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Gas filtration through porous coal medium
Effect of the gas constrained in micropores

D. LYDZBA (WROCLAW) and J.L. AURIAULT (GRENOBLE)

GAs FILTRATION through the macropores in porous coal media, with diffusion of a gas constrained
in micropores, is investigated by using the homogenization process for periodic structures, This
technique leads to the macroscopic model of the considered phenomenon by starting from the
description at the pore level. No prerequisite is imposed at the macroscopic scale. Three different
macroscopic models are obtained. Their ranges of validity are defined by appropriate dimensionless
numbers that describe the geometrical structure and the physico-chemical properties of the coal.
In two of these models, the micropore diffusion is coupled to the filtration process by a source
term in the macroscopic mass balance. Finally, we investigate a one-dimensional flow through a
semi-infinite coal seam, when the coal is assumed to be composed of grains. This simple example
demonstrates the strong influence of the characteristic sizes of the grains and of the macroscopic
sample on the filtration process.

1. Introduction

ONE OF THE GREATEST DANGERS occurring in some underground coal mines are
gas-coal outbursts. During this violent process, gas moving with a high velocity
and crushed coal mixture endangers the health and lives of the miners. To reduce
the hazard connected with such disastrous explosions, it is necessary to know their
causes.

The mechanism of a coal outburst is investigated in several papers [e.g. 1-4].
Many factors are shown to be responsible for its occurrence. Large pressures,
the kind of gas, the exploitation stresses, the physico-chemical and physico-me-
chanical properties of coal and internal structure of the coal porous medium play
here the most important role. Many factors lead to the numerous formulae for
an outburst danger. For instance, the influence of the geometrical structure on
the outburst peril is represented by the following empirical relation [5]:

Py + 107, + 10075

(11) (l - [)1 n 1)2 T ])3

where P is the mass of the grain fraction of a diameter greater than 4 mm,
is the mass of the grains of a diameter within the range 0.5-4 mm, and P’ is the
mass of grains of a diameter smaller than 0.5 mm. All these values are obtained
from the grain size distribution of a coal specimen that was primarily crushed
according to definite prescription. When & > 13, the presence of an outburst
danger is assumed.
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However, a quantitative model describing such an instantaneous phenomenon
is not available. We limit ourselves to the investigation of the early stage, before
the explosion.

One of the most important factors is the gas seepage through the porous
coal structure, representing a triple porosity system, with three different pore
scales [6]:

¢ The scale of network sorption is characterized by capillaries with the pore
radii up to 0.3-0.5nm, in which the absorption process resembles the phe-
nomenon of dissolution.

e The scale of micropores comprises capillaries with the radii up to 1.2- 1.5 nm.

e The scale of macropores comprises pores with greater radii, where single-
and multilayer adsorption takes place and where free gas is present.

Only a small part of the gas is in a free state. The main part of the gas is
constrained at the two smaller scales, i.e., the scale of micropores and the scale
of network sorption. Depending on the magnitude of its pressure, the free gas in
the macropores may be or may not be in a thermodynamic equilibrium with the
constrained gas. When the equilibrium is disturbed, the constrained gas acts on
the gas filtration in the macropores by its emission through the internal surface
of the coal. The intensity of gas emission through the internal surface directly
depends on the geometrical structure and the physico-chemical properties of
the skeleton [7]. Therefore it often results in a strong coupling between the gas
filtration intensity and the parameters mentioned above.

The aim of this paper is to show the influence of the geometrical structure
and the physico-chemical properties of the skeleton on the gas filtration pro-
cess. The description of such complicated systems as porous media, with strong
heterogeneities of high density, is practically possible at the macroscopic level
only, where an equivalent continuous medium is defined. This can be obtained in
the following two ways. The first way is the phenomenological approach. It was
used in [3] to investigate the behaviour of the gas-coal system. The second way
includes all the different averaging (homogenization) processes for investigating
the passage from the local to the macroscopic level. The main characteristics of
these processes can be found in [8].

Here we use the multiple scale asymptotic method. This technique has been
already used in several papers to model porous materials. Some of them con-
cern multiple porosity media. Deformable double porosity media saturated by an
incompressible fluid are investigated in [9], by starting from the Navier - Stokes
equations in the micropores and in the macropores. The analysis is extended to
compressible fluids in [10]. In [11], the authors assume a rigid skeleton and a
compressible fluid, with Darcy’s law satisfied in the micropores and in the macro-
pores. The analysis presented here is an extension of these works to the study of
a porous coal medium.

In the Sec. 2, after introducing the local description of the gas-coal system, we
briefly present the homogenization process. The flow in the macropores is de-
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scribed by the Navier -Stokes equations for compressible fluids. Because of the
small radii of micropore capillaries, we assume that the mass transport of the gas
constrained in the micropores is a molecular diffusion process. For simplicity, the
porous matrix is considered to be rigid. Since random and periodic microstruc-
tures lead to the same macroscopic description, [14], we assume a periodic porous
matrix. Then, the homogenization process is applied to our problem and different
macroscopic equivalent descriptions are obtained. The main result consists in the
fact that the macroscopic gas filtration can be modelled by three different kinds
of macroscopic descriptions. Their respective ranges of validity are defined by
the values of appropriate dimensionless numbers. The reader who is not familiar
with the mathematical approach used in the Sec. 2, can directly go over to the
Sec. 3, where the results are summarized.

