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The Wigner potential method in the investigation
of thermal properties of regular composites

S. MAY, S. TOKARZEWSKI and A. ZACHARA (WARSZAWA)

For pERIODIC, two-dimensional potentials satisfying the Laplace equation, a new functional ba-
sis, different from that used by RAvLEIGH [1], has been derived. This basis allowed us to con-
struct a simple recurrence formulae for evaluation of an effective transport coefficients for regular
two-dimensional composites. As an example, the power expansion of an overall conductivity for
square array of circular cylinders has been evaluated.

1. Governing equations

THE TEMPERATURE distribution and the effective conductivity of composites of
regular structure were first investigated by RavLEIGH [1]. He performed calcu-
lations for rectangular arrays of circular as well as spherical inclusions. The ap-
proach of Rayleigh was next developed by many other authors [2-4]. In this paper,
we present a method of solving the two-dimensional periodic problems by using
a new functional basis different from that used by Rayleigh. This basis appears
to be very convenient for seeking the solutions of Laplace equation and leads to
very effective algorithms.

Let us consider a material composed of circular cylinders of conductivity Ay,
embedded in a matrix of conductivity A.. The composite is subjected to an external
linear temperature field. The elementary cell is presented in Fig. 1. Let a be the
cylinder radius, [ — the distance between the cylinder axes, 7¢ and 7°¢ - the
temperature of inclusions and matrix, respectively. The temperature field in a
unit cell fulfills the conductivity equations

VT = () for r > a,
V2Tt = for r < a,

(1.1)

and the boundary conditions for » = a

(12) it
' WO _ oy 9Tt
car dara

where 7, 6 are polar coordinates with the origin located on the cylinder axis.
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Rayleigh obtained the solution of Egs. (1.1) in the form:

o<

by
T(r,0) = Z ((zkrk + ;«:;) cos k@,
k=1

(1.3) -
T“i(r, 0) = Z cxr®cos ke .
k=1

The solution may be interpreted as generated by an infinite system of multi-
poles located at the cylinder axes. We have here three infinite sets of coefficients
ag, by, ¢, (k = 1,3,...) since, due to the symmetry conditions, only odd values of
k are allowed [1]. With the aid of the boundary conditions (1.2), the coefficients
a; and c; may be expressed as linear functions of b;. To determine by, Rayleigh
made an assumption that the part of the potential in the unit cell correspond-
ing to the term of Eq.(1.3); which is non-singular in the unit cell center » = 0
resulted from two sources. The first of them is the external gradient of temper-
ature. The second one is a joint influence of the multipoles from the other cells
corresponding to the terms of Eq. (1.3); which are singular in the centers of these
cells [1]. This assumption leads to the following infinite system of equations for
the coefficients by,

(u+ Z)bk _ i (k(-]‘-i 1—)'1)'

7=1

(14) op1 + k!

Seajby,  k=1,35...,

etk
where

(1.5) u=—-1,
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(16) Z (1" 3. ’Jn m :

Symbols 5,, denote the Rayleigh sums, (z,,y,) are Cartesian coordinates of
the centers of the cells, 7 is an imaginary unit and {n} denotes summation to
infinity in the directions of z and y over all cylinder centers lying outside the unit
cell. The sums S,, depend on the geometrical properties of the array. Numerical
values of S, for square and hexagonal arrays are given in [2].

The approximate values of b can be calculated from Eq.(1.4) subjected to
truncation. The effective conductivity of a composite depends on the coefficient
b, according to the formula derived by RAYLEIGH [1],

/\cf

(1.7) o= /\—C= 1-27b.

For a square array of cylinders, the temperature distribution 7(r, #; ¢, u) and
the effective conductivity s(p, u) depend on two dimensionless quantities: the
cylinder volume fraction ¢ and physical properties of the components represented
by u (1.5). Coefficients ay, by and ¢, appearing in (1.3) are functions of ¢ and u.

