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Wave propagation in anisotropic layered media

M. ROMEO (GENOVA)

THE PROPAGATION of time-harmonic waves in a continuously stratified anisotropic, viscoelastic layer
bounded by two homogencous anisotropic solid half-spaces, is studied analytically. A plane wave
is assumed to impinge on the boundary of the layer, and the resulting field, inside and outside
of the layer, is described according to the causality principle and formal wave-splitting. Reflection
and transmission coefficients are derived for arbitrary angle of incidence, together with a formal
expression of the wave field within the layer. A local reflectivity is defined as a function of the depth
and used to obtain up and down-going modes in the layer. Reduction of the model to particular
material symmetries allows for scalar fields whose properties generalize known results concerning
the isotropic media. Numerical results are given to illustrate the method in the scalar case.

1. Introduction

WAVE PROPAGATION in stratified layers has been extensively investigated in con-
nection with a wide range of constitutive and geometric models which are mainly
motivated by geophysical applications. Beside the frequent approaches based on
homogeneous waves in elastic isotropic materials (see for ex. [1, 2]), inhomo-
geneous waves have also been exploited in order to account for dissipative effects
[3, 4], and anisotropic materials have been considered in the multilayered case
[5, 6]. However, in these last works each layer is assumed to be homogeneous,
thus allowing for an effective use of the propagator matrix.

The aim of the present paper is to investigate wave propagation across a con-
tinuously stratified (and hence inhomogeneous) viscoelastic solid layer with ar-
bitrary material symmetry. A time-harmonic inhomogeneous plane wave, coming
from a homogeneous anisotropic half-space, is assumed to impinge on the outset
of the layer, giving rise to a reflected field. A transmitted wave field propagates
along the edge of the layer within a second homogeneous anisotropic half-space.
For arbitrary angle of incidence, three reflected modes and three transmitted
modes are, in general, possible within the homogeneous half-spaces. Although
forward and backward plane waves are allowed in the first solid half-space, the
causality reasons imply that only forward waves propagate in the second solid
half-space. Transmitted modes are then exploited to infer a formal wave-splitting
within the layer, where the wave field is described by three independent compo-
nents whose amplitudes and polarizations are functions of the depth. Continuity
requirements imposed on the displacement and on the traction are used to obtain
the reflection and the transmission matrices, and to get boundary conditions in
order to integrate the differential equation for the displacement. A wave-splitting
is then introduced for each wave component in the layer. To this end, a reflec-
tivity matrix is defined which satisfies suitable conditions at the boundaries. As a
result, the wave field within the layer is given as the superposition of three pairs
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of up and down-going modes. A notable simplification of the present model is
achieved by considering special material symmetries. In Sec.6 of this paper it
is shown that some crystal systems such as orthorhombic, tetragonal, cubic and
hexagonal systems allow for a decoupling of the governing differential equation,
which splits into a scalar equation for horizontally polarized waves and a vector
equation for vertically polarized waves. The first one is analyzed in detail to stress
the comparison with the known results on isotropic layers [7]. In particular, the
reflectivity is shown to satisfy a Riccati equation as occurs in scalar theories of
wave propagation in isotropic layered media [8, 9]. The scalar problem for hor-
izontally polarized waves is also solved numerically to explicitly obtain the split
wave-field. Two examples are considered of the dependence of the constitutive
properties on the depth.

