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The Wigner potential method in the investigation 
of thermal properties of regular composites 

S. MAY, S. TOKARZEWSKI and A. ZACHARA (WARSZAWA) 

FOR PERIODIC, two-dimensional potcntials satisfying the Laplacc equation, a new functional ba-
sis, different from that used by RAYLEIGH [ 1), has been derived. This basis allowed us to con-
struct a simple recurrence formulae for evaluation of an effective transport coefficients for regular 
two-dimensional composites. As an example, the power expansion of an overall conductivity for 
square array of circular cylinders has been evaluated. 

1. Governing equations 

THE TEMPERATURE distribution and the effective conductivity of composites of 
regular structure were first investigated by RAYLEI GH [1 ]. He performed calcu-
lations for rectangular arrays of circular as well as spherical inclusions. The ap-
proach of Rayleigh was next developed by many other authors [2-4]. In this paper, 
we present a method of solving the two-dimensional periodic problems by using 
a new functional basis different from that used by Rayleigh. This basis appears 
to be very convenient for seeking the solutions of Laplace equation and leads to 
very effective algorithms. 

Let us consider a material composed of circular cyl inders of conductivity >..d, 
embedded in a matrix of conductivity >..c. The composite is subjected to an external 
linear temperature field. The elementary cell is presented in Fig. 1. Let a be the 
cylinder radius, l - the distance between the cyl inder axes, yd and y e - the 
temperature of inclusions and matrix, respectively. The temperature field in a 
unit cell fulfill s the conductivity equations 

(1.1) 

and the boundary conditions for T = a 

for T > a, 

for T < a, 

y e = yd 
) 

(1.2) 

where T, () are polar coordinates with the origin located on the cylinder axis. 
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FIG. I. 

Rayleigh obtained the solution of Eqs. (1.1) in the form: 

ｾ＠ ( k bk) T c(r , B) = ｾ＠ akr + rk COS kB , 
k =J 

(1.3) 
00 

T d(r, B) = L Ckrk cos kB . 
k=J 

The solution may be interpreted as generated hy an infinite system o f multi-
poles located at the cylinder axes. We have here three infinit e sets of coeffi cients 
｡ｾ＼Ｌ＠ ｢ｾ＼Ｎ＠ q, (k = 1, 3 , .. . ) since, due to the symmetry conditions, only odd values of 
k are allowed [1 ]. With the aid of the boundary conditions (1.2), the coefficients 
ak and Ck may be expressed as linear functions of ｢ ｾ｣ Ｎ＠ To determine ｢ ｾ＼Ｌ＠ Rayleigh 
made an assumption that the part of the potential in the unit cell correspond-
ing to the term of Eq. (1.3)1 which is non-singular in the unit cell center r = 0 
resulted from two sources. The first of them is the external gradient of temper-
ature. The second one is a joint influence of the multipoles from the other cells 
corresponding to the terms of Eq. (1 .3)1 which are singular in the centers of these 
cells [1 ]. This assumption leads to the following infinite system of equations for 
the coefficients bk. 

(1.4) 
•1 (u + 2) _ ｾ＠ (k + j - 1)! .. 

bk,l + k. 2k bk- ｾ＠ c._ 1), sk+1&1 , 
ua . 

1 
J . 

] = 

k = 1, 3, 5 ... ) 

where 

(1.5) 



http://rcin.org.pl

TilE WIGNER POTENTIAL MET II OO IN Til E INVEST IGATION OP Tll f: RMAL PROPERTIES ... 431 

(1.6) 

Symbols Sm denote the Rayleigh sums, (xn, Yn) are Cartesian coordinates of 
the centers of the cells, i is an imaginary unit and { n} denotes summation to 
infinity in the directions of x and y over all cylinder centers lying outside the unit 
cell. The sums Sm depend on the geometrical properties of the array. Numerical 
values of Sm for square and hexagonal arrays are given in [2]. 