The quantitative influence of the gas constrained in the microporous part is il-
lustrated in Sec. 4 of the paper. For this purpose, a one-dimensional flow through
a semi-infinite coal seam is investigated, when the geometry of the internal struc-
ture of coal is assumed to be composed of spherical grains. In particular, we
investigate the distribution of the gas pressure and its gradient near the long-wall
head, depending on the grain radius. Determination of the small parameter of
scale separation in each point of the seam enables us to show the domains of
validity of the three descriptions.

2. The homogenization process

Let us introduce the physics at the different capillary and pore scales. We
assume that these scales are well separated from the macroscopic scale. The
local physics and the separation of scales represent the basic assumptions that
lead to the macroscopic descriptions. The method of multiple scale developments
does not introduce any prerequisite concerning the macroscopic scale.

2.1. Local description

Let us simplify the coal system to a single porosity medium composed of a
solid part V; and pores V,. The solid part V, comprises the porous matrix of
coal and the capillaries of the two smaller scales. Pores V), are the macropores
introduced in Sec.1. We assume that:

a. Flow of the gas in the macropores (in V/,) is described by the Navier - Stokes
equations of a barotropic liquid.

b. Motion of the constrained gas (in V}) obeys the Fick molecular diffusion
law.

c. The solid is undeformable.
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With these assumptions, the local description (at the pore level) is given by:
e the Navier - Stokes equation:

. d .
(2.1)  Av+ () + p)grad (divy) — grad p = 515} +o(vgrad)y  in V,,

e the equation of mass conservation for free gas:

)
(2.2) ‘0—;' +diver=0 in V,,
e the ideal gas law for isothermic processes:
Oa . r
2. = — /
(2.3) 0 pup in V,,

e the equation of mass conservation for molecular diffusion:
ac . : ;

(2.4) 5y —div(DgradC) =0 in V.
Here v is the velocity vector of the free gas in the macropores, p is the gas
pressure, o is the gas density, €' is the overall concentration of constrained gas in
the solid, D is the effective micropore diffusion coefficient, p, is the atmospheric
pressure, o, is the gas density at atmospheric pressure, and ;¢ and A are the gas
viscosities.

The set (2.1)—(2.4) is completed with the boundary conditions on the interface
I’ between the solid and the macropores, i.e. continuity of the mass flux:

(2.5) (ov+DgradC')n =0

and continuity of the gas pressure. Due to relation (2.3), it is reduced to the
condition of continuity of the density. The overall gas concentration C' in the
solid part can be equated to the overall gas density ¢ 0. Therefore, the condition
of continuity of the gas pressure on /" is written in the form

(26) C = ¢g0.
The adhesion condition:
2.7) vy = 0.

Here n and 7 are unit vectors, normal and tangent to the common surface [,
respectively. ¢, is the volume occupied by the gas constrained in the unit volume
of the solid. In addition, we assume the thermodynamic equilibrium between the
phases at the initial instant.

In many practical cases the bulk volume of the considered porous medium is
very large compared to the size of the heterogeneities. Therefore a very good sep-
aration of scales exists which enables us to determine the equivalent continuous
macroscopic description.
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2.2. Homogenization principle

The separation of scales implies the existence of an elementary representative
volume (ERV). In the very particular case of a periodic medium, the spatial
period represents the ERV. If [ is a characteristic length of the ERV and if L
is a characteristic length of the sample of coal or of the phenomenon under

consideration, we have

l
£ = — T
L<<

If the order of magnitude of { is known for a given material, L is determined by
the solution of the macroscopic boundary value problem (see Sec.4). Therefore
the value of ¢ is known a posteriori only. It is generally assumed that ¢ = 0.1 is
the limit for the separation of the scales to exist.

When the medium is random, the separation of scales implies a local asymp-
totic invariance. The volume averages of physical quantities in the ERV remain
constant under a translation O(/). When the medium is periodic, it results in the
local periodicity of the physical quantities. However, independently of whether
the medium is random or periodic, the structure of the macroscopic equivalent
description remains unchanged [14]. Therefore it will be assumed that the medium
is periodic, since in this case the process is much more powerful. Nevertheless, it
must be mentioned that the determination of effective coefficients needs a priori
different approaches for the two kinds of media considered. A periodic medium
is shown in Fig. 1. {2 is the unit cell, £2, is the solid part of £2, 12, is the porous
part of 2 and I" is the interface. The geometry of the pores inside the unit cell
can be chosen arbitrarily. Variation of the geometry does not modify the structure
of the macroscopic description, but only the effective coefficients appearing in it.

-

| |

T T

Fia. 1. Schematic view of the medium at the microscopic level: unit cell (2D case).
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Two characteristic lengths / and L introduce two dimensionless space variables
x, y and each physical quantity F" is a function of these two variables and time ¢.
X X 5 =
x—L, y—l, F = F(x.y, ).
Variable x is the macroscopic space variable well suited to describe the macro-
scopic variations, while y is the macroscopic space variable well suited for the
local description.

