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Wave propagation in anisotropic layered media 

M. ROMEO (GENOVA) 

TilE PROPAGATION of time-harmonic waves in a continuously stratified anisotropic, viscoclastic layer 
bounded by two homogeneous anisotropic solid half-spaces, is studied analyticall y. A plane wave 
is assumed to impinge on the boundary of the layer, and the result ing fi eld, inside and outside 
of the layer, is described according to the causality principle and formal wave-splitting. Refl ection 
and transmission coefficients are derived for arbitrary angle of incidence, together with a formal 
expression of the wave fi eld within the layer. A local reflectivity is defined as a function of the depth 
and used to obtain up and down-going modes in the layer. Reduction of the model to particular 
materia l symmetries allows fo r scalar fields whose properties generalize known results concerning 
the isotropic media. Numerical results are given to illustrate the method in the scalar case. 

1. Introduction 

W AYE PROPAGATION in stratified layers has been extensively investigated in con-
nection with a wide range of constitutive and geometric models which are mainly 
motivated by geophysical applications. Beside the frequent approaches based on 
homogeneous waves in elastic isotropic materials (see for ex. [1 , 2]), inhomo-
geneous waves have also been exploited in order to account for dissipative efTects 
[3, 4], and anisotropic materials have been considered in the multilayered case 
[5, 6]. However, in these last works each layer is assumed to be homogeneous, 
thus all owing fo r an efTective use of the propagator matrix. 

The aim of the present paper is to investigate wave propagation across a con-
tinuously stratified (and hence inhomogeneous) viscoelastic solid layer with ar-
bi trary materia l symmetry. A time-harmonic inhomogeneous plane wave, coming 
from a homogeneous anisotropic half-space, is assumed to impinge on the outset 
of the layer, giving rise to a reflected field. A transmitted wave field propagates 
along the edge of the layer within a second homogeneous anisotropic half-space. 
For arbitrary angle of incidence, three reflected modes and three transmitted 
modes are, in general, possible within the homogeneous half-spaces. Although 
forward and backward plane waves are allowed in the fir st soli d half- space, the 
causality reasons imply that only forward waves propagate in the second solid 
half-space. Transmitted modes are then exploited to infer a formal wave-splitting 
within the layer, where the wave field is described by three independent compo-
nents whose amplitudes and polarizations are functions of the depth. Continuity 
requirements imposed on the displacement and on the traction are used to obtain 
the reflection and the transmission matrices, and to get boundary conditions in 
order to integrate the difTerential equation for the displacement. A wave-splitt ing 
is then introduced for each wave component in the layer. To this end, a reflec-
tivity matrix is defined which satisfi es suitable conditions at the boundaries. As a 
result, the wave field within the layer is given as the superposition of three pairs 
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of up and down-going modes. A notable simplification of the present model is 
achieved by considering special material symmetries. In Sec. 6 of this paper it 
is shown that some crystal systems such as orthorhombic, tetragonal, cubic and 
hexagonal systems allow for a decoupling of the governing differential equation, 
which splits into a scalar equation for horizontally polarized waves and a vector 
equation for vertically polarized waves. The first one is analyzed in detail to stress 
the comparison with the known results on isotropic layers [7] . In particular, the 
reflectivity is shown to satisfy a Riccati equation as occurs in scalar theories of 
wave propagation in isotropic layered media [8, 9]. The scalar problem for hor-
izontally polarized waves is also solved numerically to explicitly obtain the split 
wave-field. 1\vo examples are considered of the dependence of the constitutive 
properties on the depth. 