The approximate values of bk can be calculated from Eq. (1.4) subjected to 
truncation. The effective conductivity of a composite depends on the coefficient 
b1 according to the formula derived by RAYLElGH [1], 

(1.7) 

For a square array of cylinders, the temperature distribution Ti (1·, 0; c.p, u) and 
the effective conductivity Jt(c.p, u) depend on two dimensionless quantities: the 
cylinder volume fraction c.p and physical properties of the components represented 
by u (1.5). Coefficients ab bk and q appearing in (1.3) are f unctio ns of c.p and 1t. 

It is well known that the Rayleigh method provides the non-unique solutions 
for Acf, since the second Rayleigh's sum .5'2 over the infinite array of cyli nders 
is only conditionally convergent, i.e., it depends on the shape of the exterior 
boundary o f the composite. This was the reason why, for a long time, many 
authors were questioning the correctness of the Rayleigh approach [5]. In 1979 
M c PHEDRAN et al. [2] pointed out that an infin ite, flat layer of a composite 
subjected to the external temperature gradient is the only correct sample shape 
for calcuiatiofl" of Acf by the Rayleigh method. 

An interesti ng approach has been proposed by ZuzovsKr, BRENNER [6] and 
SANGANI, ACRIVOS [7]. Their methods avoid all the difficu lti es of the Rayleigh 
method mentioned above. They decomposed the temperature field into two com-
ponents. The first one is a macroscopic shape-dependent component yi,m, and 
the second o ne is periodic, depending on the geometry and physical properties 
of the composite y i,p, 

(1.8) y i = y i,m + y i,p 
' 

where i = c, d. In view of the periodicity of the temperature field and the square 
symmetry of the array, the normal derivative of the periodic component of tem-
perature is equal to 0 on the cell boundary, 

(1.9) n ·V'T'c,p = 0, 

where n is a unit vector normal to the boundary of the cell. Condition (1.9) may 
be considered as equivalent to the equations of Rayleigh (1.4). 
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It was shown in [6, 7] that the periodic component may be expressed by an 
infinite set of derivatives of a certain function To called the Wigner potential 
(8]. By using these derivatives ZUZOVSK.l , BRENNER (6] and SANGANI, ACRlVOS 
[7] investigated the effective conductivity of regular arrays of spheres. They no-
ticed that successive derivatives of T0 formed a functional basis convenient for 
representation of solutions of three-dimensional Laplace equations. 

The main aim of this paper is to construct a new functional basis for periodic, 
two-dimensional potentials generated by the Laplace equation. As an example, we 
will derive a simple recurrence formula for evaluation of the effective conductivity, 
in the form of a power series in u, for a square array of circular cylinders. 

2. The functional basis 

The Rayleigh functional basis consists of multipoles located in the centers of 
single cells. These basic functions do no t fulfill the periodic boundary condition 
on the boundary of the cell. Our aim is to find a basis, the elements o f which 
fulfill identically the periodicity conditions. Such a basis can be built up with the 
aid of the Wigner potential. In this section we shall limit our investigation merely 
to the periodic term Ti ,p of the temperature field. For the sake of convenience, 
the upper index p in T i,p will be omitted, i.e. Ti ,p = T i . 

Let us consider an infinit e system of point heat sources of intensity q, located 
in the nodes of a square array of period /, accompanied by neutralizing fuzzy 
sources of uniform density r = - q / l of the opposite sign. In such a grid, the 
global intensity of sources is equal to 0. The temperature field generated by such 
a system of sources fulfills the Poisson equation (2.1 ) 

(2.1) V 2T = - 27rq . (o(r) - Ｑ ｾＩ＠ , 

and the boundary condition (1.9), where o(r) is the Dirac function. The solution 
of equations (2.1) and (1.9) was given by CICHOCKI and FELDERHOF [8] in the 
form: 

