has been established and compared with the corresponding ones reported in
litcrature. As an example of illustration of the obtained results, the regular arrays of spheres has
been investigated numerically.

1. Introduction

THE EFFECTIVE TRANSPORT coeflicients A, of composite materials may be evaluated
by the method of bounds [5, 6, 7, 8, 12, 19, 20]. The bounds become increasingly
narrow, when more information concerning the geometrical properties of the
medium is available.

Milton has derived in the complex A.-plane an infinite set of narrowing bounds
on A.. The calculation of his bounds requires the knowledge of successive terms
of the power expansion of A, in Ay — A,. The coefficients of the expansion are
geometrical in nature and their values are determined by the correlation functions
of disordered geometry. Milton’s approach is based on an analytic representation
of the effective dielectric constant due to BERGMAN [4]. The problem of complex
bounds was also discussed by FELDERHOF [12], who obtained the estimation of A,
with the help of four characteristic geometrical functions introduced by BERGMAN
[S]- Recently, interesting continued fraction representations for the set of complex
bounds on A\, were presented by BERGMAN [6] for three-, and by CrLArk and
MiLton [8] for two-dimensional systems.

The fundamental estimations of A, («) reported in literature [20] do not exploit
the well known Schulgasser inequality A.()A () > (M) y = —/(x + 1) [22].
Direct links of this inequality with bounds for isotropic, inhomogeneous materials
has been advocated by MiLton [20, p. 5297], see also [7, p. 927]. He suggested
that some of the existing bounds on A, (x) are not the best, cf. [20, p. 5297]. A
simple case of incorporation of A, ()A, (y) > (A)? into the second order bounds
on A.(x) only, was studied in [6].

The main aim of this paper is to include the Schulgasser inequality A, (x)A.(y) >
(M)% y = —a/(x + 1) into an infinite set of fundamental real-valued bounds on
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Ac(x) reported by Micton [20]. This aim is achieved by applying Padé apprexi-
mants and continued fractions to the formulation of a method of incorporaton
of Schulgasser inequality into lower and upper bounds on scalar, bulk transport
coefficients of two-phase media, see Theorem 2.

2. Basic definitions and assumptions

This study is concerned with the effective dielectric constant A, of a composite
consisting of two isotropic components of dielectric moduli Ay, A; and volume
fractions ¢, and ¢, = 1 — ¢, respectively. The overall dielectric coefficient A, is
defined by the linear relationship between the volume-averaged electric field (U)
and volume-averaged displacement (D):

(2.1) (D) = A,(U).

The value (-) is averaged over a representative volume or a basic cell. In general,
A, will be a second-order symmetric tensor, even when A; and A; are both scalers,
and will depend on the microstructure of composite. Our consideration will be
limited to one of the diagonal element of A., say A., which has a well known
Stieltjes integral representation [4, 9, 10]

1
oy Ael@) [ ody(w)
2.2) G) = 57 -1 .L/ S
0
where
(2.3) o=ih— 1, k= ﬁ
X

Here G/(z) is defined for 2 € (-1, ), cf. [6, 12]. The spectrum ~(u) appearing
in (2.2) is a real, bounded and non-decreasing function determined for 0 < u <
oo. The representation (2.2) was introduced by BERGMAN [6] and referred to as
characteristic, geometrical function.

Let us consider the power expansion of (2.2)

(2.4) G(x) = Z G,
n=1
where
(25) Cl'n = (_])n—l /'U-“_l l[“j (.“).
0
For composite materials the coefficients &, (n = 1.2...., ) are finite and series

(2.4) is convergent for |z| < 1.
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Now we are in a position to introduce the Padé approximants to Stieltjes series
(2.4). To this end we consider the following rational functions

J J
LM+J(J;) _ a(l );1; 3 T . “{\l) ].I'M+‘1

2.6 M+ J/M] = = * i J =01,
e [ &l Ppi(x) 1+ b(lJ)J: + .- +S\f‘;) aM
with the power expansion of [M + J/M]ataz =0
(2.7) [M + /M) =D Guaa", J =01
n=1