The existence of two dimensionless space variables has to be taken into ac-
count in the expressions of the differential operators. Two equivalent descriptions
are then possible. The first description corresponds to the microscopic point of
view. We get:

1
grad = T(S grad, + grad,),

o L3, 9 (0 ,
(2.8) A= 7 (v A, + 2 7z, (Oyj) + _\_(,) ,
div = %(s div, + divy).

The second description corresponds to the macroscopic point of view:

grad = l(gradx +e7! grad, ),
1 o J
2 A = — 4 r + 25—1,— e + S_z‘jf °
(2.9) = 12 (’l dz; ((?yj) ")

div = %(divf + <~ divy).

Subscripts = and y denote partial derivatives with respect to « and y, respectively.
By taking advantage of the small parameter ¢, all the physical quantities are sought
for in the form of asymptotic expansions

(2.10) F(x,yt) = FOxy 1) + e FO(x,y, 1) + 2 FO(x,y. ) + ...,

where F() is R2-periodic in y.

The method consists in incorporating such expansions into the set of equations
that describes the phenomenon at the local scale, and in identifying terms with
the same powers of <. Before that, it is necessary to normalize all equations of the
local descriptions. This means that the local description is made dimensionless
and the dimensionless numbers are evaluated according to the powers of €. A
quantity ¢ is said to be O(eP) if ™! « ¢ <« P71

The result of the homogenization process is a set of equations satisfied by
the first terms of the asymptotic expansions, that represents the macroscopic
description, within an approximation of the order of .
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2.3. Estimations

Equations (2.1), (2.2), (2.4) and (2.5) introduce the following dimensionless
numbers:

lgrad p| [(A + p)grad(divy)|
Q=2—"=1, =
1] It
| ov
_ %o _ lo(vgrad)v|
Ry = ) R = ————
. O P
(2.11) do ocC
S5 = —, M= —n———
“ 7 divovl “ 7 |div(D grad ©)
_ _ lovl
Fe = [DgradC'|’

Let us use the microscopic point of view. Therefore [ is the characteristic
length for estimating the dimensionless numbers (2.11). Using the characteristic
values v, p., 0., Ce, t. of the velocity, pressure, density, concentration and time,
respectively, the dimensionless numbers (2.11) can be expressed by

o= 2 = 278
piv, Iz
12 .l
Rg = i"[ . Ry = 2%
202 e H
e g, = My = e
ST e ST D
0.1
B EEEL
T

We limit our study to the case when the gas flow in macropores is slow and
quasi-permanent. It means that the Reynolds numbers E,; and 1, are assumed
to be small, ie.,

Re < O(¢) and Ry < O(¢).

We assume that the gas viscosities A and g are of the same order of magnitude
(with respect to ¢). The dimensionless number //; becomes

1, = 0Q).

The number @; can be estimated by physical considerations [15]. The gas flow is
forced by a macroscopic gradient of pressure. Therefore,

lgrad p| = O (’;—) .
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Since the gas is flowing through pores of size [, the characteristic length in evalu-
ating the viscous term is [:
HU:
m4ﬂ=0(ﬂ).

For slow and permanent flows, the pressure term in Eq.(2.1) is equilibrated by
the viscous term. It follows that
JLUe De
=0(=
7 =0(%)

and the dimensionless number (); becomes

pel

@:0( ):mfw

1V,

C

Estimates of the dimensionless numbers 5, and A, are obtained from the con-
ditions for the homogenization to be possible. As it was shown in [16], number
Sy should fulfill the following inequality:

(2.13) Su < 0(e).

In the same way it is easy to obtain a similar restriction on M:

(2.14) My < 0(1).

Now, by taking into account the definitions (2.12) of ’,;, S, and Ay, the following
relation can be written:

""[” D

S“ (»'1- ’

Assuming that p. and C. are of the same order of magnitude, and assuming
for the moment that

])(l =

My =0(E™) and Su = 0(e*),
the following estimation of P, is obtained:
1)6[ _ ()(Snl—s),

where m and s are non-negative integers.

It is well known that the filtration coeflicient is very much larger than the
coefficient of the micropore diffusion, and that the main flux of the gas flow
through the porous medium is due to the filtration process. Therefore we confine
our study to the case

Py 2 O(I)
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This restriction, together with the above estimation of P, leads to the inequality
for m and s:
m—s <0.

In the following, numbers m and s will be used to distinguish between different
types of the considered phenomenon.

On the other hand, it is interesting to introduce two characteristic times 7p
and Ts of the fluid diffusion and fluid seepage, respectively:

I L

TS -1 D -1 S‘t[ —m-—1
] A = — = ¢ — = gs e
(216) Tp . © My
Finally, by defining the dimensionless variables
: v . p . 0 o (#
b T = — = —, = —, = —,
(2 7) ! 'UC ' p 1)(" 0 Qn" ( (»—"(‘

and by taking into account the above estimates of the dimensionless numbers
and the relations (2.8), we obtain the following dimensionless form of the local
description:

(2.18) (52;\1. + 2¢ _?d (»j—)—) + _\U) v' + (cgrad, + grad )(c div, + divy V"
dx; \Jy; : ;

_ . LOv* . .
—(grad, + ¢ 1grady)p ol & + eo"v"((c grad, + grad )v"),
(2.19) 5‘())‘{’ + (e div, + div,)(0"v") = 0,
(2.20) 0" = g—c—%p* in &,
m 0(]" . . - »
(2.21) i~ (¢ div, + div,)D(¢ grad, + grad, )C™ =0 in {2,
(2.22) (€™ 7°0"v" + D(c grad, + grad )C")n = 0,
223) C'= (”,asn
(2.24) vig =10 on [

At the initial instant of time, the thermodynamical equilibrium requires that

»

L= &d)sn

FARAL everywhere.
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2.4. Macroscopic description

We introduce into the normalized set (2.18)-(2.24) asymptotic expansions
(2.10) for v*, p*, p* and C*. Grouping the terms with the same powers of ¢, we
get sets of equations to be satisfied by the consecutive terms of the asymptotic
expansions. For the sake of simplicity, the asterisk marking the dimensionless
variables is omitted in the following considerations.