(2.2) To(r) = q ·(- In 1· + ｾ Ｑｲｲ Ｒ＠ + t Am1.m cosmB) . 
m=4 

Coefficients Am were found in the process of summation over an infinit e grid of 
cells, with the exception of the cell located in the center of the coordinate system. 
Coefficients Am are related to the Rayleigh sums Sm (1.6) as foll ows, 

The index m in (2.2) is a multiple of 4, because T0(r) is independent of rotation 
of the frame of reference by the angle 1r / 2. The first term in the parentheses 
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of (2.2) represents the infl uence of a single source located in the center of the 
cell , the second one is generated by the fuzzy sources, while the third term given 
by the infinite sum is due to the sources located in the external cell s. Function 
(2.2), call ed the Wigner potential [8], can be used as a starting point for the 
construction of the functional basis for periodic two-dimensional potentials. 

A multipole o f order k includes 2k point sources, and it is defin ed by the scalar 
intensity qk and k unit vectors n3 , s = 1, 2, ... , k, representing the directional 
properties of the multipole (see for example [9]) . The multipole potential is 
proportional to the k-th directional derivative of the point source potential in 
directions n 1, n2, . . . , n k. respectively. 

(2.3) k = 1, 2, . ... 

For a classical multipole, To(r) is the potential of a point source in an infinite 
region: in the 2-dimensional case 

(2.4) To(r) = - In r . 

Instead of a single multipole, one may consider an infinite system of identical 
mult ipoles of order k located in the nodes of a square array. To determine the 
potential of such a grid, one should apply the operator of the right-hand side of 
(2.3) to the function T0(r) defin ed by (2.2). Posit ive and negative fuzzy sources 
balance each other and they have no influence on the global potential. 

In the operator ns • \1 of directional derivative, one may distinguish two com-
ponents of different types o f symmetry, 

(2.5) 

where 

[) sin B [) 
U = cos B- - -- -

8r 1' 88 ' 
. 8 cos B [) 

V = Sin B- + -- - . 
8r r [)() 

Action of the operator U on the symmetric o r antisymmetric functions produces 
the results of the same type of symmetry: symmetric or antisymmetric, respect-
ively. On the other hand, operator V changes the type o f symmetry to the opposite 
one. Let us introduce the notatio ns: 

(2.6) c s )k ) cos /,;() 
Tk' = (- 1 (k - ] ! - -k- + 7r (OJkTCOS8 + c52k) 

T 

ｾ Ｈ ｭ Ｋ＠ k)! m + ｾ＠ I T Ak+m cos mB , 
1 

m. 
m = 
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(2.7) r,ca ( l) k(k l) 'sin kB • . B Ｑｾ［Ｇ＠ = - . - . --,.- + 7rV]);1'Sin 
1'" 

ｾ Ｈ ｭ Ｋ＠ k)! m . + 0 1 
r Ak+m Sin m B. 

m =l rn . 

The differential operators U and V acting on functions 1t'5 (r) and ｔｾ Ｇ ｡ ＨｲＩ＠ have 
the fo ll owing properties: 

(2.8) 
UT c,s = T c,s 

k k+ l ' 

VTc,s = T c,a 
k k+l' 

UT c,a = T c,a 
k k+ l ' 

VTc,a = T c,s 1 
k k+ l . 

A pplying the operato r (ns · \7), s = 1, .. . , k, to the function To(r) k-times, one 
obtains a sum of the foll owing terms: 

j = 0, 1, .. . , k; 

hence 

(2.9) 

where Ck and Dk are certain known numerical coefficients. 
The fu nctio ns ｔｾ ﾷ ｳ＠ and ｔ ｾ ﾷ ｡＠ defin ed by (2.6) and (2.7) constit ute a basis for 

the solution in the elementary cell outside the cylinder. According to (2.9), the 
potentia l of the grid of k-th o rder multi poles is a lin ear combination of symmetric 
and antisymmetric functions o f k-th order. 