2. Stratified anisotropic layers 

We are here concerned with an inhomogeneous anisotropic solid layer £ 
bounded by two plane parallel surfaces SI and S2. A Cartesian coordinate system 
is chosen in such a way that SI and S2 correspond to the planes z = 0 and z = d, 
where d is the thickness of the layer. Inhomogeneity in [ is assumed to consist 
of a continuously stratified structure along the z direction. lWo homogeneous 
anisotropic solid media 8I and 8 2 occupy, respectively, the half-spaces z < 0 
and z > d. All the media 81> £ , 82 are supposed to behave as viscoelastic ma-
terials where the Cauchy stress T has a linear dependence on the strain history 
and an arbitrary dependence on the space coordinates. M ore precisely, denoting 
by e = Sym ('Vu) the infinitesimal strain tensor, u being the displacement, we 
assume (cf. [1 0]) 

00 

(2.1) T(x, /) = G(z,O)e(x, t) + J Gs(z,s) e(x, l- s)ds, 
0 

where G : R x R+ _...., Lin(Sym) is the relaxation function and Gs = DGj os. It 
is convenient, in elastic theories of anisotropic solids, to adopt a double-indices 
notation for the relaxation function (see [11 ]), introducing the indicia! corre-
spondence (ij) --. a (i, j = 1, 2,3; a = 1, ... ,6) given by (11) --. 1, (22)- 2, 
(33) ---+ 3, (23) ---+ 4, (13) __. 5, (12) - 6. The corresponding six-dimensional re-
laxation matrix F( z, s) is assumed to be non-singular for any z E R and s E R +. 
In the following we shall assume that the displacement u has a time-harmonic 
dependence 

u(x, t) = u(x) exp( - iwl), 

with w E R++. Hence, assuming e(x,- ) = 0, integration by parts reduces 
Eq. (2.1) to 

(2.2) T(x,w) = G(z,w)e(x,w), 
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where T = Texp(iwt) and G(z, w) = - iw J0
00 G(:::, s) exp(iws) ds. Accounting for 

the model we are dealing with, the constitutive parameters take the form 

(2.3) 
{ 

r!}] Cw) for z < o, 
Faf3 = Faf3 (z,w) for z E [0, d], 

/ :
2f3)(w) f d ｾ＠ or z > , 

where Faf3 = -iw fo00 Faf3 exp(iws) ds. We also assume that Faf3 are continuous 
throughout z and sufficiently smooth in [0, d]. Additional restrictions hold if par-
ticular material symmetries are allowed for the solid media. A classification of 
such symmetries can be achieved by the determination of the planes of reflec-
tive symmetry (see [12]) and of the consequent non-vanishing elastic constants. 
For the future purposes we observe that most of the crystal systems (such as 
orthorhombic, tetragonal, cubic and hexagonal) can be characterized by the nine 
non-vanishing parameters 

(2.4) 
with a,{J = 1, 2, 3, 

with 1 =4, 5,6. 

These, in turn, may reduce to a lower number of independent entries for particu-
lar crystal classes (see for ex. [13]). 

3. The governing differential equation 

Accounting for layer's inhomogeneities along the ;:; -axis, we assume that the 
displacement u(x) has a plane-wave-like dependence on x and y, that is 

(3.1) u(x, y, z) = u(.:) exp[i(kxx + kyy)] , 

where kx and ky are complex-valued wave-numbers and where u E C3. Avoid-
ing inessential formal difficulties, we can choose the x-axis in such a way that 
the real part of kx vanishes. This can be accomplished by a suitable orthogonal 
transformation applied to the constitutive tensor G (see e.g. [5]). We also neglect 
the imaginary part of kx . This amounts to assume that the incident wave-number 
bivector lies on the (y, z) plane. Hence, putting ky = k, Eq. (3.1) takes the form 

(3.2) u(y, z) = u(z) exp(iky) , 

which, according to the Snell 's law, holds at any point in ｂｾＮ＠ £, and B2• In view 
of the time-harmonic dependence, the equation of motion for u reads 
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where f! is the mass density. By exploiting Eqs. (2.2) and (3.2) and accounting fo r 
the description in terms of r , we arrive at 

(3.3) 

where C is a linear symmetric difTerential operator whose entries are expressed 
by 

