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The development of a nonstationary separation and coherent
structures in a two-dimensional viscous incompressible flow
around a body

M.N. ZAKHARENKOV (MOSCOW)

Dedicated to the memory of Viadimir M. Galkin
killed in an aircraft crash in September 1994

TWO-DIMENSIONAL VISCOUS incompressible flows around a circular cylinder and a 12% Zhukovsky
airfoil are considered. Numerous cxamples of complex separated flows around these bodies with co-
herent structures and detached separation generation, as well as examples of flow stabilization and
scparation destruction are obtained. Numerical cxperiment technology based on parametrization
of the far-ficld boundary conditions and effect of sequential exclusion of the scheme parameters
and problem statement disadvantages is proposed.

1. Problem statement

THE STATEMENT of the problem and solution procedure are detailed in [1, 2].
Two-dimensional N — S equations are written in terms of the stream function
¥ and vorticity (2, which are defined by relations « = o¥/dy, v = —0¥/dx,
2 = du/dy — dv/x:

(1.1) A¥ = H?Q,
(1.2) H%d02/di = Re™'AR,

where /17 is the Jacobian of transformation of Cartesian coordinates z, y to curvi-
linear orthogonal coordinates £, 1. A grid of “0”-type obtained by a conformal
mapping of an airfoil onto a circle is used. Re = U.,b/r is the Reynolds number,
where U, is a free stream velocity, b is a characteristic length, v is coefficient of
kinematic viscosity. Dimensionless time ¢ is defined by the relation tphy = 10/U,
where b is eiter the chord of airfoil or b = R is radius of the cylinder.

Boundary condition. On a solid body surface 5 the following no-slip conditions
are defined:

ve = —H~'0w/an

=) o= 7 0wjog] = 7).

The condition (‘)!.U/OEL = I f(n) is transformed into a boundary condition for a
vorticity £25 [1, 3] by using a two-parameter approximating formula; this permits
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us to eliminate the approximation effect on the solution accuracy and to maximize
the iterative solution process rate by employing the procedure described in [1].

Over the far boundary 5., (being about 10 chords away from the body), the
following boundary conditions are specified:

(1.3) 90/9€ = 0,
——— dr . @
(1.4) OV /OE = vy (a sin o — G cos (r)
—%i [D,sin(n — a) + D, cos(n — )] — I'/2r,

where D, D, and [I' are parameters.
The flow starts from the state when the body and fluid are at rest.

2. Method of solution

A solution of decoupled equations of the system is used. Equation (1.1) is
solved directly by expansion into a Fourier series in terms of the cyclic coordi-
nate 7.

Equation (1.2) is solved by the ADI method. Central differences for second
derivatives and one-sided upwind differences for nonlinear terms in (1.2) are
used.

At each time step an iterative process is employed. A zonal approach used in
[4] is applied.

3. Flow past a circular cylinder

Two problems are considered.

3.1

Uniform flow around a circular cylinder in a viscous incompressible fluid that
is preliminarily spun can serve as an interesting example. An initially steady flow
around a cylinder rotating at a constant angular velocity 1 in a uniform viscous
flow has been obtained by calculation for Re = U, R/ = 200 (R denotes the
radius of the cylinder) and Rossby number Ro = W /U, = 2. In this case the
boundary conditions on 5., include the circulation term, as in [5, 6, 7]. When the
flow becomes steady, the cylinder is suddenly stopped. If we apply in this case the
widely used argument that the velocity over .. will change when cylinder-induced
vortical disturbances carried by the flow reach this boundary, we conclude that
after a long time (comparable with the distance between 5 and 5. ), the presence
of the vortex term in the asymptotic on S, will be retained.

The equi-vorticity lines are shown in Fig.1 for the solution to N — S equa-
tions when the problem statement includes (i) no-slip boundary condition over
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S for immovable cylinder, and (ii) uniform flow with circulation term over 5.
Reversed Kdrmdn street is observed: a vortex A, leaving the upper side of the
cylinder, gets down and is then found under the vortex B which has departed
from the lower side of the cylinder; and simultaneously, all vortex street is car-
ried downwards due to the flow spinning effect (or upwards, if the flow has been
spun in the opposite direction). The first vortices of Golubev street [8] are ob-
tained. It follows that a thrust is generated.