The functions (2.6) are the subdiagonal (J = 0) and diagonal (J/ = 1) Padé
approximants [M + J/M] to the Stieltjes function (2.2), provided that

(2.8) Gng =Gy for n=12,...,2M + J, J =01

Padé approximants (2.6) can also be expressed in the form of S-continued frac-
tions

g grr q x

91T 92 920 +J F= 1

@9 M+ IMI@) =5 L T

equivalent to the following explicit expression, see [1, 26]

91z

9%

g2/ -1
| 4 J2M I

1+ gonr+12

[M+ J/M](z) =
1+

The coefficients gy, ..., g2ps+0 appearing in (2.9) are positive and uniquely de-
termined by the 2M + J coefficients &, (n = 1,2,...,2M + J; J = 0,1) of a
Stieltjes series (2.4).

After this preparation, we can recall the infinite set of fundamental bounds
on A.(z) derived by Micron in [20]. By expanding his estimations Uy o(e) and
Vnvole) (o = /(2 + 2); 2 = A/ Ay — 1) [20, p. 5296] into S-continued fractions
dependent on z, we obtain:

THEOREM 1. For two-phase inhomogeneous media, the S-continued fractions
(2.9) generated by power expansion (2.4) obey the following inequalities:
(i) If > 0 then

; Ae
(2.10) Viale) 2 (V5 2 (DY Nyl
(i) If =1 < x <0, then

- /\F T
(2]1) ‘/N‘Q(.T) < /\_1 = (/Ny()(l‘).
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where C'n 41 is given by the following recurrence formula

(2.12) Ci=1, Cy=—2L_ p=172.N,
l—(p+1

while Uy o(x) and Viy o(x) take the following S-continued fraction forms

T g T

Uno(e) = 1+ 22 82 iz,
(2.13) i :

’ g1v gNeT ~N+1T

/No(z) =1+ — — —,

N.o(z) 1 + 1 4...4 1
Here Upn o(x) is a Padé approximant given by (2.9) to power series (2.4), N denotes
the number of known coefficients of a power series expansion (2.4), while @ =
(A2/A) -1

For macroscopically isotropic composites the well known Schulgasser inequal-
ity holds [22]:

Ac(2) Ac(y) . x
>1, if Y= -
- r+ 1

(2.14) and x> —1.

The main purpose of this paper is to incorporate the relation (2.14) into S-fraction
bounds (2.10)-(2.11).

3. Schulgasser inequality A, ()\ (y) > (\)?
Let us consider the following class of S-continued fractions

, NnT g INT  N+1T
3:1 Un+1(T, N =l == = '
(3.1) Un+1(T, gN+1) 1 2 1 s 1 ¢ 1

Here g; > 0 (j = 1,2,...,N) are uniquely determined by N terms of a power
expansion of A./Ay, while g4 is a free parameter belonging to the interval

(3.2) Rn+10= {’I:\"+l lgn+1 2 0}‘
Now we will seek the interval Iy 1(x) of admissible values of ¢y defined by
2-3) Rysra(z) = {fl.-\'+1 | v s1(T g )N+ 1 (g gy +1) 2 1}-

where y = —a/(z + 1). It is obvious that ¢y, determined by (3.3) satisfy the
Schulgasser relation (2.14)

(34 Un+1(s v )N (g av1) 2 1
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Of interest is the equality

(3.5) Un+1(z av s D)UN 1 (Y, an 1) = 1, y=—z/(x +1),
ie.
q1r GNT  N+1T 9y IN+1Y  gN+1Y
3.6 (1+_ )(1+— gN+1y _)=1.
5 T spomed 1 4 1 L ¢oeeds 1 + 1

The recurrence formula for S-continued fractions reported in [2, Chap. 4.2] yields

912 INZ qN41% An(z) + An_1(2)gnv+1
i (e )- |
R I +...+4 1 4+ 1 By (2) + Byo1(2)an +1

where An(z) and By(z) are polynomials determined by

(38) A1 =1, 4p=1, .f'lJ'(:) = 11]'_1(:) =+ Zgj.flj_z(:), i=12,..., N,
{39) B_1 =0, By=1, [))J(Z) = 1)’1_](:) + 24 /))J'_z(:), j=1,2,..,N.
On the basis of (3.7), relation (3.6) takes the form