(3.4) 

C11 = D:: (TssDz) + -i k( fs6,z + 2Ts68:;) - 1.:2166, 

C12 = 8:: U4sDz) + ik( r2s,z + 21468:;) - 1.:2126 , 

C13 = Dz(T3s8z) + i k( f4s,z + 2f368z)- 1.:2 r46, 

C22 = 8=(r448z) + ik(r24,z + 2F248:: )- k2F22, 

C23 = D: (f348z) + ik(r44,:: + 2fz38z) - e 124, 

c 33 = Oz(r330z) + ik(/':A,z + 2f348z) - k2f44 . 

Equatio n (3.3) is a second order homogeneous li near difTerential equation fo r u. 
More explicitly, it can be wri tten as 

(3.5) Lu" + (L' + 2ikM ,)u' + (ik M; - ,_zQ + gw2I)u = 0, 

where prime denotes difTerentiation with respect to z , and where 

C" 
r 4s ,,, ) 

C'' 
r 46 r,) 

L= r 4s r44 r34 , M , = r46 124 r23 , 
r 3s F34 / ) 3 /36 123 / 34 

C'' 
Fzs r., ) ｣ ｾ＠

r26 ｲｾＩ＠
M2 = r 2s r 24 144 , Q = 126 r 22 r 24 . 

r4s 144 r34 r46 f24 r44 

Since r is no n-singular, the operator L( z ) is invertible for any z E R, hence 
Eq. (3.5) may be rewritten in the fo ll owing form 

(3.6) u" + Au' + Bu = 0, 

where 

(3.7) 

Before developing a procedure to obtain a representation of the d isplacement 
wit hin the layer £ , we look for solutions of Eq. (3.6) in the homogeneous regions. 
In B1 and B2 the tensor r is taken to he independent of z , whence 

A(1•2> = 2ik(01
•2>)- 1 ｍ ｾ Ｑ • Ｒ ＾ Ｌ＠

n ( t ,2) = (UI ,2)) - l[ ew2I _ k2Q(l,2)), 
(3.8) 
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with obvious meaning of the superscripts 1, 2. In view of a formal splitting of 
the wave field into elementary modes, we first look for non-dissipative, normal 
incident waves, such that k = 0. Owing to (3.8) we have A(1·2> = 0, and the 
solutions of Eq. (3.6) take the form 

3 

(3.9) u = 2:)uh+ exp(i(hz) + ""- exp( - i(h z)] , 
h= 1 

where (h ( h = 1, 2, 3) are those solutions of the bi-cubic secular equation 

(3.10) det[ew2L - 1 - ( 21) = 0, 

which have positive real parts. From Eq. (3.9) the displacement of normal incident 
waves in homogeneous regions consists of three pairs of up and down-going 
modes. For an arbitrary incidence and possible dissipation (k f. 0), Eqs. (3.9) and 
(3.10) must be replaced by 

6 

(3.11) u = L ll h exp(i( hz), 
h= 1 

(3.12) 

The left-hand side of Eq. (3.12) is a sixth-degree polynomial with constant, com-
plex-valued coeffi cients, parametrized by k. Its zeroes (h (h = 1, ... , 6) appear 
in the representation (3.11). If the solutions ± (h , (h = 1, 2,3) of Eq. (3.10) are 
distinct, there will be a neighbourhood Ck of k = 0 in the complex k-plane where 
each solution of Eq. (3.12) has a one-to-one correspondence with each value ± (h 
and keeps its own sign. Then, assuming k E Ck. solutions of Eq. (3.12) may be 
represented by the set 

and Eq. (3.1 1) becomes 

3 

(3.13) u = L["h+ exp(i(h+ z) + ""- exp(i(h_z)], 
h=l 

thus yelding three couples of "up" and "down-going" modes. In the following we 
shall assume that the eigenvalue problem (3.12) and the corresponding eigenvec-
tor problem have been solved in B1 and in B2 so that the constant amplitudes 
llh± are known. In view of further developments, we represent these vectors in 
the form 