2. Stratified anisotropic layers

We are here concerned with an inhomogeneous anisotropic solid layer £
bounded by two plane parallel surfaces §; and S;. A Cartesian coordinate system
is chosen in such a way that &, and S; correspond to the planes z = 0 and z = d,
where d is the thickness of the layer. Inhomogeneity in £ is assumed to consist
of a continuously stratified structure along the z direction. Two homogeneous
anisotropic solid media By and B, occupy, respectively, the half-spaces z < 0
and z > d. All the media By, £, B, are supposed to behave as viscoelastic ma-
terials where the Cauchy stress T has a linear dependence on the strain history
and an arbitrary dependence on the space coordinates. More precisely, denoting
by € = Sym(Vu) the infinitesimal strain tensor, u being the displacement, we
assume (cf. [10])

(2.1) T(x,t) = é(:,U)E(X. t) + ]és(:, s) e(x,t — s)ds,
0

where G : R x R* — Lin(Sym) is the relaxation function and G, = (‘)f}/(')s. It
is convenient, in elastic theories of anisotropic solids, to adopt a double-indices
notation for the relaxation function (see [11]), introducing the indicial corre-
spondence (ij) — a (i,j = 1,2,3; a = 1,...,6) given by (11) — 1, (22) — 2,
(33) — 3, (23) — 4, (13) — 5, (12) — 6. The corresponding six-dimensional re-
laxation matrix /'(z, s) is assumed to be non-singular for any z € R and s € R*.
In the following we shall assume that the displacement u has a time-harmonic
dependence
u(x, t) = u(x)exp(—iwt),

with w € R™*. Hence, assuming e(x, —oc) = 0, integration by parts reduces
Eq.(2.1) to

(2.2) T(x,w) = G(z,w) €(x,w),
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where T = Texp(iwt) and G(z,w) = —iw o G(z, s) exp(iws) ds. Accounting for
the model we are dealing with, the constitutive parameters take the form

I‘(U(w) for 2 < 0,

af

(2.3) Iyp =S Tap(z,w)  for z €]0,d],

I(g,)(w) for z > d,

where I3 = —iw [;° I',pexp(iws)ds. We also assume that I,4 are continuous
throughout 2> and sufficiently smooth in [0, d]. Additional restrictions hold if par-
ticular material symmetries are allowed for the solid media. A classification of
such symmetries can be achieved by the determination of the planes of reflec-
tive symmetry (see [12]) and of the consequent non-vanishing elastic constants.
For the future purposes we observe that most of the crystal systems (such as
orthorhombic, tetragonal, cubic and hexagonal) can be characterized by the nine
non-vanishing parameters

Is  with a,8=1,23,

(2.4)
Iy,  with y=456.

These, in turn, may reduce to a lower number of independent entries for particu-
lar crystal classes (see for ex. [13]).

3. The governing differential equation

Accounting for layer’s inhomogeneities along the z-axis, we assume that the
displacement u(x) has a plane-wave-like dependence on = and y, that is

(3.1) u(z,y, z) = w(z)expli(k.z + kyy)],

where &, and £, are complex-valued wave-numbers and where u € C3. Avoid-
ing inessential formal difficulties, we can choose the r-axis in such a way that
the real part of &, vanishes. This can be accomplished by a suitable orthogonal
transformation applied to the constitutive tensor G (see e.g. [S]). We also neglect
the imaginary part of k.. This amounts to assume that the incident wave-number
bivector lies on the (y, z) plane. Hence, putting &k, = &, Eq. (3.1) takes the form

(3.2) u(y, z) = u(z)exp(iky),

which, according to the Snell’s law, holds at any point in By, £, and B,. In view
of the time-harmonic dependence, the equation of motion for u reads

V.T+pfu=0,

http://rcin.org.pl
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where ¢ is the mass density. By exploiting Eqgs. (2.2) and (3.2) and accounting for
the description in terms of I', we arrive at

(3.3) [C + ow’I]u = 0,

where C is a linear symmetric differential operator whose entries are expressed
by

Cyy = 0.(I'ss0:) + ik(I'ss. + 2Is60:) — kT,

Cip = 0.(I'450.) + ik(Ips,. + 2l460-) — k* I,

Ciz = 0.(I350:) + ih(ss. + 21360:) — k*Ius,

Cy = 0.(I'4d.) + ik(oa,, + 20240.) — K* I,

Cyy = 0.(I'340.) + ik(T'yq» + 20539.) — k* 14,

Cys = 9.(I'530.) + ik(I3q, + 20340.) — K1 ug.