An(@) + Ay _1(@)gv+1 AN() + yAdv_1(y)an 1

= .
By(a) + aBy_1(x)an+1 Ba(y) + yBy-1(y)qn +1

(3.10)

Here y = —a/(z + 1). Simple rearrangements of (3.10) yield

(3.11) an+1(0)qx 1 + Bnar(@)an 1 + v (e) =0,
where

(3.12) ans1(x) = ay[Anv (@) An_1(y) — Byoa(@)By_1(y)] ,
(3.13) Brs1(x) = a [Ay_1(@)An(y) = By_o1(e) By (y)]

+y[An(e)An - (y) = By (e)Bya(p)]
(3.14) In+1(a) = An(a)An(y) — Ba(2)By(y).

The solutions of (3.11) are given by

p BN +1 (I) 4oy 41 (.l')b,\; 4 (l)
e e o R .
"1N+1(1) 2(1,“\’4»1(.1:) -"jzz\.’+l(‘r) ,
(3.15)
([” (1) T HN-H(‘P) 1—-./1— 4“,’\"+1('T)bf\'+l("')
N+ 2(1N+1(:I") 13‘,2\.+1(,1-) P
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On account of (3.3) and (3.15) we have
(i) if ay4+1(2) <0, then

(3.16) Ry+11() = {avar | (@) < avar € g}
(ii) if an4+1(z) > 0, then

(3.17) Ryi11(z) = {'IN+1 lgnve1T < g V av 1T 2 (1;\'+|}'

According to definition (3.3), a class of bounds given by

(3.18) Yn+1(T,av+1)s gN+1 € Ry41()

satisfies the Schulgasser inequality (2.14).

4. Inequality A .(z)/A; > A(2)

Let us assume now that for fixed @ = (Ay/Ay) — 1, the lower bound A(x) on
the effective modulus A (x)/A; is known,

(4.1) Ac(2)/ N > A2).
By using (3.1) we can write
(4.2) (e, anen) > A).

Of interest is the equality, cf. (2.10), and (2.14),

43wl Oy = (1485 I EN)

T g 1 + 1

By applying recurrence formulae (3.8)—(3.9) to continued fraction (4.3), we ob-
tain

An(@) + 2An_1(2)Ch 41

(4.4) A@z) = By(z) + 2By 1 (2)Crner
Hence
(45) CN-H(-‘I') = A (J,‘)BJ‘V(.’I?) — .»'ll\r(;z.)

.'1'[r|N_1(.l‘) - A (.?.')B;\"_](.l')] )

Now we are in a position to introduce the interval 12y 4+ 2(¢) of admissible values
of qv+1 given by

(4.6) Ryii2(x) = {’/N+l | ¥n+1(x gn+1) > -'1(-1‘)}-
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On account of (4.5) and (4.6), Ry +1.2(x) takes a form

(4.7) Ry +12(2) = {fl.‘\r’+1 | gv+1 < C:\’-H(-'-')}-
Note that, according to (4.6) and (4.7), a class of bounds determined by

(4.8) Yn+1(T, gy +1), qN+1 € Ry 412()

satisfies the inequality (4.2).

5. Bounds exploiting Schulgasser inequality
Let us introduce an interval Ry 1(z)
(5-1) Rn+1(2) = Ry+100 By+11(2) 0 Ry +1.2(2),

where Ry 410, Ry+1.1(2) and Ry 422(x) are defined by (3.2), (3.16)—(3.17) and
(4.7), respectively. Note that the class of functions
(5.2) On+(Tian+1)y N+ € Rna(e)

satisfy the inequalities (2.14) and (4.1). For = — —1% the lower estimation of
Ac(2) is well known, cf. [4, 5, 6, 23]

(5.3) A(-17) = 0.
For such a case it is convenient to introduce the notation

(5.4) im Q) = Q(-1") = Q(=1),

consequently used in the sequel. Now we are ready to formulate the theorem
solving the problem of incorporation of the Schulgasser inequality (2.14) into
bounds (2.10)-(2.12).