It is well known that the Rayleigh method provides the non-unique solutions
for A¢, since the second Rayleigh’s sum 53 over the infinite array of cylinders
is only conditionally convergent, i.e., it depends on the shape of the exterior
boundary of the composite. This was the reason why, for a long time, many
authors were questioning the correctness of the Rayleigh approach [S]. In 1979
MCcPHEDRAN et al. [2] pointed out that an infinite, flat layer of a composite
subjected to the external temperature gradient is the only correct sample shape
for calcuiatior of A by the Rayleigh method.

An interesting approach has been proposed by Zuzovski, BRENNER [6] and
SANGANI, ACRIVOS [7]. Their methods avoid all the difficulties of the Rayleigh
method mentioned above. They decomposed the temperature field into two com-
ponents. The first one is a macroscopic shape-dependent component 7™, and
the second one is periodic, depending on the geometry and physical properties
of the composite 77,

(18) ’1‘1- s r['i‘m + rlt,[‘p.

where ¢ = ¢, d. In view of the periodicity of the temperature field and the square
symmetry of the array, the normal derivative of the periodic component of tem-
perature is equal to 0 on the cell boundary,

(1.9) n-V7Ter =0,

where n is a unit vector normal to the boundary of the cell. Condition (1.9) may
be considered as equivalent to the equations of Rayleigh (1.4).

http://rcin.org.pl
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It was shown in [6, 7] that the periodic component may be expressed by an
infinite set of derivatives of a certain function Ty called the Wigner potential
[8]. By using these derivatives Zuzovski, BRENNER [6] and SANGANI, ACRIVOS
[7] investigated the effective conductivity of regular arrays of spheres. They no-
ticed that successive derivatives of 7y formed a functional basis convenient for
representation of solutions of three-dimensional Laplace equations.

The main aim of this paper is to construct a new functional basis for periodic,
two-dimensional potentials generated by the Laplace equation. As an example, we
will derive a simple recurrence formula for evaluation of the effective conductivity,
in the form of a power series in u, for a square array of circular cylinders.

2. The functional basis

The Rayleigh functional basis consists of multipoles located in the centers of
single cells. These basic functions do not fulfill the periodic boundary condition
on the boundary of the cell. Our aim is to find a basis, the elements of which
fulfill identically the periodicity conditions. Such a basis can be built up with the
aid of the Wigner potential. In this section we shall limit our investigation merely
to the periodic term 77 of the temperature field. For the sake of convenience,
the upper index p in 77 will be omitted, i.e. 7" = T".

Let us consider an infinite system of point heat sources of intensity ¢, located
in the nodes of a square array of period [, accompanied by neutralizing fuzzy
sources of uniform density 7 = —¢/l of the opposite sign. In such a grid, the
global intensity of sources is equal to 0. The temperature field generated by such
a system of sources fulfills the Poisson equation (2.1)

@2.1) V2T = —2rq- (6(r) - 112) :

and the boundary condition (1.9), where 6(r) is the Dirac function. The solution
of equations (2.1) and (1.9) was given by CicHockl and FELDERHOF [8] in the
form:

8l ] 2 > m
(2.2) Io(r) = ¢q- (— Inr + ST + 12::4 A, ™ cos m.f)) :

Coefficients A,, were found in the process of summation over an infinite grid of
cells, with the exception of the cell located in the center of the coordinate system.
Coefficients A,, are related to the Rayleigh sums 5, (1.6) as follows,

‘91’71

f‘m = =g
m

The index m in (2.2) is a multiple of 4, because 7y(r) is independent of rotation
of the frame of reference by the angle 7 /2. The first term in the parentheses
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of (2.2) represents the influence of a single source located in the center of the
cell, the second one is generated by the fuzzy sources, while the third term given
by the infinite sum is due to the sources located in the external cells. Function
(2.2), called the Wigner potential [8], can be used as a starting point for the
construction of the functional basis for periodic two-dimensional potentials.