The functions ｔｾ ﾷ ｳ＠ and ｔ ｾ ﾷ ｡＠ have singu larities on the axis o f the cylin der, and 
they can no t be used fo r representing the solution inside the cylinder. In this 
region, we assume the basis (2.10), (2.11) without singularity 

(2.10) 

(2.11) 

k 

ｔｾｬＬｳ＠ = (- ll(k - 1)! r2k coskB + 7r (OJk1'CosB + 82k) 
a 

ｾ Ｈ ｭ Ｋ＠ k) ! m B + ｾ＠ 1 1' Ak+m COS m , 
m = l rn. 

k 

Tt·a = (- l) k(k - 1)! r
2
k sin kB + 7rOJkTSinB 

a 

ｾ Ｈ ｭ Ｋ＠ k)! m . B + ｾ＠
1 

1' Ak+ m Sin m . 
m =l m . 

It is easily seen that for 1· = a, the corresponding functions in both the bases a re 
equal, 

(2.12) 
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Representing the solution in the bases (2.6)-(2.7) and (2.1 0)-(2.11 ), we fulfill 
identically the condition (1 .9) of periodicity on the cell wall, and continuity of 
temperature on the cylinder surface. The condition of equality of normal compo-
nents of a heat flux on the cylinder boundary determine uniquely the coefficients 
of expansion of >-et in our basis. 

Let us introduce the symbols for the basic functions in both components of 
the composite: 

(2.13) 
{ 

T. d,s rs- k 
k - T c,s 

k 
{ 

T d,a 
ra- k 

k - y c,a 
k 

r :S a, 

r ｾ ｡ Ｎ＠

Derivatives of the functions 11 and Tf are discontinuous for r = a. Both functions 
(2.13) fulfill the Poisson equations (2.14)-(2.15) given by 

(2.14) 

(2.15) 

\12Tt. = - o(r- a)coskB, 

\12Tf: = - o(r- a) sin kB. 

The relations (2.14)-(2.15) enable another interpretation of the basic functions, 
as a potential generated by the sources located at the cylinder boundary. The 
cosine and sine heat sources generate the symmetric functions (2.6) and (2.1 0), 
and the antysymmetric functions (2.7) and (2.11 ), respectively. In this interpreta-
tion, the intrinsic ties between the singular functions for the region outside the 
cylinders and non-singular functions inside the cylinders, are easily seen. For the 
case of circular cylinders arranged in a square array, the solution of (1.1 )-(1.3) 
is a symmetric function. Hence we shall not consider in the sequel the basic 
functions Tf: . 

3. Recurrence algorithm 

Using the functional basis given by the symmetric functions (2.6) and (2.10), 
we shall express the temperature fi eld of the matrix (i = c) and inclusions (i = d), 
determined by Eqs. (1 .1 ), (1 .2) and (1 .9), in the form of a power series expansion 
m tt, 

00 

(3.1) T i(r,B; c.p, u) = T(O) + L T(i,m)(r, B; c.p)um. 
m = ! 

Here, according to the previous definition (1.8), the function T i in (3.1) is the 
sum of both the macroscopic r< 0) and periodic (the sum for m ｾ＠ 1) parts of 
the temperature field. In this respect, the notations of Eqs. (3.1) and (1.8) are 
difTerent. Following BERGMAN [1 0], we rewrite Eqs. (1.1) in a form valid for both 
the matrix and the inclusion in a unit cell, 

(3.2) \1 ·(1 + uBd)\lT' = 0, 
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where (}d is the characteri stic function of inclusions. By inserting the series (3.1) 
into Eq. (3.2) and coll ecting terms with the same power o f u, we obtain the general 
recurence formula for the coefficients r (i ,m): 

V 2r(O) = 0 , 
(3.3) 

m = 1,2, .. . . 