THEOREM 2. For macroscopically isotropic two-phase inhomogeneous media, the
S-continued fractions (2.9) generated by power expansion (2.4) obey the following
inequalities:

() If 2 >0 (z = (Ay/ M) — 1), then

Ae( ]
(DY Exen) 2 (Y22 > (1Y)
e f/z & gNT
55 PN =14+ = =
nr o g gnT  Exngz

) s ENn =14 —
Yn+1(2, En+1) T T 4 1 4 1
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(i) If =1 <z <0 (z = (A2/A)— 1) then

Ac(2
'l:[)N('L') > /\(] ) > d’N+2(l‘w Ef\'+]w [[z’\"+2)~
; Y = g1 gNT
g1 gyt Enviz Moz

Y " =1+=
Yn+22, Ens1s Hn ) i ger T a1 4 1

Here the coefficients Hn 42 and Ey 41 are given by

An(=1) - En1An_1(-1)
An(-1)

(58) Dyt = max{gy 1 (-D.akn(-D},  COnen

(5.7) Hy+2 y Eny1=min{Dni1,Cnyr},

AN(»-])
An-1(=1)°

where ¢y 1(=1). ¢} 1(=1) are determined by (3.15). Relation (5.8); is a conse-
quence of (4.5) and (5.3). while N appearing in (5.5)— (5.8) denotes the number of
known coefficients of power series (2.4).

P ro o f. It follows from Appendix A that ayi1(=1) < 0 and dy41(=1) > 0.
Thus the roots of (3.11) ¢, ; and ¢%,,, have opposite signs, cf. (3.15). On account
of (5.1), (5.7) and (5.8), we get

Il

(5.9) Rywi(=1)={r 10 <7< Exii}.
Hence the class of bounds (5.2) takes a form
(5.10) Ine(e,T) =14+ g% gNT TR . 0<7 < Enet.

1 shoow 1 & 1
The first derivative of ¢y 4 (. 7) with respect to 7 satisfies
IPn+1(x,7)
Jar
Iy (x,T)
JT
Hence the continued fraction "y 4+ (x.7) (z € (0, x)) defined by (5.10) assumes
its extremal values for

>0, for 2€(0,x), 0<7< Eny and N=0,2,..,
(5.11)
<0, for x€(0.¢), 0<7< Fy41 and N=1,3,...

(512) =10 and T = JJN+1 ;

By substituting (5.12) into (5.10) we obtain the formula (5.5).
If —1 < 2 <0, the inequalities (5.6) result from the relations:

(5.13)  0< gn+1 £ Ensts A/ M 2 ¥ns2(2,Cna2) 2 Yne2(2, Entr, Hng2),
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where

, Nz gne gn+1T Cngon
14 Pnsalz, Cpag) = 1+ B2 ,
(5.14) Ynv+2(2, Cn2) Tk Tt @ & 1

g gye Enpia vy
5.15 oz, E i =1+ — "
(5.15)  ¥n+2z, En+1, Hy o) 1 ot T 4 1 g 1

Note that for Dy4; > Cpny4p, the bounds determined by Th. 2 reduce to the
existing ones defined by Th. 1, since the parameters C'y 4 given by (2.12) and
(5.8)2 coincide, while /[y4+; = 0. Hence the estimations (5.5)~-(5.6) obtained
in the present paper can not be worse than the previous bounds (2.10)-(2.11)
reported in literature [20]. Moreover, for some cases they have to be better. In
the next section we demonstrate the analytical form of a low order bounds on
Ae(z)/ Ay given by (5.5) and (5.6).

6. Low order bounds on A,

To illustrate Th. 2 we will evaluate bounds on an effective dielectric constant
Ae(7) for the cases, where (i) no coefficients (N = 0), (ii) one coefficient (N =
1) and (iii) two coefficients (N = 2) of the power expansion of A (x)/A; are
available.

(i) The recurrence formulae (3.8) and (3.9) give:

(6]) ‘»‘_2 =0, "\—l =1, .'l() =1, ”_'_J_ = (0, ”—l =0, I)’(] = 1.
Then relations (3.12) - (3.14) yield
(6.2) ar(x) = 2y, Bi(x) =x + y, 01(x) = 0.