From Egs. (2.18), (2.20), (2.23) and (2.24) we obtain:

gradyp(o) = 0.

(2.25)
Ayvm) + grady(divy)v(o) - gradl.p(0 - gradyp(” =0,
(2.26) 0 = ’j— ]é’ﬂp(m in 12,
LC )(l
(2.27) CO = 24,07,
(2.28) viOy = 0, vy =0 on I.

Equations (2.19), (2.21) and (2.22) directly depend on the values of the par-
ameters m and s. Therefore, to obtain the sequence of equations for the con-
secutive powers of ¢, it is needed to assume the accurate values of m and s.
Different values of m and s lead to different sets of equations and, as a conse-
quence, to different equivalent macroscopic descriptions. Four cases of interest
can be distinguished:

Case 1. Model 1. Diffusion-filtration coupling with memory effects, s = 1
and m = O, A= ()(1), Tp = ()(Tg).

Case II. Model II. Classical diffusion-filtration coupling, s = 1 and m = 1,
A=0(E"), Tp > O(Ts).

Case III. Model III. Classical seepage law, s > 2 and m > 0, A = O(¢),
Tp < O(Ts).

Case IV. Non-homogenizable situation, s = 0 and m = 0, A = O(="").
Clearly in this case the condition (2.13) of homogenizability is not fulfilled. Case
IV leads to a non-homogenizable situation, i.e. a situation where an equivalent
macroscopic description is not possible. A direct proof of that is presented in the
Appendix.

Model I. Diflusion-filtration coupling with memory effects, s = 1, m = 0,
Su = 0(e), My = 0(1), Py = O, Tp = O(T5).
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With this estimation we get from (2.19), (2.21) and (2.22) the following equa-
tions:

div, (o6v?) = 0,

(2.29)
Do OO 4 i (DO 4 O :
T + div,. (") + div, (o' VY + V) = 0 in £2,,
oco ; .
(2.30) T div, (D gradyC(O)) =0 in (2,
) RONUNS
(2.31

(Q(O)Vm + orWy(O 4 DgradyC(O))n = ( on I

Equations (2.25)-(2.31) give a sequence of boundary value problems for the
first terms of the asymptotic expansions.
The first problem following from (2.25), (2.26) leads to:

2O = Oy p).
(2.32) / ] t.0)
0 O(x, 1) = B Ql])(o)(x, t).
O¢ Pa

The first terms of the gas pressure and of the gas density are locally constant over
the macropores §2,,.

The second problem is given by (2.27) and (2.30). It is similar to that discussed
in [17]. To solve it, the following substitution is applied:

{ i ~
Ulxy 1) = CO = Z26,00(x.1).

This leads to the set of equations

au . 0. 00O
v div,(Dgrad, ) = —agbsa—[

Ux,y, t) =0 on [I.

in (2,
(2.33)

The thermodynamic equilibrium at the initial time gives
U(x,y,0)=0.

By using the Laplace transform, we obtain

; ; i oc , o[22
al(U) — div,(D grad L(U)) = —acpsL ( Tl
(2.34)
LWU) =0 on [,
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where a is the complex Laplace variable and
L) = / Ve d.
0

The right-hand side of (2.34); does not depend on the microscopic space vari-
able y.
Therefore the solution of (2.34) is a linear function of this forcing term:

) ,(0)
(2.35) L) = - £6,6(G(,0)L (Og, )

where L£(G(y,t)) is the solution of (2.34), when the right-hand side of (2.34), is
equated to unity. We use now the volume average defined by the formula

() = %/nm,

and we apply the inverse Laplace transform to (2.35). We obtain from the con-
volution theorem

t

0. [909 |
Y = N L = .
(2.36) (U) s ] 5y (Gl = Thdr
0

Finally, introduction of the concentration gives the solution of the considered
second boundary value problem in the form:

t

90(0)
(2.37) (COy = %d}s ((1 ~ ¢)o® — f %((}'(f — T))r[T) ,
JC 0 ’

where ¢ is the porosity, ¢ = §2,/f2. The average is evaluated by assuming the
concentration C'”) to be zero in £2,.

Relation (2.37) shows that the gas concentration depends on the history of
the first time-derivative of the gas density. Function (/(f) represents a memory
function.