The composite is subjected to an external temperature gradient equal to unity. 
Hence the solution of (3.3)1 is given by r(0) = r cos B. 

Now let us turn our attention to the periodic part of the solution determined 
by Eq. (3.3)2. Taking into account properties of the scalar product and of the 
characteristic function Bd, we rearrange its right-hand side and Eq. (3.3)2 takes 
the form [11] 

OTd,m- 1) 
(3.4) V 2r(i,m) = 8(1·- a) , 

OT 

where the functions r(d,m-1) (m = 1, 2, ... ) are defined inside the cylinder, and 
a denotes the radius of the cylinder. Note that the functions r(i,m) determined 
by (3.3)2 are periodic and can be represented by the series 

00 

(3.5) (i ,m) _ ｾ＠ ,(m)Ti 
T - L ck k> for m= 1, 2, ... , 

k = 1 

where Tt are the basic functions given by (2.6) and (2.10), while ｣ｾｭＩ＠ are real 
coefficients. 

Now let us present the basic functions in a renormalized form which wi ll be 
more convenient for further considerations. Superscript s will be here disregarded 
since only symmetric basic functions are the subject of our interest, 

(3.6) TJ = ｾ ｾ Ｑ Ｑ＠ [cj -1)! cos/(} + f Pj kTk cos k(}l , 
] • T k = 1 

(3.7) Tf = ｾＫ Ｑ
Ｑ＠ [(j -1)! r:i cosjB + f Pjk 1. k cos k(}l , 

J . a k= 1 

where 

(j+k)! ( 1 ) 
(3.8) Pi k = - k! A j +k + 27rc5j + k,2 . 

Inserting (3.5) into (3.4) and making use of (2.14), we obtain the recursion for-

mula for the coefficients ｣ｾ ｭ Ｉ＠

00 00 f) 
ｌ ｃｾｭ ＫｬＩ｣ｯｳｫＨｽ＠ = - 2: c;m)_ Tf. 
k= 1 j =1 or 

(3.9) 
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Next, introducing T f given by (3.7) into (3.9) and coll ecting the terms with cos kO, 
we fi nall y arrive at: 

(3.10) k = 1, 2, . . . , 

where the term Pi k is given by (3.8). 
The input data for algorithm (3.7) are 

(3.11) k = 1, 2, ... , 

since the gradient of external temperature field is equal to unity. The recurrence 

formula (3.10) allows us to compute the coeffici ents ｣ ｾ ｭ Ｉ＠ (m = 1, 2, . . . ) in (3.5), 
and hence to determine by means of (3.1) the temperature fi eld Ti inside the 
unit cell . 

It is worth to note that the solution of Eqs. (1.1) presented by (3.1) with 
(3.5)-(3.8) and (3.10) satisfies the boundary conditions (1.2), in spite of the fact 
that they were not introduced here explicitly. In fact, the boundary conditi on 
(1.2)1 is ful fi ll ed owing to the form of the basic functions assumed, what can be 
seen from Eqs. (2.12). The conditi on (1.2)2 can be rewritten, with the aid of (1.5), 
to the fo llowing form: 

(3.12) &Tc I &Td I &Td I 
Or r=a+ O - Or r=a - 0 = U Br r=a - 0 . 

I nserting (3.1), (3.5), (3.6) and (3.7) to (3.12) and coll ecting terms wi th equal 

powers of u we get fi rst ci'> = 1 (see (3.11)), and then the recurrence expression 

(3.10) for the successive coeffici ents ｣ ｾ ｭ ＫｴＩＮ＠ Thus we can see that the procedure 
presented here satisfi es both boundary conditions (1.2). 