A multipole of order k includes 2* point sources, and it is defined by the scalar
intensity ¢x and k unit vectors n,, s = 1,2,...,k, representing the directional
properties of the multipole (see for example [9]). The multipole potential is
proportional to the k-th directional derivative of the point source potential in
directions ny, ny,. .., ng, respectively.

k
(2.3) Ti(r) = g » [H(—l)""(ns-V)l To(r), k=1,2,....
s=1

For a classical multipole, T(r) is the potential of a point source in an infinite
region: in the 2-dimensional case

(2.4) To(r) = —Inr.

Instead of a single multipole, one may consider an infinite system of identical
multipoles of order & located in the nodes of a square array. To determine the
potential of such a grid, one should apply the operator of the right-hand side of
(2.3) to the function Ty(r) defined by (2.2). Positive and negative fuzzy sources
balance each other and they have no influence on the global potential.

In the operator n, -V of directional derivative, one may distinguish two com-
ponents of different types of symmetry,

(2.5) n,-V=o+ 3V,
where
0 sinfl @
U= co.s(ia—#— -—r—'%,
.0 cosf d
Y = sin 0)— ey

Action of the operator ¢/ on the symmetric or antisymmetric functions produces
the results of the same type of symmetry: symmetric or antisymmetric, respect-
ively. On the other hand, operator V changes the type of symmetry to the opposite
one. Let us introduce the notations:

cos ké
ik

(2.6) o o 1) — 1) + 1(6157 cos B + b)

2 (m + k)
+ Z %rm/hﬁm cosmb ,

m=1
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mnAH

(2.7) Te® = (-1)*k - 1)! + mdy,rsiné

Z (m +L)

" Ag 4 SINMO .

m=1

The differential operators { and V acting on functions 7}°(r) and 7}%(r) have
the following properties:

UTY = Tl UTE =T,
(2.8) -y -
VI = T, N =L

Applying the operator (n, V), s = 1,...,k, to the function Ty(r) k-times, one
obtains a sum of the following terms:

WyYiTyr), j=01,...,k;
hence
(2.9) Ti(r) = CLT (r) + DT (r),

where (', and D, are certain known numerical coefficients.

The functions 7;* and 7,'" defined by (2.6) and (2.7) constitute a basis for
the solution in the elementary cell outside the cylinder. According to (2.9), the
potential of the grid of £-th order multipoles is a linear combination of symmetric
and antisymmetric functions of k-th order.

The functions 7;"* and 7" have singularities on the axis of the cylinder, and
they can not be used for representing the solution inside the cylinder. In this
region, we assume the basis (2.10), (2.11) without singularity

k
(2.10) TP = (-1)F(k - 1)! 5 coskf + 7 (b1 cosf + dy)

Z (m + k)! o

Ay cOsmé |
m!

m=1
k
21y 18 = 1)"(!.—1)' - sin k@ + w6y;7sin 8

+ i L ™A sinmé .
m! k+m

It is easily seen that for r = «, the corresponding functions in both the bases are
equal,

(2.12) TS (a,0) = T{*(a,6),  T{"(a,0) = Ti"(a. 6).

http://rcin.org.pl
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Representing the solution in the bases (2.6)-(2.7) and (2.10)-(2.11), we fulfill
identically the condition (1.9) of periodicity on the cell wall, and continuity of
temperature on the cylinder surface. The condition of equality of normal compo-
nents of a heat flux on the cylinder boundary determine uniquely the coefficients
of expansion of A in our basis.

Let us introduce the symbols for the basic functions in both components of
the composite:

T:.S ] r]x‘i‘i.a r S a,
(2.13) T: = i T; = )
/ e T r> a.

Derivatives of the functions 7} and 7} are discontinuous for » = «. Both functions
(2.13) fulfill the Poisson equations (2.14)—-(2.15) given by

(2.14) V3T = —é(r — a)cos ko,
(2.15) V2T = —é(r — a)sin kf.