Hence from (3.15), (4.5) we get

&+ 1
63) d=-"Y, =0, Ci=-—,y=-z/@+1).
Ty o
For # = —1% the equations (6.3) reduce to
(6.4) q1 = 1, qf =0, ¢ = 1.

From (5.7) and (5.8), it follows that
(6.5) D=1, E =1

Hence, on the basis of Th. 2 the bounds on A, are given by

Ae . Ae .
(66) 1 2 /\—2 14+ 2. if -1 SISO, ]+.‘1'2 \— 2 1L, lf 1320.
1 A}
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(ii) N = 1. Then
(67) A_z = O, A._l =1, AQ =1, B_] = 0, H(} =1,
68) az(z) = 0, Ba(x) = 2g12y,

' ba(x) = g1z + gy + giry,  y=—z/(z + 1),

- v _ 01Tty +giey . _ —(+g2)
(6.9) G = —00, = T ; Cy = - i
For z = —1% we have
1—g

(6.10) o d=—" Ci=l-a,

. p,= 19 E, =129 0y = L

. g ! L ¥ ° S &

From (5.5), (5.6) and (6.10) we readily obtain

mr (—g)e/2 _ A
1 + 1 - /\1
(iii) N = 2. Now we have
(6.12) az(z) = zy[(1 + g12)(1 + g1y) — 1], y=—a/(z+1),
(6.13)  Ba(x) = zqi[z + y + (g1 + g2)ry] + ygole + y + (01 + 92)2y],
y=—z/(z+1),
(6.14)  83(x) = qrz(1 + g2y) + g1y(1 + g22) + g2y, y=—z/(z +1).

Thus forz = —17

(6.11) 1+ <1+ g.

l1-g1—92 1-91-9
Al §= ———=, 5 =0, by = ————,
(6.15) 7 1-g1 13 g 1~
Hence
(A—91 —g2)x
1498 928 l-g Ay 01T 0BT oo
1 + 1 + 1 Al 1+ 1
(6.16)
(1-g1—g2)x
nr g 1-g Ae gL gt
1+=¥— =— —— L < —<1+= = if 2>0.
1+ 1 + 1 R IS .

It is interesting to compare the low order bounds existing in literature (Th. 1) with
the bounds incorporating the Schulgasser inequality (Th. 2). The basic bounds
(6.6) are the same, the estimations (6.11) are more restrictive than the well
known Wiener bounds [27] (Fig.1), while the inequalities (6.16) coincide with
Hashin - Shtrikman bounds reported in [14].
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AN

2 1

0t ¥t/

¥, (x)

2 e ——
—

1
0 20 40 60 80 00 x

FiG. 1. Existing (—) and improved (- — —) bounds on the effective diclectric constant of
a face-centered lattice of spheres for volume fraction 2 = 0.71. Upper bounds ¥ (z)
(N =1,3,5) coincide, while lower ones ¥y 41 (x, Cnir) and Wy (z, Fnvii) differ
significantly for N = 1 and slightly for N = 3,5.

7. Even number of terms of a power expansion of A,

In this section we will compare the known (2.10)-(2.11) and obtained (5.5) -
(5.6) bounds calculated from an even number (N = 0,2.4,...) of coefficients of

power series (2.4). To this end we prove that forz — —1%,thusy = —z/(z+1) —
~ (N =0,2,...), the expressions (3.15) reduce via (3.12)-(3.14) to
(7.1) lim 205 .41(x) # 0,

Bn+1(2) (1 + \/1 ~danp(@)one (2) ) _ Anv(=1

g om Qg — =D
WH T i Zoypl(e) 8., (x) An_1(-1)
im Bni(x) 1o 4(1';\'f.12(-")f5;\'+1(-T) —0.
z—=—1* 2apn41(2) B41 ()

P roof. The recurrence formulae (3.8) and (3.9) for S-continued fractions
[2] and the Schulgasser inequality (3.4) yields

By(x)Ba(y) =

(7.2)