(3.14) 
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4. Formal wave-splitting and the field within the layer 

A plane harmonic wave, coming from the homogeneous region BI> is supposed 
to impinge on the boundary S1 of the inhomogeneous layer (z = 0). Owing to 
the superposition principle, we can restrict our attention to one of the possible 
up-going modes, labelled by l +, (/ = 1, 2, 3) and study the reflected and trans-
mitted modes at the respective surfaces S1 and S2• Each impinging mode all ows 
for a superposition of all the possible down-going reflected modes in B1, and all 
the possible up-going transmitted modes in B2, according to (3.13). The causal-

ity principle implies that no down-going modes arise in B2, that is ｵ ｾ
Ｒ
Ｒ＠ = 0 for 

h = 1, 2, 3. Hence the wave fields in B1 and B2 can be expressed, respectively, as 

{4.1) u(l) = ＨｰｾｾＩ＠ exp(i( f:> z) + t Vu, ( ｰｾ Ｑ Ｒ Ｉ＠ ･ｸｰＨ ｩ ､ｾ ｺ Ｉ＠
(1) h=l (1 ) 
ｾＫ＠ ｾ Ｍ

for z < 0, 

(4.2) u(2> = t w,h Ｈｐ ｾｬ Ｉ＠ ･ｸｰＨ ｩ Ｈ ｾ ｾ ｺ Ｉ＠
h = l (2) 

qh+ 

fo r z > d, 

for any impinging wave (I = 1, 2, 3). Equations ( 4.1) and ( 4.2) can also be viewed 
as a definiti on of the complex-valued reflection and transmission coefficients Vih 
and W11,. Compatibly with the causality principle, each component mode of the 
transmitted field ( 4.2) may be thought of as being originated by a corresponding 
field within the layer. Specificall y, we decompose the fi eld in £ as 

(4.3) 

and impose continuity requirements on S2, pertinent to each component sepa-
rately. To this end we observe that, in view of (2.2), the traction t = Te3 ( e3 being 
the unit vector along the z-direction) is given by 

(4.4) t = ikPu + Lu' , 

where 

and hence 

(4.5) u' = L - 1(t - ik Pu). 
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According to the regularity conditions on r at the boundaries, the continuity of 
the displacement and of the traction across S1 and S2 impli es continuity o f the 
derivative of u at layer's boundaries. As a consequence, from (4.2) and (4.3) we 
have, at z = d, 

(4.6) 

(4.7) 

Uj (d) = Wl j Ｈ ｰｴｾ Ｉ＠ ･ｸｰ Ｈ ｩＨｪｾ､Ｉ＠
(2) 

qj + 

uj(d) = ｩＨｊｾｗｬ ｪ＠ ( ｰｴｾ Ｉ＠ ･ｸｰＨｩ Ｈｊ ｾ､Ｉ＠
(2) 

qj + 

(j = 1, 2,3), 

(j = 1, 2, 3), 

for any l = 1, 2, 3. Now we introduce a triad of second-rank matrices Nf j] (j = 
1, 2, 3) such that 

(4.8) u'- = iN[j ]u · 
J J (j = 1, 2,3). 

Substituti ng this into the governing differential equation (3.6) we obtain the fo l-
lowing fi rst-order Riccati-type differential equations for the matrices Nlil 

(4.9) 

Boundary conditions, in order to integrate (4.9), may be obtained from (4.6)- (4.8) 
as 

(4.10) (j = ] , 2, 3). 