(3.4)

Equation (3.3) is a second order homogeneous linear differential equation for u.
More explicitly, it can be written as

(3.5) Lu” + (L + 2ikM )’ + (ikM} — k2Q + pwu = 0,
where prime denotes differentiation with respect to 2, and where
I'ss Iy Iss Iss lss I3

L= TIys Is I3], My=|Ts 124 I

I3s I3q I3 I'ye 123 I3

I'ss Ips Iias I'ee 12 1las

M= | I I2a lua|, Q= |1 In In

Iys Tag 134 I'se Toa Ty

Since I' is non-singular, the operator L(z) is invertible for any > € R, hence
Eq. (3.5) may be rewritten in the following form

(3.6) u’ + Au’ + Bu =0,
where
(3.7) A=L"YL +2ikM,), B=L""(GkM) - E*Q + oI).

Before developing a procedure to obtain a representation of the displacement
within the layer £, we look for solutions of Eq. (3.6) in the homogeneous regions.
In B; and B; the tensor I" is taken to be independent of z, whence

A(I,Z) = 2TL(L(] ,2))—1M21,2)!

(3.8)
B(I.Z) = (L(l.?_))—l[ngl . ]\’_ZQ(I,Z)],

http://rcin.org.pl
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with obvious meaning of the superscripts 1, 2. In view of a formal splitting of
the wave field into elementary modes, we first look for non-dissipative, normal
incident waves, such that & = 0. Owing to (3.8) we have A2 = 0, and the
solutions of Eq. (3.6) take the form

3
(3.9) u= Z[“h+ exp(i¢nz) + up— exp(—iCx2)],

h=1
where (;, (h = 1,2,3) are those solutions of the bi-cubic secular equation

(3.10) det [pw?L~! — ¢%1] = 0,

which have positive real parts. From Eq. (3.9) the displacement of normal incident
waves in homogeneous regions consists of three pairs of up and down-going
modes. For an arbitrary incidence and possible dissipation (k # 0), Egs. (3.9) and
(3.10) must be replaced by

6
(3.11) u=3wexp(ics2),

h=1

(3.12) det[ow?l — k2Q — 2k(M, — (L] = 0.

The left-hand side of Eq. (3.12) is a sixth-degree polynomial with constant, com-
plex-valued coefficients, parametrized by k. Its zeroes ¢, (h = 1,...,6) appear
in the representation (3.11). If the solutions +(;, (h = 1,2,3) of Eq.(3.10) are
distinct, there will be a neighbourhood . of £ = 0 in the complex k-plane where
each solution of Eq. (3.12) has a one-to-one correspondence with each value +(,
and keeps its own sign. Then, assuming £ € (', solutions of Eq.(3.12) may be
represented by the set

{€1+:~ Cl— ) €2+s CZ—, C3+:~ (:3—},
and Eq. (3.11) becomes

3
(3.13) u = [ups exp(iCh+z) + ws_ exp(iCy—z)],
h=1

thus yelding three couples of “up” and “down-going” modes. In the following we
shall assume that the eigenvalue problem (3.12) and the corresponding eigenvec-
tor problem have been solved in By and in B, so that the constant amplitudes
uy+ are known. In view of further developments, we represent these vectors in
the form

1
(3.14) ws = af | pra
Gh+
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4, Formal wave-splitting and the field within the layer

A plane harmonic wave, coming from the homogeneous region 5, is supposed
to impinge on the boundary §; of the inhomogeneous layer (2 = 0). Owing to
the superposition principle, we can restrict our attention to one of the possible
up-going modes, labelled by I+, (I = 1,2,3) and study the reflected and trans-
mitted modes at the respective surfaces S; and S,. Each impinging mode allows
for a superposition of all the possible down-going reflected modes in B, and all
the possible up-going transmitted modes in B;, according to (3.13). The causal-

ity principle implies that no down-going modes arise in B>, that is u ( ) = 0 for
h =1,2,3. Hence the wave fields in B, and B; can be expressed, respectwely, as