"
N +1

(7.3) An(2)An(y) > 0, By(x)By(y) > 0,
, An(y) " By (y)
lim ——— < o0, lim < oc.
et An_i(y) © 0 emmtt AN(y)
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For even N, on the basis of (3.12), (3.14) and (7.3), we have

Ty H‘.\:_l(l')”‘\!_] ({/) ( [;::: E:;I:’I:_i Ez; g 1) # U‘

, B (y)
An()) (rlz\ux(i) By-1(e)- (J))

(7.4) ans1(z) = zydn(a)

Bnvr(x)

| —

(7.5) lim

i 2aN+1(1) Y .f"lN—i(.f/) ( - l( )_ B, ]( )[J)N_:EZ§>
_ By_1(y)
1 (_rll\-(_y) DBy (a )l —1('/)) _ Ax(-1)
# (.-rl,v_l(.l-) By-1(a )H\::E(ﬁ) St

lim N +1(2) dvr(x) _ . anii(r) . dner()

r——1* By 1) Bnar(r)  e—-1* Bys1(@) 2——1% Bys1()
l\( 1) lim On+1(x)
— Anoi(=1) 1% By ()

(7.6) bniae) _
.tlr—nl" f\+1( ) .Ihll’ll+
(Ave) - Byt )”‘E”;)
= .
" . SBNN L vAN1 W) (0 v ey B=1(y)
z (.»xN_l(-:)— HN_I(J,)JL\_,(!/)) # Lo (Ax) - iy (0! (g))

From (7.4)-(7.6), follow the relations (7.1) and (7.2). O

For A(—1) = 0 and even N (N = 0.2,...), the relation (4.5) coincides with
(7.2);. Hence inequalities (5.5) and (5.6) agree with (2.10) and (2.11). Conse-
quently for even N, the S-continued fraction method based on the Schulgasser
inequality (2.14) does not provide better bounds than the approaches neglecting
this inequality. Therefore an improvement of the existing bounds on A, () can
be expected for odd NV (N = 1.3...) of coeflicients of power expansion of A, (x)
only.

8. Regular arrays of spheres

Now we are prepared to apply Th. 2 to regular lattices of spheres embedded
in an infinite matrix. By A., A, and A, we denote the dielectric constants of the
composite, spheres and matrix, respectively. The first three coefficients of the
power expansion of (A./A;) — 1 are as follows [4], cf. (2.2), (2.4):

A
(8.1) 2 1=

erpar? + 0(7).
Al

L»)l—‘
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where, as previously, = (A2/A)— 1. Here 3, ¢ denote volume fractions of the
spheres and matrix. On the basis of (2.6), S-continued fractions (2.9) associated
with (8.1) are expressed by

_ _ ot _ pax (21/3)x
(8.2) [0/01=0, [0/01=-—, [1/1]= s 1

where

(8.3) g1 = 2, g2 = @1.

Hence from (6.6), (6.11) and (6.16) we have:
(i) for N =0
12/\5//\]2]'*'51'. if /\25/\1,
(8.4)
ISAE//\IS]'FJ'. if Ay > Ay

(i) for N =1

oot a2 A 29
(8.5) 1+*§’+‘”;/ s\—§1+“”;7,
A1
(iii) for N =2
1+‘*.:21 k1"‘\11/3 /\7:>]+“r32[ ;11/3 2x/3 if /\_,</\].
(86) + 1 . 1 + 1 4+ o
. " @2 o1z /3 & ,\_, S 14 e /3 2x/3 . By .
1 + 1 — M 1 + 1 4+ 1 .