4. Calculation of effective conductivity 

Now we shall use the recurrence algorithm to calculate the effective conduc-
tiv i ty of the composite. To this end let us consider the temperature fi eld in the 
matrix which can be expressed by Eq. (3.1) with the aid of (3.5) and the basic 
functions (3.6). This expression may be transformed to the Rayleigh form (1.3)1 
which all ows us to calculate the coeffici ent b1 of the term cos()/ r of the power 
series of u. Inserting b1 into (1.7) we obtain the formula for effective conductivity 
of the composite 

(X) 

(4.1) {t(u) = 1 + L Cntt'\ 
n = ! 
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where 

(4.2) C = ' '"'C( n ) n Y I . 

The coefficients ｣ ｾ ｮＩ＠ can be obtained from the recurrence formula (3.10) which 
for k = 1 takes the fo ll owing form 

(4.3) (m+l) = _ Ｈ ｭ ＩｾＨ ｬ＠ _ ) + 2 ｾ＠ (m) A ( / )4n 
c l c l 2 . <p L.... c4n- l n 4n <p 1f ' 

n =l 

while coefficients ･ｴｾ＠ 1 are calculated directly from (3.10). 
We start our calculations wi th (3.11), and then from Eq. (4.3) we obtain the 

successive coeffi cients. The fi rst four of them are listed below: 

(4.4) ｣ ｾ Ｑ Ｉ＠ = 1, 

(4.5) ｣ ｾ Ｒ Ｉ＠ = Ｍ ｾＨＱ Ｍ <p), 

(4.6) ｣ ｾ Ｓ Ｉ＠ = Ｍ｣ ｾ Ｒ Ｉ ｾＨＱ Ｍ cp) + 4 f (4n - 1)(nA4n)2(cp/7r)4" , 
n=l 

(4.7) ｣ ｾ Ｔ Ｉ＠ = - ｈｊＩｾ Ｈｬ＠ -cp) + 2(2- cp) ｾＨＴｮＭ l )(n!l4n)2(cp/7r)4n]. 

The process could be continued, however the expressions fo r coeffic ients o f 
higher order are more complex and they will not be presented here. The co-
efficients of higher order were calculated numericall y from the formula ( 4.3). 
The fi rst nonvanishing Wigner coeffi cients Am which appear in E qs. (4.3) and 
(4.6)-(4.7) are given below: 

A4 = 0.7878030005, 

A 1z = 0.3282374177, 

A8 = 0.5319716294, 

A t6 = 0.2509809396. 

The values of coefficients C11(cp) were obtained from the formula (4.2). Several 
low order coeffi cients (up to C6) are gathered in Table 1. 

Now we compare Eq. ( 4.1) with the Maxwell - Garnett formula (see (11, 1 2]) 
which is the fir st approximation of the effective conductivity coeffi cient. The 
Maxwell - Garnett fo rmula may be presented as a function o f u and <p in the 
following form: 

(4.8) 
cpu J1 = 1 + __ ,.:-_,......,...,.. 

1 + tt(1 - cp)/ 2 
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Table 1. Coefficients of the power series expansion of effective conductivity 11. for a square 
array of cylinders. 

'P C t c2 c3 c4 Cs Cn 

0.10 0.10 - 0.04500 0.020250 -0.009113 0.004101 -0.001846 

0.20 0.20 - 0.08000 0.032024 - 0.012830 0.005148 - 0.002068 

0.30 0.30 -0.10500 0.036936 -0.013086 0.004682 - 0.001698 

0.40 0.40 -0.12000 0.036784 -0.011662 0.003884 - 0.001381 

0.50 0.50 -0.12500 0.033646 - 0.010208 0.003615 - 0.001488 

0.60 0.60 -0.12000 0.029979 -0.010181 0.004465 - 0.002255 

0.70 0.70 -0.10500 0.028735 -0.012751 0.006975 - 0.004169 

0.75 0.75 - 0.09375 0.030114 - 0.015261 0.009200 -0.006077 

If we expand (3.20) into a power series of u, we obtain 

[ 
1 2 1 23 1 34 ] (4.9) J.l = 1 + cp u- 2(1 - cp)u + 4(1 - cp) u - S(l - cp) u + .... 