According to (3.14) we assume 

( 4.1]) (j = 1, 2, 3), 

where aj(z) are scalar, complex-valued amplitudes and Pj(z), qj (z ) characterize 
the polarization o f the fi eld. Substitution of ( 4.11) into ( 4.8) yields a fir st-order 
differential equation for a two-dimensional po larization vector, and the expression 
o f the scalar amplitudes in terms of the entries of the matrices N[j l_ Explicitly 

( 4.12) 
(

NUl - NUl 
+ . 22 11 

t [j ] 
N32 



http://rcin.org.pl

418 M. 110M E:O 

(4.13) ( -)- (0) [ · j" ( fi l N [j] !i l ) I l a j - - a j exp 1 o i\ 11 + - 12 pi + .1\ 13 q j r. r , 

with j = 1, 2, 3. Equation ( 4.12) has the form of a Riccati equation. Boundary 
conditions are obtained from ( 4.6) and ( 4.11) as 

(4.14) (Pj(d)) = ＨＷｊ ［ｾ Ｉ Ｎ＠
ru (d) ｱ ｝ｾ＠

Consequently, integration of equations ( 4.9) and ( 4.12), together with Eq. ( 4.13) 
allows us to obtain the field in the layer. In order to complete the picture, we 
have to determine the constants of integration a j (O) in Eq. (4.13). This can be 
performed by imposing the continuity of u and t at the surface S1 (z = 0). As 
a result, we also obtain the refl ection and transmtssion matrices V1h and W1h, 

(h , l = 1, 2, 3). Just like the previous conditions at S2, we require the continuity 
ofu and u' at S1. According to (4.11), we obtain, for any impinging mode l , 

3 3 

1 + L \lij = I:: aJCO), 
j = l j= 1 

3 3 

( 4.15) ｐｾｾ＠ + L ｐ ｽ ｾｖｩ ｪ＠ = L Pj(O)a j (O), 
j =1 j =1 

3 3 

ｱｦｾ＠ + L ｱ ［ｾｶＬｩ＠ = 2::.:: q1 (0)aJ (O); 
J=1 J=1 

3 3 

Ｈ ｬ ｾ＠ + L Ｈ ｊｾｖｩ ｩ＠ = L n\i1(0)aj (O), 
j= 1 j= 1 

3 3 

(4.16) ｣ｦＡ＾ｐｾｾ＠ + L Ｈ ｊｾｐｽｾｬ ｬｩ ｪ＠ = L ＮｏｾｪｊＨｏＩ ｡ｪ ＨｏＩ Ｌ＠
j = 1 j= l 

3 3 

c,(!>qf!> + 2::.:: ｣ ｝ ｾｱ ｊ ｾＧ Ｂｪ＠ = 2::.:: .aY1co)aj(o), 
j =l j =l 

where Eq. (4.12) has been used in working out the last two of Eqs. (4.16), and 
where 

(4.17) 

for any j = 1, 2, 3. From Eq. (4.15) we have, for any/, 

3 

(k = 1, 2, 3), 

( 4.18) a j (O) = v/{(0) + L Vihvjh (O) (j = 1, 2, 3), 
h=l 
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with 

3 

r = L r/j(Jlj+ l - Jlj+2), 
j= l 

419 

(j , rn = 1,2,3), 

and where a cyclic permutation of the indices j is understood. Substitution of 
Eq. ( 4.18) into ( 4.16) yields, after some manipulations, the reflection matrix as 

(4.19) V= - H:;: 1H_, 

where H+ and H_ are matrices whose entries are given by 

(4.20) 

3 

(II ± )Ih = ､ｾ Ｍ L v_j';, (O)f2 \j 1(0), 
j= l 

3 

(II ± hh = ､ｾ｝ｊｾ Ｌ ｾ Ｍ L ｶｪ ｨ ＨｏＩｦＲｾ Ｑ ＨＰＩ Ｌ＠
j= l 

3 

(Tf±h h = ､ｾｲｴｨｾ Ｍ L v_j';,(O)n;n(O), 
j= l 

with h = 1, 2, 3. The transmission coefficients may be obtained from the reflection 
matrix V by simply observing that Eq. (4.13) can be also written as 