According to the results of Sec.7 valid for even N, the bounds (8.4) and (8.6)
agree with the existing bounds following from Th. 1, where (8.6) are Hashin -
Shtrikman bounds. Of interest is the case (8.5). For N = 1, from Th. 1 follow
the well known Wiener bounds [27]

G
9
=

_‘.

par 21X A
(8.7) 1% a1 g’\1§1+
By comparing (8.5) with (8.7) we conclude that incorporation of the Schulgasser
inequality (Th. 2) improves lower bound of WieNER [27], while the upper one
remains the same (Fig.1). To determine bounds more exactly, further terms of
the power expansion of A (r)/A; are required. For simple, body-centered and
face-centered, cubic lattices of spheres, MCPHEDRAN and MiLTON [16] evaluated
the coeflicients of a power series expansion of A.(a)/A, a = ¢/(x+2) ata = 0,
and gathered them in tables as discrete functions of 7. In [25] we derive a
simple formula relating the terms of a power series of A, (x)/A; to the terms of
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Table 1. Low order coefficients G ., ¢, Cn41y E'ns1y H v 42 for evaluation of S-continued fraction
bounds for the effective conductivity of regular arrays of spheres.

Arrays of

n=1 n=2 n=3 n=4 n=35 n==6 n=7
spheres

w2 = 0.52 Gn 0.52 0.0832 | 0.0248 | 0.0102 | 0.0050 | 0.0028
Simple gn 0.52 0.1600 | 0.1380 | 0.2420 | 0.1727 | 0.2579

cubic Cn 1.00 0.4800 0.6667 0.7930 | 0.6949 0.7514 0.6568
En 1.00 0.2400 0.6667 0.7427 0.6949 0.7473 0.6568
Hy 0.0000 0.5000 0.0000 | 0.0634 | 0.0000 | 0.0055
2 = 0.67 Gn 0.67 0.0737 0.0155 0.0053 0.0025 0.0015
Body- gn 0.67 0.1100 0.1009 0.2761 0.2020 | 0.2566

centered Cn 1.00 0.3300 0.6667 0.8486 0.6747 0.7006 0.6337
En 1.00 0.1650 0.6667 0.8082 0.6747 0.6960 0.6337

Hy 0.0000 0.5000 0.0000 0.0476 0.0000 0.0066
w2 =0.71 Gn 0.71 0.0686 0.0147 0.0058 0.0030 0.0018
Face- gn 0.71 0.0967 0.1171 0.3342 0.1221 0.3168
centered Ca 1.00 0.2900 0.6667 0.8244 0.5947 0.7947 0.6013
Ey 1.00 0.1450 0.6667 0.7794 0.5947 0.7889 0.6013
Hy 0.0000 0.5000 0.0000 0.0546 0.0000 0.0074

the power expansion of A.(a)/s), @ = z/(x + 2). From the coeflicients given
in [16, Tabs. 6, 7, 8] we have calculated, by using the algorithm proposed by us
in [25], the coefficients &, of power series (2.4). The coefficients ¢,, Cn 41 and
En 41 gathered in Table 1 are evaluated by means of the numerical procedure
proposed in [25]. Note that for even n (odd N), the coefficients Ex 4y (n = N +1)
are smaller than 'y 41, while for odd n (even N) they take the same values. For
face-centered cubic arrays of spheres (fcc) the existing bounds and the improved
ones are presented in Tables 2 and 3.

Table 2. Existing {¢x (), ¥n+1(x, Cnyr), The 1} and improved
{n(r), One2(z, Enir, Hxiz) The 2} low order bounds on A.(r)/\

for the fee lattice of spheres.

®2 N T vn(z) | Ynaes Enaer, Hna2) | ena(@,Cnar)
1 —0.5 | 0.6450 0.607011 0.584795
0.71 3 —-0.5 | 0.6258 0.624909 0.624863
5 -0.5 | 0.6255 0.625497 0.625497
1 —0.7 | 0.5030 0.411030 0.376512
0.71 3 -0.7 0.4634 0.457736 0.457466
5 —0.7 | 04621 0.461837 0.461835
1 -0.9 | 0.3610 0.162217 0.135318
0.71 3 -0.9 | 0.2921 0.252278 0.250850
5 -0.9 | 0.2872 0.282345 0.282319
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Table 3. Existing {¢'n (2), ¥n+1(x, Cn 1), Th. 1} and improved
{¥n(z), ¥n+1(x, Engr) The 2} low order bounds on A, (2)/A
for the fcc lattice of spheres.