1 1

4.1) u® = pﬁ) exp(zgfi)u) + Z Vi ph_ exp(zgh z) for z<0,
(N h=1 (1)
91+ p—

1

thh ;uf‘hz exp(zg z)  for z>d,

h=1 2)
qh+

i

(42) u?

for any impinging wave (I = 1,2, 3). Equations (4.1) and (4.2) can also be viewed
as a definition of the complex-valued reflection and transmission coeflicients
and W;,. Compatibly with the causality principle, each component mode of the
transmitted field (4.2) may be thought of as being originated by a corresponding
field within the layer. Specifically, we decompose the field in £ as

(4.3) u=u +u+u;

and impose continuity requirements on Sp, pertinent to each component sepa-
rately. To this end we observe that, in view of (2.2), the traction t = Tes (e3 being
the unit vector along the z-direction) is given by

(4.4) t = ikPu+ Lu',

where
I'ss 125 Iias
P=| T4 124 Ia]|,
I3g I3 I3

and hence

(4.5) ' = L~Y(t - ikPu).

=
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According to the regularity conditions on " at the boundaries, the continuity of
the displacement and of the traction across S| and S, implies continuity of the
derivative of u at layer’s boundaries. As a consequence, from (4.2) and (4.3) we
have, at z = d,

1
; 2 . (2 .
(4.6) ui(d) = Wy | 93 |expicPa) (G =1,2,3),
(2)
q;+
1
vl 2 2 el D "
(4.7) wi(d) = i@Qwy; | B | expi(Rd) (G =1.2,3),
@
15+

for any ! = 1,2,3. Now we introduce a triad of second-rank matrices NI (j =
1,2, 3) such that

(4.8) o, =iNUly;  (j=1,2,3).

Substituting this into the governing differential equation (3.6) we obtain the fol-
lowing first-order Riccati-type differential equations for the matrices NI/l

(4.9) (NU1Y = iB — ANUI — iNVINUI,

Boundary conditions, in order to integrate (4.9), may be obtained from (4.6)—(4.8)
as

(4.10) N@ =1t (5=1,2,3).
According to (3.14) we assume
1
(4.11) u;(z) = a;(2) | pi(2) (G =12,3),
7;()

where o;(z) are scalar, complex-valued amplitudes and p;(z), ¢;(z) characterize
the polarization of the field. Substitution of (4.11) into (4.8) yields a first-order
differential equation for a two-dimensional polarization vector, and the expression
of the scalar amplitudes in terms of the entries of the matrices NI/, Explicitly

WY (M) (-
(4.12) =1 -1+ , . Ul
o) =\ wg NI AT

(P 1 Al [ P
() omn(z).
‘71 qJ
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4.13 a;j(z) = aj(Oexp [i [ (N 4+ MU+ NG ar|
7 J p J
0

with j = 1,2, 3. Equation (4.12) has the form of a Riccati equation. Boundary
conditions are obtained from (4.6) and (4.11) as

2

p;(d) B p§+)

(4.14) =1

(IJ'(d) ([]+
Consequently, integration of equations (4.9) and (4.12), together with Eq. (4.13)
allows us to obtain the field in the layer. In order to complete the picture, we
have to determine the constants of integration «;(0) in Eq.(4.13). This can be
performed by imposing the continuity of u and t at the surface &) (z = 0). As
a result, we also obtain the reflection and transmission matrices Vj, and 1/,

(h,1 = 1,2,3). Just like the previous conditions at S», we require the continuity
of u and v’ at §;. According to (4.11), we obtain, for any impinging mode /,

3 3
1% Z Vij = Z(;’_,‘(O),
J=1 1=1
(1) 2 (1) 2
(4.15) WD+ 00V = 3 0 0).
1=1 1=1
(1) : (1) 2
Gy t Z’IJ~"’U = Z(IJ (0); (0);
J=1 1=1
3

Gy + Zc‘”l = _Z 2(0)a;(0),

(4.16) l(i) fi) + ZQ(I) (I)VU = .QIJI(O)GJ(O),

c® (1)+Z<(1) My, =

I+ Qi+ 1-95-

rz“'(ﬂ)a] (0).