H ence we obtain 

(4.21) 

where 

(j , /,; = 1, 2, 3). 
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5. Local reflectivity and couples of opposite modes 

The aim of the present section is to give a representation of the displacement 
wi thin the layer£, as a set of pairs of up-going and down-going modes. Accounting 
for the formal splitting ( 4.3), we write 

(5.1) (j = 1, 2, 3), 

where the dependence on z of the amplitudes and polarizations is understood. 
Let us introduce the local reflectivity matrix R(z) as 

(5.2) 

From Eqs. (5.1) and (5.2) we can express the amplitudes erJ= in terms of the 
amplitudes erj, which have been derived in the previous section. We get 

(5.3) 

(5.4) 

(eri ,ert,ert) =(I+ R)- 1(er, ,er2,er3), 

(er[, er2,er3) = R(I + R)- 1(er, ,er2, a3). 

In order to match the wave-splitting given by (5.1) and (5.2) with the solutio1s of 
Eq. (3.6) in 6 1 and 62, according to the analysis of the previous section, we nust 
impose the followin g conditio ns at the boundaries 

(5.5) 

(5.6) 

(er[ , er2, a3)1z=O = V (at' , eri, ert)lz=O, 

(er[ , er2, er3)1z=d = 0. 

In view of Eqs. (5.2) and (5.4), this implies that the matrix function R(z) nust 
satisfy the conditions 

(5.7) 

(5.8) 

R(O) =V, 

R(rl) = 0. 

Let us consider the matrix function 

(5.9) R(z) = - H:;1(z) H_ (z), 

where H±(z) are given by (4.20) being tJJh and n[il evaluated at the depth z in 
ｴｨｾ＠ layer. It is a simple matter to show that (5.9) satisfies conditions (5.7) and 
(5.8). ln fact, Eq. (5.7) is the obvious consequence of ( 4.19) and (5.8) fo ll ows from 
the fact that H_(d) = 0, in view of (4.20), (4.17) and (4.10). Hence Eqs.!5.3), 
(5.4) and (5.9) yield the appropriate representation of the split field withi n the 
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layer. However, this description is not the only one, since other representations 
are possible fo r different matrix functions which satisfy Eqs. (5.7) and (5.8). As 
to the polarizations pj(z), qj(z), we can apply the previous analysis in view of 
the formulae 

+ + + - -
o: j Pj o:j Pj = O:jPj, 

with j = 1, 2, 3. 

6. Horizontally polarized waves for particular symmetries 

According to Eq. (2.6), orthorhombic, tetragonal, cubic and hexagonal systems 
are characterizerd by the fo ll owing restrictions 

rl4 = r1s = r16 = r24 = r2s = r26 = o, 
(6.1) 

T34 = F3s = r 36 = r4s = r46 = Fs6 = o. 
For waves incident on the plane (y, z), Eq. (3.5) splits into 

(6.2) 

(6.3) o ) ( tt2 ) " [ ( ｲｾ Ｔ＠ o ) . ( o r23 ) ] ( ·u2 ) ' 
T33 1L3 + o F:!J + 21

.k r23 o 1t3 

[. ( o ｲｾ Ｔ Ｉ＠ 2 ( r22 o ) 2 ( 1 o)] ( u2) + tk - k + f!W = 0 
ｲｾ Ｔ＠ o o r44 o 1 u3 · 

Equation (6.2) is the governing equation for waves polarized along the x-direction, 
i.e. horizontally polarized waves, and Eq. (6.3) accounts for waves whose ampli-
tude lies on the vertical propagation plane, i.e. vertically polarized waves. The 
analysis of Sec. 4 may be applied separately to Eq. (6.2) and Eq. (6.3). Here we 
remark some peculiar features of horizontally polarized waves. Let us note that, 
according to (6.1) 

t 1 = ｆ ＵＵ ｵ ｾ Ｌ＠

hence continuity of l 1 at the boundaries of the layer is equivalent to continuity 
of ｵ ｾＮ＠ The continuity requirements reduce to 