The third problem to be solved is given by the equations (2.25),, (2.28)y,
(2.29)1, (2.31); and the condition of R2-periodicity of p(!) and v("), By taking into
account the relations (2.32), this set becomes

AN — grad p© - gradyy)(l) = 0.
(2.38)
div,v@) =0, v

r =0.
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The system (2.38) represents the classical problem of flow of an incompressible
fluid through a rigid porous medium. At this stage, p{?) is considered as a known
function of x. The unknowns v(?) and p(!) are linear functions of the macroscopic
gradient grad,p® (see for example [18, 19]). In what follows, only v(? is needed:

9,,(0)
0 _ dp .
v, = —kij(y)o— in £2;.
e !

By taking the volume average of v{?), we obtain the well-known Darcy law:

(2.39) (! = —(ky; T

The fourth problem leads to the macroscopic mass conservation law and is
given by (2.29),, (2.30) and (2.31),. By integrating (2.29), with respect to y on
2, and by using the divergence theorem, we obtain

20 \ 1 ; i

“ ; (0) /,,(0) o (D (O) £ (O, (1) P

o] e + div, (g <: >) + 2] / (g Vi e Y )n(l.S = 0.
52,

By taking now into account (2.30) and (2.31),, the above equation leads to the
following form of the macroscopic mass conservation law:

Do (O
Nk i (0) / ,(0) —
(2.40) 19 T + div, (Q <v >) + 3 0

The last term in the mass balance equation (2.40) represents a source term due
to the diffusion process in the micropores.

Equations (2.32), (2.37), (2.39) and (2.40) represent the macroscopic descrip-
tion. Returning to the physical variables, they assume the form

p© = ]J((')(x~ ),
nlt
oK1y = LX),

a

/ 900
(2.41) (€O =g, [ (1- )@ - f (G - Tr |
0
Y 9

(20 = _{kig) 0

‘ oo 0N

D00 A(CO)y
A v o (o0 (0 _
@ T + divy (g (v >)+ T = 0.

The set (2.41) exhibits the memory effects, similarly to [9, 10] or [11].
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Model II. Clasical diffusion-filtration couplings, s = 1, m = 1, 5y = O(¢),
My = O(¢), Pu=0Q), Tp = O(c™'Ts).

In this case we get from (2.20), (2.22) and (2.23) the following sequence of
equations.

div, (6@v®) = 0

(2.42) 3
% + div, (0 OV + div, (0O + oDy =0 in 2,
(2.43) div,(D gradyC(O)) = 0,
' 90 .
Z( —div, (D grad,C®) - div, (D grad,C'V + D grad, ") =0 in 2,,
0,0 4 Oy =
(2.44) (o™v D grad,C"")n = 0,

(e Ov) + o0 4 D grad, C® + Dgrady(,'“))n =0 on[.

Case II is described by the above system, together with Egs. (2.25) - (2.28).

As before in the Case I, the first boundary value problem to be investigated
is given by (2.25); and (2.26), and it leads to the relations (2.32).

Equations (2.43); and (2.27) constitute the second boundary value problem.
By using an equivalent variational formulation, [17], and by taking into account
the equation (2.31),, we obtain

(2.45) cW = £ ( o0 W(x.t)  in £,

The third problem is described by (2.25),, (2.28);, (2.42), and (2.44),. The
above result (2.45) transforms Eq.(2.44), into the relation (2.31);, and the set
under consideration becomes equivalent to the corresponding one investigated in
the Case I. Therefore the Darcy law (2.39) is valid in this case too.

The macroscopic mass conservation law follows from the fourth boundary
value problem. Tt is given by the set (2.42),, (2.43), and (2.44),. Using the above
results, the considered system can be rewritten in a simpler form:

(0)
‘)(’;[ + div, (0 Ov?) + div, (o' + pOy(Dy = 0,
9((0)
(2.46) di{ — div,(D grad, " + Dgrad, V) = 0,
; : :

(0O + oWy 4 pgrad O + Dgrady("“))n = 0.

By applying the same method as in the Case I, the set (2.42), (2.46) yields the

macroscopic mass conservation law:

D00
dt

+ div,. (”(0) <v(0’>) + (1 - (,*))d('(O = 0.

(2.47) )
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As in the Case I, the last term occurring in the above equation is a source term
due to the diffusion process. Therefore, as in Case I, the gas constrained in the
micropores interacts with the filtrating gas. However, the coupling is now clasical,
and it does not introduce the memory effects.

The macroscopic equivalent description is given by Eqgs. (2.32), (2.39), (2.45)
and (2.47). When they are expressed in terms of physical variables, they have the
following form:

p(O) . ;)(O)(X, t),
Oa
9(0)()(’ )= p_p(ﬂ)(X, 1),

a

(2.48) c® = ¢,00(X, 1),

<,U(0)> - _( u> 201)(0)
! ) ()\

4500—@ + divy (9(0 <v(0)>) + (1 - @)0('(0) =0

Model III. Classical seepage law, s > 2 and m > 0, Sy < O(c?), My < 0(1),
Pa > 0(), Tp = O(<Ts).

For simplicity, we do not present here the homogenization process. The pro-
cedure is very similar to that of the Cases I and II. Tt results in a macroscopic
description similar to (2.48), without the time derivatives.

The Case III describes, at the macroscopic level, the stationary gas filtration
in the micropores, without any influence of the diffusion. The macroscopic equiv-
alent description is given by the following set:

(1) = - adplee,

divy (g(ﬂ) <v<0))) =0.