;

where Eq.(4.12) has been used in working out the last two of Egs. (4.16), and
where

@17 2V = M@ + V@) + NEGe)  (=1,2,3),
for any j = 1,2,3. From Eq. (4.15) we have, for any /,

3
(4.18) @;(0) = v (0) + ) Vi, (0) (G =1,2,3),
h=1
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with

1 1 1 (1
bl = = [r/,(ni(pm = pi+2) + Gi1(Pis2 — Poak) + Gj+2(Ph — PJ-+1)]

(7,m =1,2,3),
3
r=3qi(pj1 — pj+2),
3=1

and where a cyclic permutation of the indices j is understood. Substitution of
Eq. (4.18) into (4.16) yields, after some manipulations, the reflection matrix as

(4.19) = ~H7;'H_,

where H; and H_ are matrices whose entries are given by
(1 2 [J
(Hehw = Gg = > v5027(0),
1=1
(1) (1) - [1]
(4.20) (Hi)a = G — ¥ v (0)1257(0),
j=1

3
A1 1 ]
(i) = (24 - S vF 02 (0),

i=1

with h = 1,2,3. The transmission coefficients may be obtained from the reflection
matrix V by simply observing that Eq. (4.13) can be also written as

d

ai(z) = Wy, exp [—i / ngf'(r)dr] exp(i¢'?d).

Hence we obtain
(4.21) W=K,V+K_,

where

d
(K)n = v5,(0)exp [i / [:z{ﬁ(r) - cﬁ’] dr} G,k =1,2,3).
0

http://rcin.org.pl
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5. Local reflectivity and couples of opposite modes

The aim of the present section is to give a representation of the displacement
within the layer £, as a set of pairs of up-going and down-going modes. Accounting
for the formal splitting (4.3), we write

1 1 1
(5.1) uw=a;|p | = n;“ P;' + &g | Py (G =1,2,3),
q; q q;

where the dependence on z of the amplitudes and polarizations is understood.
Let us introduce the local reflectivity matrix R(z) as

(5.2) (a7 ,05,03) = R(af,a;,a3).

From Egs.(5.1) and (5.2) we can express the amplitudes nf in terms of the
amplitudes «;, which have been derived in the previous section. We get

(5.3) (af a7 ,a3) = (1 + R)" (g, ag,a3),
(5.4) (a7 ,05,03) = R(I+ R) !(ay, a2, 3).

In order to match the wave-splitting given by (5.1) and (5.2) with the solutioas of
Eq. (3.6) in By and B3, according to the analysis of the previous section, we must
impose the following conditions at the boundaries

(5.5) (a7 ,05,03)|.=0 = V(af,a;,a3)|.=0,
(5.6) (o] 05 ,03)|:=4 = 0.

In view of Egs.(5.2) and (5.4), this implies that the matrix function R(z) must
satisfy the conditions

(5.7) R(0) =V,

(5.8) R(d) = 0.

Let us consider the matrix function

(5.9) R(z) = -H;!(2) H_(2),

where Hy(2) are given by (4.20) being uﬁ and Q{;"] evaluated at the depth z in
the layer. It is a simple matter to show that (5.9) satisfies conditions (5.7) and
(5.8). In fact, Eq. (5.7) is the obvious consequence of (4.19) and (5.8) follows from

the fact that H_(d) = 0, in view of (4.20), (4.17) and (4.10). Hence Egs. 5.3),
(5.4) and (5.9) yield the appropriate representation of the split field within the
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layer. However, this description is not the only one, since other representations
are possible for different matrix functions which satisfy Eqs. (5.7) and (5.8). As

to the polarizations pji(:), qjt (z), we can apply the previous analysis in view of

the formulae
(e7pr.03py,05p3) = R(a{pl,a2p3, a3p3),
(e ar,0247,0365) = R(ef'q" 0347 03 qg),
a;p; +ajp; = a;p;j, a;'q;" +a;q; = a;q;,

with j = 1,2,3.