UJ (O) = 1 + ll , 

ｵｾＨｏＩ＠ = ｩ Ｈ Ｈｾ Ｑ Ｉ＠ + Ｈｾ Ｑ ＩｖＩ Ｌ＠

u1(d) = W ･ｸｰＨｩ ＨｾＩ､ Ｉ Ｌ＠
(6.4) 

u'1 (d) = ｩＨｾ Ｒ ＾ｷ＠ exp( ｩＨｾ＾＠ d). 
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Introducing the complex-valued functio n a(z) such that 

(6.5) 

Eq. (6.2) yields 

(6.6) 

In addition, from (6.4) we get 

(6.7) 

If E q. (6.6) is solved together with the boundary condition (6.7), the horizontal 
displacement 7t1 (z) may be given in the form 

(6.8) U I ( Z) = (I ) exp t J a ( T) rf T . 
Ｈ ｾｉ Ｉ Ｍ Ｈｾ ｉＩ＠ [ · z l 
(_ - a(O) 

0 

As to the refl ection coefficient \f , Eqs. (6.4) yield 

(6.9) 
_ ＨｾＩ＠ - a(O) 

V - - ｾＺＭＭＭＭＭＭＧＭＭＭＢＭ
Ｈｾ Ｑ ＾＠ - a(O) . 

The scatte ring problem has been reduced to the solution o f the fir st-order Riccati 
equatio n (6.6) for the function a (.:} 

Consider now the splitti ng of horizontall y po larized waves and introduce the 
up and down-going modes ui (::: ), nj( z) and a local reflectivity R(z) such that 

(6.10) 

(6.11) R(O) = V, R(d) = 0. 

It is easy to show that the function 

(6.12) R(z) = _ ( +(z) - a(z) , 
( _ (z) - a(z) 

where the functio ns (± (z) are defin ed according to 

(6.13) 
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satisfies restrictions (6.11 ). This fact is a direct consequence of Eqs. (6.9) and (6.7). 
We finally show that, in this case, the reflectivity R(z) satisfies a first-order Riccati 
differential equation. To this end we observe that, owing to (6.13), Eq. (6.6) can 
be rewritten as 

(6.14) 

Then, differentiating Eq. (6.12) and accounting for Eq. (6.14), we obtain 

(6.15) R'= Ｈｾ＠ Ｍ ｛ ｩｻＨＫＭＨＭＩ ＭＨ ｾ Ｋ Ｈｾ ｝ｒＫ＠ C R2. 
(+ - (_ (+ - (_ (+ - (-

Integration of Eq. (6.15) with the boundary condition (6.11)2 turns out to be 
an alternative approach in deriving the reflection coefficient. The result (6.15) 
is a generalization of recent results on isotropic layers [7]. More generally, a 
Riccati-type equation for the reflectivity is a common feature of scalar theories 
in layered media (see fo r ex. [9]). 

7. Numerical examples 

In order to varify the method previously outlined, we give a numerical solu-
tion for the wave-fi eld inside a solid layer with known constitutive properties. We 
restrict our computations to the scalar problem developed in Sec. 6; extension to 
the more general case may be performed without qualitative changes. TWo differ-
ent examples are considered for the dependence of the constitutive parameters 
on the depth within the layer. In each instance, the quantities r 55, r66, ｾ＠ have the 
same dependence on z and, according to the present model, are C 1 throughout 
z. The fir st example accounts for a monotone increasing dependence o n z as 

(7.1) Ｈ ｾＬ＠ Fss, r66) = Ｈ ｾｯＬ＠ ｲｾ Ｕ Ｌ＠ rg6)[1 + Q{l - cos(1r Z ))], Z E [0, 1], 

where fl o, ｲｾ Ｕ Ｌ＠ r& are constant quantities pertaining to 61> 2Q is the ratio between 
the maximum and the minimum value of the constitutive parameters and where 
the dimension less variable Z = z / d has been introduced. In the second example 
a symmetric layer is considered, with 