Moreover, the gas concentration in the solid is given at the first order of magni-
tude by
for M, < O(¢)

(2.49)

cO = ¢sQ(O)(Xs1’);
for My = 0(1)

r 000
(C) = o, ((1 — #)o'% - ] %(("(r - 7)) dr) :

0

where 0
PO = O 1), 2OX. 1) = ;)—"P(m(x’ )

a
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3. Remarks on the macroscopic behaviour

The passage from the pore scale to the macroscopic scale shows three different
equivalent macroscopic descriptions, depending on the value of the dimensionless
numbers:

Caske 1. DiflTusion-filtration coupling with memory efTects

(0) A2
¢)0P _ div ((’nzj)’ - (I)(O))z)
!L

ot
ap® ; J dp(“)
a o J

(CO) = ¢, ((1 - $)e® - / ‘);1 (Gt —)) f”) :

0

(3.1) + (1 — ¢) 26~ ) u’r) =0,

Case II. Classical diffusion-filtration coupling

()[)(O)
ot

)[)(0)

o—F = 0,

— div ((I\z >l' gldd (])(U )2) + &, (] o Q))

(3.2)
CO = ¢,00(x,1).

o0
ad . As in the Case I,

The coupling is represented here by the term ¢4(1 — U)
the coupling term disappears when ¢, = 0.

Case III. Classical seepage law

(3.3) div (U - 1L grad (p'") ) = (.

and, additionally,
for My < O(¢)
o = r;)_sy(m(x. 1);

for My = 0(Q1)

t

(CO) = ¢, ((1 - ¢)o® - / (}:; (G =) dr) '

0

The above equations have to be supplemented by suitable initial and boundary
conditions for p(©.
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We remark here that the physical meanings of the macroscopic quantities p(®,
0 and (C©) do not pose any problems since they are equal or proportional
to the corresponding local quantities. Relations (3.1); and (3.2), represent the
constitutive equations of the gas. They give the concentration in the micropores as
a function of the gas density in the macropores. The gas filtration is governed by
the classical Darcy law. The macroscopic mass balance is represented by (3.1); or
(3.2); or (3.3);. Their respective ranges of validity are obtained from the values of
the dimensionless numbers. However, the description I is the most powerful since
it comprises the descriptions II and III as particular behaviours. The descriptions
IT and IIT are obtained in the limit from description I for slow and rapid transient
excitations, respectively.

Let us now study the total mass flux of the gas. It is the sum of the filtration
flux and the diffusion flux,

F = o(v) — (DgradC).

To determine the contribution of filtration and diffusion in the total flux, we use
again dimensionless variables. For the sake of clarity of the description, we do
not omit now the asterisk which denotes the dimensionless variables. Within the
approximation of O(<), the above relation becomes:

DC. :
0) — , ., «(0) /=0y e |z g =(0) . =(0)
F 0D [g <v > oo (_ grad (C™) + (grad ( ))] .
Now, from the definition (2.12) of the surface Peclet number
DC'.

-1
= P .
0.1 o

L of

we have
FO = o, [o" (v ) — P71 (< grad (™) + (grad,*))] .
By using the estimations presented in the Sec. 2, it becomes in all cases
[F = 000" O(v )| < O).

The total mass flux is equal to the pore filtrating flux within the approxima-
tion O(g).

4. One-dimensional problem

To emphasize the influence of the gas diffusion, let us consider the one-dimen-
sional macroscopic boundary value problem. Consider the gas filtration through
a horizontal and semi-infinite coal seam. In addition, we assume that:

e the coal stratum is an isotropic and homogeneous porous medium of constant
thickness,

e the roof and the floor are impermeable to the gas,
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e the mine opening is maintained at the atmosphere pressure p,,

o the initial pressure p; in the coal seam is constant,

o the long-wall head moves with a constant velocity w.

With the above assumptions it is possible to change the problem to a steady
state problem. We introduce the moving system of coordinates (&;. &. &3), Fig. 2,
with £ = 27 — wt and & = 0 on the long-wall head. The derivatives are trans-
formed into the form:

8 @ d )

4.1 g 2 2_.E.

¢hl) dzr, 0§ at - Cog
Jlxz 4 gz

A A A R A

coal seam

impermeable layer

wt t1=X,-owt
X1

FiG. 2. Geometrical scheme of the one-dimensional problem.

We investigate three boundary value problems where one of the three descrip-
tions is assumed to be valid everywhere throughout the seam:

I. Gas filtration with diffusion in the solid part and with memory effects (the
model (3.1), Case I).

IT. Gas filtration with gas diffusion in the solid part and without memory effect
(3.2), Case II.

ITI. Gas filtration without any gas diffusion in the solid part (the classical
model described by (3.3), Case III).