The relations (2.14)—(2.15) enable another interpretation of the basic functions,
as a potential generated by the sources located at the cylinder boundary. The
cosine and sine heat sources generate the symmetric functions (2.6) and (2.10),
and the antysymmetric functions (2.7) and (2.11), respectively. In this interpreta-
tion, the intrinsic ties between the singular functions for the region outside the
cylinders and non-singular functions inside the cylinders, are easily seen. For the
case of circular cylinders arranged in a square array, the solution of (1.1)-(1.3)
is a symmetric function. Hence we shall not consider in the sequel the basic
functions 77.

3. Recurrence algorithm

Using the functional basis given by the symmetric functions (2.6) and (2.10),
we shall express the temperature field of the matrix (i = ¢) and inclusions (i = d),
determined by Egs. (1.1), (1.2) and (1.9), in the form of a power series expansion
in u,

(3.1) Ti(r,0;0,u) = 7@ + Z M 0; o)™,

m=1

Here, according to the previous definition (1.8), the function 7% in (3.1) is the
sum of both the macroscopic (¥ and periodic (the sum for m > 1) parts of
the temperature field. In this respect, the notations of Eqgs.(3.1) and (1.8) are
different. Following BERGMAN [10], we rewrite Eqs. (1.1) in a form valid for both
the matrix and the inclusion in a unit cell,

(3.2) Vel + ub)VT' =0,

http://rcin.org.pl
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where 6, is the characteristic function of inclusions. By inserting the series (3.1)
into Eq. (3.2) and collecting terms with the same power of u, we obtain the general
recurence formula for the coefficients 7(™);

v = g,

3.3 : .
33) viim) = g, rlim-1), m= 1,2 .

The composite is subjected to an external temperature gradient equal to unity.
Hence the solution of (3.3); is given by 7(?) = rcosé.

Now let us turn our attention to the periodic part of the solution determined
by Eq.(3.3);. Taking into account properties of the scalar product and of the
characteristic function #;, we rearrange its right-hand side and Eq.(3.3), takes
the form [11]

arri.m—l)
or
where the functions 7(4™=1 (; = 1,2,...) are defined inside the cylinder, and

a denotes the radius of the cylinder. Note that the functions (/") determined
by (3.3), are periodic and can be represented by the series

(3.4) Virtm) = §(r — a)

o0

(3.5) r(m) = Z cf“m)'fé, for m=1,2,...,
k=1

where 7} are the basic functions given by (2.6) and (2.10), while ({,’") are real
coefficients.

Now let us present the basic functions in a renormalized form which will be
more convenient for further considerations. Superscript s will be here disregarded
since only symmetric basic functions are the subject of our interest,

. athf cosji & i
(3.6) Ts = 2l [(] -1 = + l‘z_:l pjkr” coské|
i alt! . ] ) b P '
3.7 T = 251 l(] - 1)!ECOS]9+‘§‘DJU coskd|
where
j + k)! 1
(3.8) Pik = —(J il ) (Aj+k + iﬂ'{lj+k‘2> .

Inserting (3.5) into (3.4) and making use of (2.14), we obtain the recursion for-
mula for the coefficients ¢\

s

o0 o
(m+1) A (m) d
(3-9) l; ¢, coskf = —J;cj E)_T‘Tj )
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Next, introducing 7 given by (3.7) into (3.9) and collecting the terms with cos k8,
we finally arrive at:

m+1 - m 1 kak+j
(3.10) ! *’:-Zlcg )(iékj-i'pka—j!). k=1,2,...,
=
where the term pj; is given by (3.8).
The input data for algorithm (3.7) are
(3.11) =6, k=12,

since the gradient of external temperature field is equal to unity. The recurrence

formula (3.10) allows us to compute the coefficients cim) (m=1,2,...) in (3.5),
and hence to determine by means of (3.1) the temperature field 7 inside the
unit cell.