6. Horizontally polarized waves for particular symmetries

According to Eq. (2.6), orthorhombic, tetragonal, cubic and hexagonal systems
are characterizerd by the following restrictions
hy=nIis=e=Iu=Is=I%=0,

(6.1)

I3q = Iys = 136 = I4s = Iy = I'ss = 0.
For waves incident on the plane (v, =), Eq.(3.5) splits into

(6.2) I'ssu} + Disul — (k*Igs — ow)uy = 0,

1144 0 (1) ¥ 1154 0 . 0 1123 uz !
’ + + 2tk
@ ( 0 1"33) (""3) [( 0 Iy N0 u3
) 6 I In 0 1 0 )
& 44\ _ 2 % g s,
l (m 0) (0 1'44) RELE 1l Vg )™

Equation (6.2) is the governing equation for waves polarized along the z-direction,
i.e. horizontally polarized waves, and Eq. (6.3) accounts for waves whose ampli-
tude lies on the vertical propagation plane, i.e. vertically polarized waves. The
analysis of Sec.4 may be applied separately to Eq.(6.2) and Eq.(6.3). Here we
remark some peculiar features of horizontally polarized waves. Let us note that,
according to (6.1)

3

ty = I'ssuj,
hence continuity of ¢; at the boundaries of the layer is equivalent to continuity
of u|. The continuity requirements reduce to

ui(0) = 1+ V,
ai(0) = i + ¢,
u(d) = W exp(i(iz)d),
ui(d) = i¢PW exp(icPd).

(6.4)
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Introducing the complex-valued function o(z) such that
(6.5) uy = iouy,

Eq. (6.2) yields

1“/
(6.6) o' —(Qw — kg = =2g =~ jot.
55

In addition, from (6.4) we get
6.7) afdy =3,

If Eq.(6.6) is solved together with the boundary condition (6.7), the horizontal
displacement u1(z) may be given in the form

Q(l) _ (’(l) 2

(6.8) uy(2) = =————exp i/n(r)(lr ‘
O -a@ |
As to the reflection coefficient V, Egs. (6.4) yield
)~ (0]
(6.9) T)—(—
a(0)

The scattering problem has been reduced to the solution of the first-order Riccati
equation (6.6) for the function o(z).

Consider now the splitting of horizontally polarized waves and introduce the
up and down-going modes u (z), u; (=) and a local reflectivity /(=) such that
(6.10) up = uf +ug, uy = Ruy .

(6.11) R(0) = V, R(d) = 0.

It is easy to show that the function

(6.12) R(z) = —T_—E—;——%\
where the functions (4 (=) are defined according to
1ss(2)
() + (-(e) = i
(6.13) I 55({)
G- () =~y [0 - KTl

http://rcin.org.pl
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satisfies restrictions (6.11). This fact is a direct consequence of Egs. (6.9) and (6.7).
We finally show that, in this case, the reflectivity £(z) satisfies a first-order Riccati
differential equation. To this end we observe that, owing to (6.13), Eq. (6.6) can
be rewritten as

(6.14) o' = ~i(0 - (Yo — ().

Then, differentiating Eq. (6.12) and accounting for Eq. (6.14), we obtain
/ ~ ~I !

(6.15) R=—% il =) = GHCIlpy S g2

C+ — (- C+—=C |  Ce—=U-

Integration of Eq.(6.15) with the boundary condition (6.11); turns out to be
an alternative approach in deriving the reflection coefficient. The result (6.15)
is a generalization of recent results on isotropic layers [7]. More generally, a
Riccati-type equation for the reflectivity is a common feature of scalar theories
in layered media (see for ex. [9]).