The solution of the Problem IIT can be obtained by direct integration of the
differential equation describing this case. Taking into account the boundary con-
ditions

dp ) )
a6, =0, P = pi at & o0,
P = Pa at & =0,
gives the gas pressure distribution and its gradient in the form [4]:

(k)

P — Pa
4.2 = Pa—p+piInl ——]1,
(42) 3 Ppw [p P (111- —p )]
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43 — = — -
(43) & (k)2 Lp

Consider now the Problem II. It is easy to conclude that its solution can be
obtained by changing ¢ into ¢ + ¢,(1 — ¢):

dp Pw L [p,- ]]

_ (k)12 [ . (Pi - m)]
(4'4) El = (Q’ s Qf)s[‘l - Q')])/I\’JJ pu p it 1"! ln ?)[ - 7) ]
dp [+ ¢,(1 — @)]wpn [])_1 ]
(43) o6~ e »

Solution of the Problem I necessitates the memory function ((/(¢)). It is de-
fined from the set (2.34), where the right-hand side of (2.34), is equal to unity.
In order to present a closed analytical (not numerical) form of the memory func-
tion, we confine our study to a very simple model of the periodic cell. We assume
spherical grains with radii 2. The spatial structure of the grain packing is shown
in Fig.3. The grains are assumed to constitute of a homogeneous and isotropic
microporous medium.

I'1G. 3. Micro-gcometry of the porous coal medium.

By using spherical coordinates and by putting /1 (r.t) = G/(r,t)+r, the set (2.33)
can be written in the form:
L (r 1)
dr? -
L(H(r,t)=0 for r=20 and r= R,

where r represents the radial coordinate.

al(H(r,t))—- D
(4.6)
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The eigenvalues and eigenfunctions associated with the set (4.6) are:

mm\ 2 2 mm
Am = D , P = i r.
(1{) ¥ lz“”(u )

By looking for L(# (r,t)) in the form:

L‘(II (l.[)) = Z (IT)l(foTH'I

m=1

we obtain
, 1ovam prsir
Uy, = — mi),
a+ A, mw
and

cos(mm) | mm
( ) S ( : ) 5

a+ /\m mm I

L(H(r.0)) = -2R Z

The Laplace transform of the functlon (.(r,t) is

- 2R = cos(mmmw) . [(mm
LGr D)= —— Z ”+/\ - sm( B I)

Finally, by taking the volume average of the above equation and applying the
inverse Laplace transform, we obtain ((/(/)) in the form

S

@.7) GO =Y —=

—D(mr/It)%t
5 [§ =
me=mn

m=1

Let us return to the Problem I. The memory effect in Eq.(3.1) is given by
the convolution product of the memory function by the time derivative of the
pressure. By integration by parts, this product can be presented in the following
equivalent form:

t

4.8) / g—’r’(c(:. el

0

_ i i )n+1 1 (i)z ‘{[U”P} B [U'J] (\—[)(krr/lf):l}
e s m2r | D \mr Fi e I 7] I )

By using the transformation rules (4.1) and by taking into account the above
relation, we reduce the mathematical model of the Problem T to

(4.9) —pw— — T —— — 9,1 - Pw—
( T 1

RZH )IL+1P

+1
— o, 2 : n [ =
nae2n+l M n+1
Sus Dnx aE;
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o] 1 n+1
=% (22) -
T
m

=1
Clearly, Eq. (4.9) is too complicated for analytical solution. Therefore, a numerical
iteration procedure is introduced to obtain an approximate solution. It gives the
distributions of the gas pressure and its gradient. The results are plotted in Fig. 4
and 5, together with the results of IIT and II. The gas is carbon dioxide. The
following typical values have been used in the calculations:

¢ macropore porosity: ¢ = 0.05,

¢ micropore porosity: ¢s = 0.11,

where

4

(k)2
= MNs’

o coefficient of filtration:

e diffusion coefficient in the micropores: 1) = lO‘“m?,

o radius of grain (three cases): Ry = 1073 m, Ry = 2x1073m, B3 = 4x10~3 m,
e initial gas pressure in the coal seam: p; = 4 MPa,

e velocity of the long-wall head: w = 8 x 10~ m/s.

p
iMPa]

3r 5

2 i 4
] \ \
\

2 b

’ o

0 ’ 5 T ' T 20 timi

Fi. 4. Distribution of the gas pressure in the coal scam: 1 — Solution II, 2 — Solution 1
for B = 1mm, 3 — Solution I for 2 = 2mm, 4 — Solution I for # = 4 mm, 5 — Solution IIL

Figure 4 and Fig.5 show that II yields larger values of the gas pressure and
of its gradient, whereas III gives lower values. The solutions IIT and II can be
considered as bounds for the solution I. When there is no available information
about the geometrical structure of the coal, they can be used as rough approxima-
tions of the pressure and its gradient. Note, hovever, the large difference between
the two solutions IIT and 11, in particular between the pressure gradients at the
long-wall head.

The most important factor responsible for the occurrence of a gas-coal out-
burst is the gradient of the gas pressure at the long-wall head [4]. Tt is shown in
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grad (p)
[MPa/m]
5 L

0 o5 o0 @5 020 ¢im]

F1G. 5. Distribution of the gradicnt of the gas pressure in the vicinity of the long-wall head:

1 — Solution II, 2 — Solution I for R = 1mm, 3 - Solution I for R = 2mm, 4 — Solution I for
R =4mm, 5 - Solution III.

Fig. 6 as a function of the grain radius. We conclude that the solution I converges
to the solution IT when the radius of the grain becomes smaller and smaller, and
converges to the solution III when the radius becomes larger and larger. The
curve in Fig.6 shows also that a smaller radius yields a larger value of the gas
pressure gradient at the long-wall head. We can immediately see the important
role played by the grain radius or, more generally, the geometrical structure of
coal. Our results agree with the empirical relation (1.1).

grud(p)
(MPa/m]
5 -

]0 IL 2 3 4 é 6 R (mm]

F1G. 6. The gradient of the gas pressure at the long-wall head versus the grain radius.