V2 N T Un(r) | Ynsi(z, Enst) | ¥ne(r,Cna)
1 50.0 36.500 5.303030 3.290323
0.71 3 50.0 21.817 7.806020 7.768516
5 50.0 13.861 8.872180 8.870695
1 70.0 50.700 5.457399 3.333333
0.71 3 70.0 29.629 8.206098 8.163556
5 70.0 17.539 9.442256 9.440478
1 90.0 64.900 5.548043 3.357934
0.71 3 90.0 37427 8.449407 8.403644
5 90.0 21.133 9.796655 9.794679

9. Concluding remarks

By starting from: (i) N coefficients of the power expansion of A (z) at ¢ = 0,
(ii) — the analytical property A.(—1) > 0, and (iii) — the Schulgasser inequality
(2.14), an infinite set of upper and lower bounds on the effective transport coefli-
cient A.(x) of two-phase, isotropic composites have been established (Theorem 2)
and investigated in detail.

With respect to the corresponding estimations reported in literature (Th. 1),
the improvement has been obtained for the case of lower bounds on A.(x) con-
structed from an odd number N of coefficients of a power expansion of A (x), cf.
Fig. 1, Tables 2 and 3. For even N the incorporation of the Schulgasser inequality
(2.14) does not provide better bounds in comparison to the approaches neglecting
this inequality [7, 8, 22].

As an example of illustration of Theorem 2, the existing and improved bounds
on the effective dielectric constant for regular, face-centered arrays of spheres
have been evaluated and depicted in Fig. 1, Tabs. 2 and 3. A significant improve-
ment has been observed for N = 1. For N = 2 the difference between the bounds
reported in the literature [20] and in the present paper is relatively small, while
for N = 3 it is negligible (Fig.1). Note that the above conclusion is valid for a
special geometry of two-phase composite, namely a regular array of spheres. For
such a composite and for n = 4, 6, from Table 1 we have £, /C', ~ 1. In the
case of other geometrical structures, when the ratio £, /(', satisfies for instance
E,/C, < 0.5 (Tab. 1), it is possible to get much better improvement.

Appendix A

In this Appendix we demonstrate the lemma indispensable for incorporating
the Schulgasser inequality (2.14) into the bounds on A,.
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Lemma A.1. If a Stieltjes function

(A.1) = /]
0

satisfies the relations

A (1) Ae (J)
Al

then Padé approximants Ax(2)/ By (2) to A.(z)/A; obey the inequalities
An(z) An(y) :
—Y=——->1 (N=0,1,2...), y=—-z/(1+2), 2z2€ (-1,00).
BN(.’I‘)) BN(!,I) - ( ) Y L/( I) £ ( }Y')
Here An(2) and By(z) are polynomials determined by recurrence formulae
(3.8)-(3.9).

P ro o f. The analytical properties of Ax(z)/Bx(x) (N =0,1,2...) yield:

lim An(r) An(y) _

(A.2) = 1, y=—-a/(1 + 2), a € (-1,x),

(A.3)

A4 if
A I, By Ba)
An(x) An (l/) .
then in z € (-1,x),
Bw(z) Bu(y) = #& 1,5
where y = —a/(r + 1). Hence of interest is the inequality (A.3) taken for &+ —

—1%*. On the basis of Theorem 1 we have:
(i) if N is odd, then

An(=17) _ A (-17) An(oc) _ A(x)
> >
N R VI N O i ¥

(ii) If N is even, then
An(-1%) iy ,\,(—1*).

(A.5)

By(—=1%) — A
(A6) n(=1%) i
:"lN(’)G) < /\, (OC) . .
< 5 if 2>0.
1}(\’(00) /\1

According to Th. 1 and Th. 15.2 reported in [1], Padé approximants Ax(—1%)/
By(=1%) and Ax(o0)/By() (N = 0.2,...) are the best bounds for Stieltjes
function A, (=1%)/A; and A (~0)/ A with respect to a given number of coefficients
of a power expansion of A, («)/A; at @ = 0. Hence the relations

An(=17) Ax(x) o
Bu(-17) Bfoo) = ¢+ V= 02)

have to be satisfied. From (A.4)-(A.7) one can easily derive the inequality
(A.3). O

(A.7)
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