7. Numerical examples

In order to varify the method previously outlined, we give a numerical solu-
tion for the wave-field inside a solid layer with known constitutive properties. We
restrict our computations to the scalar problem developed in Sec. 6; extension to
the more general case may be performed without qualitative changes. Two differ-
ent examples are considered for the dependence of the constitutive parameters
on the depth within the layer. In each instance, the quantities /s, /66, 0 have the
same dependence on z and, according to the present model, are C'! throughout
z. The first example accounts for a monotone increasing dependence on z as

(7.1) (0, I'ss, I'es) = (90,1"505, TR + Q(1 = cos(x Z))], Z €10,1],

where o9, I'Ys, 'S are constant quantities pertaining to B, 2@ is the ratio between
the maximum and the minimum value of the constitutive parameters and where
the dimensionless variable Z = z/d has been introduced. In the second example
a symmetric layer is considered, with

(72) (oI55, Tes) = (00, 55, Tge)[1 + Q1 —cos2x2))],  Z €[0,1],

so that B; and B; are mechanically equivalent.
Effective wave propagation within the layer requires a non-zero real part of
(+. According to (6.13), this implies

(7.3) ow? — Fegh? > 33
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In view of (7.1) and (7.2), the inequality (7.3) amounts to the following restriction
on w and k,

. TFZQZ
(74) 00)2 =~ F&kz 2 CISOSW ¥
with ¢ = 1/4 or ¢ = 1 depending on the alternative use of (7.1) or (7.2), respect-
ively.

arnsr

iy

an r

0051

0 02 0z 06 08 k/k 10

F1G. 1. Reflection coefficient |V| = |R(0)| as a function of k/ky for a layer described by Eq.(7.1)
(curve a) or by Eq.(7.2) (curve b).

Equation (6.15) has been numerically integrated along with the boundary con-
dition R(Z = 1) = 0, adopting Eqgs. (7.1), (7.2) and accounting for (7.4). The
reflection coefficient [V| = |2(0)| has been derived for all possible values of &

2 0 .22 112
% - c£%§ sl ). The values of V' have been
ry rii g
substituted into the boundary conditions (6.4); ; in order to integrate Eq. (6.2).
Then, both solutions for u; and R have been exploited to obtain the wave split-
ting within the layer, according to (6.10). The results are shown in Figs. 1-5 for

(0 < k < ko, with ko =
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FiG. 2. Real and imaginary parts of the I'1G. 3. Real and imaginary parts of the
forward wave component within the backward wave component within the
“monotone” layer (see Eq.(7.1)). “monotone” layer (see Eq.(7.1)).

a layer of zinc (o9 = 7135kg/m?, 1'% = 39.10° Pa, I'% = 63-10° Pa) with Q = 0.1
and w = 10*Hz. In particular, Fig.1 shows |V| versus k for the “monotone”
layer described by Eq.(7.1) (curve a), and for the symmetric layer described by
Eq. (7.2) (curve b). Figures 2 and 3 show the real and the imaginary parts u and
u’, of the opposite modes in the split wave-field for normal incidence (k = 0) in
the “monotone” layer (see Eq.(7.1)). Analogous results are shown in Figs. 4, 5
for the symmetric layer (see Eq.(7.2)). From Figs.3 and 5 is evident the phase
shift between u® and v* which shows the mixing effect of the reflectivity R on
the real and imaginary parts of the field inside the layer. We also observe that the
reflection coefficient |V'| for normal incidence in the symmetric layer is by one
order of magnitude greater than that of the “monotone” layer (Fig. 1). This fact,
which is also evident from the results of the reflected amplitudes u? (Figs. 3, 5),
is due to the steeper profile of the constitutive properties in the symmetric layer.
We note, however, that this behaviour is reversed when incidences are considered
which are close to the limiting value k.
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