It is interesting to investigate the domain of validity of each description in the
seam. It is now possible to estimate the macroscopic characteristic length L(€) in
each point of the seam, by using

_ dp /()2])
067 9&”
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The solutions I, IT and ITI give approximately the same result. The resulting pa-
rameter ¢ is shown in the Fig. 7. It is seen that ¢ is small everywhere, except in
a thin layer at the long-wall head where it goes to infinity. In this region there
is no separation of scale and, consequently, there is no macroscopic description.
The solutions I, IT and TIT remain valid outside this boundary layer, i.e., approx-
imately where ¢ > 0.1. The results in Fig. 6 are nevertheless valid because of the
momentum balance applied to the boundary layer.

£
ary

oor t

0001 ¢

0.0001

1 L L i N R WA NN RN S S| L L L n 1

0 20 20 60 80

FiG. 7. Distribution of the parameter of scale separation ¢ in the coal scam.
The domain of validity of each description can be investigated by using the
dimensionless number:

Tp _ 6_15” = DL
Ts My 2o’

where v, is given by _
. = Elz dp

S 94

We have A = O(1), O(¢~!) and O(¢) in the Case I, 1T and III, respectively. A, ¢
and ¢! are plotted for comparison in the Fig.8. The figure shows four regions:

& < 0.01 m, ie. e > 0.1,
corresponds to the boundary layer where no macroscopic description is possible.
0.01m < & < 0.3m,

near the boundary layer, A = O(¢), Tp = O(<Ts), and the classical description
IIT can be applied.
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03m< & <20m, A= 0(1), Tp = O(Ts).
and the description I, with memory effects has to be considered.
£1>20m, A=0("1), Tp=O0("1Ts),

and the description II, classical coupling, is valid.
NH
ur I 1

10000 |

100 i

aor ¢

G 001 o1 i 10 100 1000 %,

FiG. 8. Domains of validity of the three models. I: A = O(1), Model L IT A = O(=~") Model 1.
I A = O(<), Model TII. NH: non-homogenizable.

5. Conclusions

The above study shows that the influence of the diffusion process in the mi-
cropores on the gas filtration in the macropores depends on a source term in the
macroscopic equation of mass conservation. The filtration and the simultaneous
diffusion of the gas are modelled by three different macroscopic descriptions.
Appropriate dimensionless numbers, related to the physico-chemical properties
and the geometrical structure of the coal, determine the model to be used. In
particular, it is shown that the gas concentration exhibits memory effects if A, the
ratio of the diffusion to the convection characteristic times, is of O(1). When A
decreases to A = O(¢), the memory effects disappear and the model converges
to the classical filtration model. The diffusion in the solid part is ignored. When
A increases to A = O(c~"), the memory effects disappear too, and the model
converges to a filtration-like model. The behaviour is described by an equation
similar to the classical filtration process, but where the porosity of the macropores
is replaced by the total porosity of the micropores and the macropores. The two
last behaviours, i.e., the filtration without any diffusion and the filtration with
the classical difTusion process, give bounds for the solution of the filtration with
memory eflects.
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Appendix

Non-homogenization situation: s = 0, m = 0 (Case 1V)
From (2.19), (2.21) and (2.22) we get

(0)
(A1) g0 v,V =0 i 2,
(
)
(A.2) 3% div,(Dgrad,C™) =0  in £,
(A.3) (e VO + DgradyC(O‘)n =0 on I.

The above set, together with Egs. (2.25)-(2.28), yields the sequence of the bound-
ary value problems to be solved.

The first one is described by (2.25),, (2.26) and leads again to the rela-
tion (2.32).

Equations (A.2) and (2.27) determine the second problem. They are equiv-
alent to the corresponding ones in the Case I. Therefore the first term of the gas
concentration satisfies the relation (2.37).

Now we solve the fourth boundary value problem described by (A.1), (A.2) and
(A.3). Taking the volume average and using the divergence theorem, Eq.(A.1)

takes the form: -
), 1
(f)( 3{ + W / (Q(O)V(()))Il dS = 0.

402,

The condition (A.3) transforms the above equation into:

‘ (')Q(
¢

— — [ (Dgrad, ('M)nds =
ot |Q] 1/( grad, (T )n d5= 0.
df?

Now, by using (A.2) and again the divergence theorem, we obtain the following

relation: - i
do d(C
o— — <_ ) =0
ot il

Substitution of (2.37) leads to

89(0) 7 ()r)( )0 t D0
TR ((] TR U gr (Gl=mhdr) ) =0.

0

Application of the Laplace transform and the convolution theorem leads to the

equation
N ((‘)0(0)) [ 0c
L = ¢ —
ol

where a is the complex Laplace variable.

(ciw)] =0
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The above relation must be valid for any values of « and for any geometry of

the period f2. Therefore, it is clear that
FRQ)
® ] =0
ot
and then

D
o

This condition leads to the rescaling of the dimensionless number 5,;. This one
becomes of the order of magnitude O(<), that is in a contradiction with our initial
assumption Sy = O(1). Remark that Sy = O(1) does not satisfy the condition
(2.13). We conclude that the case under consideration is not homogenizable.
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