(7.2) ZE [O, l], 

so that 61 and 62 are mechanically equivalent. 
Effective wave propagation within the layer requires a non-zero real part of 

(±. According to (6.13), this implies 

(7.3) V Z . 
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In view of (7.1) and (7.2), the inequality (7.3) amounts to the following restriction 
on wand k, 

(7.4) 2 0 2 0 ｾ
Ｒ
ｑ

Ｒ＠

{!W - r 66k > cr55 1 + 2Q ' 

with c = 1/ 4 or c = 1 depending on the alternative use of (7.1) or (7.2), respect-
ively. 

QIS 

/ VI 

0 10 

005 

a 

0 02 Qt 06 08 kl k. 10 

FIG. 1. Reflection coefficient lVI = I R(O)I as a function of k I ko for a layer described by Eq. (7.1 ) 
(curve a) or by Eq.(7.2) (curve b). 

Equation (6.15) has been numerically integrated along with the boundary con-
dition R(Z = 1) = 0, adopting Eqs. (7.1), (7.2) and accounting for (7.4). The 
reflection coefficient lVI = IR(O)I has been derived for all possible values of k 

[ 

2 ro 2 2 ]
1
; 2 

(0 ｾ＠ k < k0, with ko = f!. ｾ＠ - c ｾ＠ ｾ＠ Q Q ). The values of V have been 
r 66 r 66 1+2 

substituted into the boundary conditions (6.4)1 ,2 in order to integrate Eq. (6.2). 
Then, both solutions for u1 and R have been exploited to obtain the wave split-
ting within the layer, according to (6.10). The results are shown in Figs. 1- 5 for 
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0 02 04 06 08 z 1.0 

P IG. 2. Real and imaginary parts of the 
forward wave component within the 

"monotone" layer (see Eq. (7.1 )). 

004 

- 002 

- QOJ 

-004 

0 02 Q4 06 Q8 z 1.0 

f' IG . 3. Real and imaginary parts o f the 
backward wave component within the 

"monotone" layer (sec Eq. (7.1 )). 

a layer of zinc (oo = 7135 kg/m3, ｲ ｾ Ｕ＠ = 39· 109 Pa, ｲ ｾ＠ = 63·109 Pa) with Q = 0.1 
and w = 104 Hz. In particular, Fig. 1 shows I V I versus k for the "monotone" 
layer described by Eq. (7.1) (curve a), and for the symmetric layer described by 
Eq. (7.2) (curve b). Figures 2 and 3 show the real and the imaginary parts tt± and 
ｴｴｾ＠ of the opposite modes in the split wave-fi eld for normal incidence (k = 0) in 
the "mo noto ne" layer (see Eq. (7.1 )). Analogous results are shown in Figs. 4, 5 
for the symmetri c layer (see Eq. (7.2)). From F igs. 3 and 5 is evi dent the phase 
shift between ｴｴ ｾ＠ and ｴｴ ｾ＠ which shows the mixi ng effect of the refl ectivity R on 
the real and imaginary parts of the fi eld inside the layer. We also observe that the 
refl ection coefficient lVI for normal incidence in the symmetric layer is by o ne 
order of magnitude greater than that of the "mo notone" layer (Fig. 1 ). This fact, 
which is also evident from the results o f the refl ected amplitudes ｴｴ ｾＬ｢＠ (Figs. 3, 5), 
is due to the steeper profil e of the constitutive properties in the symmetri c layer. 
We note, however, that this behaviour is reversed when incidences are considered 
which are close to the limiting value k0. 
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FIG. 4. Real a.nd imaginary parts of the 
forward wave component within the symmetric 

layer (sec Eq. (7.2)). 
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