It is worth to note that the solution of Egs.(1.1) presented by (3.1) with
(3.5)—(3.8) and (3.10) satisfies the boundary conditions (1.2), in spite of the fact
that they were not introduced here explicitly. In fact, the boundary condition
(1.2), is fulfilled owing to the form of the basic functions assumed, what can be
seen from Eqs. (2.12). The condition (1.2); can be rewritten, with the aid of (1.5),
to the following form:

T

r=a+0 dr

oT*
dr

(3.12)

r=a-0 r=a—0

Inserting (3.1), (3.5), (3.6) and (3.7) to (3.12) and collecting terms with equal
powers of u we get first cgl) =1 (see (3.11)), and then the recurrence expression

(3.10) for the successive coefficients ci_m“). Thus we can see that the procedure
presented here satisfies both boundary conditions (1.2).

4. Calculation of effective conductivity

Now we shall use the recurrence algorithm to calculate the effective conduc-
tivity of the composite. To this end let us consider the temperature field in the
matrix which can be expressed by Eq.(3.1) with the aid of (3.5) and the basic
functions (3.6). This expression may be transformed to the Rayleigh form (1.3),
which allows us to calculate the coefficient by of the term cosé/r of the power
series of u. Inserting b, into (1.7) we obtain the formula for effective conductivity
of the composite

(4.1) p(u) =1+ Z Cau™;

n=1
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where
(4.2) C, = (p(,(ln).

The coefficients c(ln) can be obtained from the recurrence formula (3.10) which

for k = 1 takes the following form
m m ] = m n
(43) e = =M1 - @) + 237 e indan (o/m)"
n=1

while coefficients cf;j;j , are calculated directly from (3.10).

We start our calculations with (3.11), and then from Eq. (4.3) we obtain the
successive coefficients. The first four of them are listed below:

(4.4) e = 1,

2 1
“5) &)= -301-9)

1 o
46) P = =P - @) +4 3 (- DAY/,

n=1

(4)
4.7) ¢

- rgs)%(l ~ ) +22 - ¢) 2(4" = D(nAa) (/)™ |.

n=1

The process could be continued, however the expressions for coefficients of
higher order are more complex and they will not be presented here. The co-
efficients of higher order were calculated numerically from the formula (4.3).
The first nonvanishing Wigner coefficients A,, which appear in Egs. (4.3) and
(4.6)-(4.7) are given below:

Aq = 0.7878030005, As = 0.5319716294,
A = 0.3282374177, Ay = 0.2509809396.

The values of coefficients ', (v) were obtained from the formula (4.2). Several
low order coefficients (up to ('s) are gathered in Table 1.

Now we compare Eq. (4.1) with the Maxwell - Garnett formula (see [11, 12])
which is the first approximation of the effective conductivity coefficient. The
Maxwell - Garnett formula may be presented as a function of » and ¢ in the
following form:

pu

(4.8) p.=]+——1+u(1_¢)/2.
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Table 1. Coefficients of the power series expansion of effective conductivity p for a square

array of cylinders.

@ Cy Cs Cs Cy Cs Cs
0.10 | 0.10 | —0.04500 | 0.020250 | —0.009113 | 0.004101 —0.001846
020 | 0.20 | —0.08000 | 0.032024 | —0.012830 | 0.005148 | —0.002068
030 | 030 | —0.10500 | 0.036936 | —0.013086 | 0.004682 | —0.001698
040 | 0.40 | —0.12000 | 0.036784 | —0.011662 | 0.003884 | —0.001381
0.50 | 0.50 | —0.12500 | 0.033646 | —0.010208 | 0.003615 | —0.001488
0.60 | 0.60 | —0.12000 | 0.029979 | —0.010181 | 0.004465 | —0.002255
070 | 0.70 | —0.10500 | 0.028735 | —0.012751 | 0.006975 | —0.004169
0.75 | 0.75 —0.09375 | 0.030114 | —0.015261 | 0.009200 | —0.006077

If we expand (3.20) into a power series of u, we obtain

4.9) p=1+¢u- %(] —o)u? + %(1 — P — é(l —o)Put+ .. .|
Although this expression (4.9) is only a rough approximation of y, certain re-
semblance to the formula (4.1) and (4.2)-(4.7) can easily be seen. In fact, the
coefficients at the first and the second power of u which appear in (4.9), and
those calculated from (4.4) and (4.5), are identical. The other coefficients of (4.9)
are identical merely with the leading terms of the expressions (4.6) and (4.7).