Although this expression ( 4.9) is only a rough approximation of Jt , certain re-
semblance to the formula ( 4.1) and ( 4.2)-( 4.7) can easily be seen. In fact, the 
coefficients at the fir st and the second power of u which appear in ( 4.9), and 
those calculated from (4.4) and (4.5), are identical. The other coefficients of (4.9) 
are identical merely with the leading terms o f the expressions ( 4.6) and ( 4. 7). 

5. Continued fraction expansion 

The power series expression ( 4.1) is not an effective form for representing J.l 
because of the small convergence radius and very slow rate of convergence. It 
is much better to express ;t(cp, 1t) in the form of a continued fraction (see [11, 
12]). Comparison of the two forms ( 4.8) and ( 4.9) illu strates how convenient and 
effective may be the rational representation, as compared with infinite series. 

If we substitute s = 1/u into Eq. (4.1), we can present the series in the form 
of a J -fraction [13] 

kl k2 k3 k4 
J.L(cp s) = 1 + -- -- -- --

, 11 + s - [2 + s - 13 + s - [4 + s -
(5.1) 

where coefficients kn( cp) and In( cp) can be determined using the coefficients Cn 
(Table 1), on the basis of another recurrence algorithm given in the Appendix. 

The coefficients of the first level of the J -fraction calculated in the Appendix 
(A.4) are 

(5.2) 11 = (1 - cp)/ 2 . 
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Inserting (5.2) into (5.1) and assuming the other coefficients to be equal to 
zero, we get 

(5.3) 
ｾ＠ ｾｵ＠

ｾ］ＱＫ＠ =1+ . 
(1- ｾ Ｉ Ｏ Ｒ＠ + 1/u u(1 - ｾ Ｉ ＯＲ＠ + 1 

We can see that Eq.(5.3) is identical with the Maxwell - Garnett formula ( 4.8), 
the accuracy of which is limited to small values of u and ｾﾷ＠ However, it is an 
advantageous feature of the continuous fraction expansion that successive ap-
proximants of the fraction rapidly increase its accuracy. The results presented in 
[11] indicate that for u ---+ oo and ｾ＠ = 0. 7, which is a rather high value, only 
three or four levels of the fraction are sufficient to preserve a good accuracy. 
Nevertheless in the asymptotic case, ｩｦ ｾ＠ ---+ ｾ ｭ ｡ｸ＠ = 1r / 4, the method presented 
here fail s and an analysis of a different kind is needed [14] . 

In the present paper the algorithm has been applied to a composite which 
consists of a square array of cylinders embedded in a matrix. The algorithm was 
also applied to the composites of hexagonal geometry [15). 

6. Conclusion 

A new functional basis derived in this paper allowed us to obtain a simple 
recurrence algorithm for calculating the effective transport coefficient of regular 
two-dimensional composites (3.10), (3.11). The algorithm is simply recursive and 
does not involve the solution of a large number of coupled equations. The results 
are used as input data to express the effective transport coefficient in the form 
of a rapidly convergent continuous fraction expansion. 

Appendix 

The algorithm presented below enables a recurrence calculation of the J -frac-
tion coefficients kn and l n , on the basis of the given coefficients Cn of the power 
series ( 4.1 ). The coefficients are calculated from the following formulae [13]: 

(A.1) 

where 

(A.2) 

(A.3) 

n 

CTn = C2n+l + L bnjC2n+ l -j , 

j= l 

T n = -
1 

[c 2n+2 + t bnjC2n+2-jl· 
CTn j= l 
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We start with n = 0. The required initial values of parameters are 

' - 1 = 0. 

Hence we have from (A.1 )-(A.3) 

(A.4) 

The successive values of kn, ln are then calculated from (A.1). Several auxiliary 
parameters bnj in (A.2) and (A.3) have the following values: 

bn-1,-1 = 0, bn,n+1 = 0, bn+ 1,0 = 1' bo,o = 1' 

the other ones must be determined from the relation 

(A.5) 

Acknowledgments 

The second author was supported by the State Committee for Scientific Re-
search through the Grant No 3 P404 013 06. 