5. Continued fraction expansion

The power series expression (4.1) is not an effective form for representing
because of the small convergence radius and very slow rate of convergence. It
is much better to express u(p,u) in the form of a continued fraction (see [11,
12]). Comparison of the two forms (4.8) and (4.9) illustrates how convenient and
effective may be the rational representation, as compared with infinite series.

If we substitute s = 1/ into Eq. (4.1), we can present the series in the form
of a J-fraction [13]

ky ka k3 k4
h+s—L+s—L+s—Ilg+s- """

(5.1) w(p,s) =1+
where coefficients %, (¢) and [,(y) can be determined using the coefficients C,
(Table 1), on the basis of another recurrence algorithm given in the Appendix.
The coeflicients of the first level of the J-fraction calculated in the Appendix
(A4) are
(5.2)

k1 = o, h=Q1-¢)2.
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Inserting (5.2) into (5.1) and assuming the other coefficients to be equal to
zero, we get
@ Pu

(5-3) "=1+(1_¢)/2+1/u=1+m'

We can see that Eq.(5.3) is identical with the Maxwell - Garnett formula (4.8),
the accuracy of which is limited to small values of u and . However, it is an
advantageous feature of the continuous fraction expansion that successive ap-
proximants of the fraction rapidly increase its accuracy. The results presented in
[11] indicate that for u — oo and ¢ = 0.7, which is a rather high value, only
three or four levels of the fraction are sufficient to preserve a good accuracy.
Nevertheless in the asymptotic case, if ¢ — pmax = 7/4, the method presented
here fails and an analysis of a different kind is needed [14].

In the present paper the algorithm has been applied to a composite which
consists of a square array of cylinders embedded in a matrix. The algorithm was
also applied to the composites of hexagonal geometry [15].

6. Conclusion

A new functional basis derived in this paper allowed us to obtain a simple
recurrence algorithm for calculating the effective transport coefficient of regular
two-dimensional composites (3.10), (3.11). The algorithm is simply recursive and
does not involve the solution of a large number of coupled equations. The results
are used as input data to express the effective transport coefficient in the form
of a rapidly convergent continuous fraction expansion.

Appendix

The algorithm presented below enables a recurrence calculation of the J-frac-
tion coefficients k, and [, on the basis of the given coefficients C,, of the power
series (4.1). The coefficients are calculated from the following formulae [13]:

Tn

(Al) kn+1 . ln+1 = Ta~1— Ty

On—1
where
(A'z) On = CZn+l L Zb71j0271+1—] 3

1=1

1 ‘ n

(A°3) Th = ;_’ (J‘Zn+2 * anjC2n+2—j

i=1



THE WIGNER POTENTIAL METHOD IN THE INVESTIGATION OF THERMAL PROPERTIES ... 441

We start with n = 0. The required initial values of parameters are
.1 = 1, Tl = 0.
Hence we have from (A.1)-(A.3)

I _ Gy 1 gy
(A.4) Al—Cl—tp, l}——C] —2(1 9/).

The successive values of k,, [,, are then calculated from (A.1). Several auxiliary
parameters b,; in (A.2) and (A.3) have the following values:

bn—l,—l = Ow bn,n+l = Os bn+l,0 = 1» b0,0 = 17
the other ones must be determined from the relation

(AS) bn,] = bu—l.j + Inbn—-l.j——l - L'nbn—2.j—2 .
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