References 

I. J.W. RAYLF.IGII, On the influence of obstacles an-anged in rrctangular ordt•r on tir e l'ruperties of !Ire medium, 
Phil. Mag., Scr.5, 34,481-502, 1892. 

2. W.T. PERRLNS, D.R. Me KENZJE a nd R.C. Me Pll t-:DRAN, Tran1port propenie.1· of regular an-ay.1· of cylinden·, 
Proc. R. Soc. London, A 369, 207- 225, 1979. 

3. R.C. Me PIIEDRAN and D .R. Me KENZJE, Electru.vtatic and optical re.wnance.1· of an·ay.1· of rylinderY, Appl. 
Phys., 23, 223-235, 1980. 

4. R.C. Me PJJEDRAN and G .W. MILTON, Bounds ami ewcttlr eon·es fort/r e tnm.1p011 pmpe1ties of inlwmogeneous 
media, Appl. Phys., A 26,207-220, 1981. 

5. D.J. JEFFREY, Conduction through a random suspension ofsplreres, Proc. R.Soc. London, A 335,355- 367, 
1973. 

6. M. ZuzovSKY and H. BRENNER, Effective conduc1ivitie.1· of composile materials composed of cubic a!Tange-
menl.\" of .1pherical panicles embedded in an isotropic matrir, ZAMP, 28, 6, 979- 992, 1977. 

7. A.S. SANGANJ and A. Ae RJVOS, 111e ejfecii ve conductivity of a periodic an-ay of.lplreres, Proc. R. Soc. London, 
A 386,263-275, 1983. 

8 . B. CleHOCKJ and B.U. FELDERHOF, Electrostatic spectmm and dielectn·c constanl of nonpolar hard .1phere 
fluids, J. C hem. Phys., 90, 9, 1989. 

9. C.J.F. BO"JTeJJER, 111e0ry of electrical polarization, 2-nd Ed., Amsterdam 1973. 

10. D.J. BEI{G MA N, 77JC dielectric comtant of a compu.1·ite nwierial - a problem in clas.l"i cal physics, Physics 
Reports, C 43, 378-407, 1978. 



http://rcin.org.pl

442 S. MAY, S. ToKARZEWSKI AND A. ZACHAHA 

11. S. MAY, S. TOKARZEWSK.I, A. ZACIIAil.A and B. CICIIOCK.I, Effective conductivity of a two-component com-
po.lite with a regular two-dimensional stmcture [in Polish], IITR Reports, 24, 1992. 

12. S. MAY, S. TOKARZEWSK.I, A. ZACHARA and B. CICIIOCK.l, Continued fraction representation for the effective 
themwl conductivity cvefficiefll uf a regular two-component composite, Int. J. Heat and Mass Transf., 37, 
2165- 2173, 1994. 

13. W.D. ]ONES and W.J. THORN, Continued fractions. Analytic theory and its applications, [in:] Encyclopedia 
of Mathematics and its Applications, vol. 11, Addison-Wcslcy Publ. Co., 1980. 

14. S. TOKARZEWSKI, J. Bi:AWZDZLEW ICZ and l.V. ANDRIAN OV, Effective conductivity of densely packed highly 
conducting cylindeno, Appl. Phys. A, 60 1-{)04, 1994. 

15. S. TOKARZEWSKI and J.J. TELEGA, S-continued fraction represefllat ion for effective tramport coefficient.\· of 
two-phase media, IITR Reports, 16, 1995. 

POLISH ACADEMY OF SCIENCES 

I NSTITI!TE OF FUNDAMENTAL Tf'£ 11NOLOC.ICAL RESEARO L 

Received November 25, 1995. 