The computation domain size is limited to 20 radii of the cylinder. Therefore
the vortex street development is computed over a time interval At = 15. In this
case it is clear that changes over 5., will occur earlier than the wake will reach
it. It is obvious that, after the initial vortex street reversal, some time is necessary
for the Kdarman street to be restored.

To study this phenomenon, the computation domain size should be expanded
and the problem of proper boundary conditions for S., should be solved. In
view of technical problems, a more powerful computer than MICROVAX-2 is
desirable. '

32.

Detached separation in flow around a circular cylinder which performs angular
oscillations about its axis in a free stream has been studied previously in [4]. The
law of oscillations is as follows:

1
W= SAsin@(t — 1), w=2K. K= R/ULT.

Figure 2 a presents the equi-vorticity lines at Re = 35. The oscillation amplitude
A = 45° reduced frequency A' = R/U.T = 3 (T is an oscillation period);
Fig.2b presents the streamlines. One can see a symmetrical separation region
that is separated from the cylinder by the circular layer in which the flow is
essentially unsteady.

At Reynolds numbers as high as 200, the flow topology presented in Fig.2
is conserved [4]. Effects of scheme parameters were studied by diminishing the
mesh steps in both space and time.

A further study of the problem is concerned with the opportunity of flow
stabilization of the previously developed separated flow. The unsteady flow with
a Kdrmadn street (Reynolds number Re = 200) past a circular cylinder was taken
as an initial state. Attempts to attain flow stabilization were made with the help
of angular oscillations of the cylinder about its axis with the reduced frequency
k=3 at A = 45° Survey of the equi-vorticity lines in Fig.3 raises the question
about an intermediate separation, when detached separation with asymmetrical
flow pattern alternates with the attached (conventional) separation. The vortex
is detached from the cylinder surface by a liquid layer and the inflowing liquid
particles do not reach the cylinder [4]. To compare, one can refer to Fig. 1 drawn



Q




Fic. 3.
[401]




/) —
o T, .”_-w.\v ¥
[z % ./ s
% \
/ . l. -




d)

t = 30.225



404 M.N. ZAKHARENKOV

for a cylinder at the same Reynolds number, but without angular oscillations. No
differences in generation and motion of vortices are seen. Differences in geometry
of vortices and hence in their intensity are also not observed.

However, changing the scheme parameters results in an unexpected new type
of flow presented in Fig.4. In this case the calculations are stable and, with
parameters of the finite-difference scheme being fixed, the results converge pre-
cisely to the revealed solution. Different solutions at different parameters of a
finite-difference scheme means the lack of convergence in a strong mathematical
sense. So some new aspects of the computational fluid dynamics theory must be
developed.

Small vortices generation presented in Fig. 4 reduces the intensity of primarily
separated vortices, which move away from the cylinder, and even eliminates the
generation of large vortices that are known as a vortex street of the Karmén street
type. A completely different topology is realized (Fig. 4).

Note that the time interval from ¢ = 23.0 to ¢t = 30.225 when such changes
have taken place, is quite short and comparable with the specific period of vortex
generation in the Kdrman street.

At Re = 35 small vortices are not generated, with any finite-difference scheme
parameters. A considerable growth of errors in the region of the reversal wake
flow is observed at a time step greater than a certain value. In such a way, at this
Reynolds number the solution converges only to the unique flow pattern, which
is identified as the detached separation, see Fig. 2.

The examples presented have raised the problem of estimation of adequacy
of a numerical solution to physical reality.

4. Numerical experiment for a flow past an airfoil

Numerical experiment technique was designed for the problem of flow past
an airfoil. Primary effect of specifying the circulation term for a velocity over 5.
on the solution was studied. Flow past the 12% Zhukovsky airfoil with a finite
trailing edge angle at Re = 10* and angle of attack a = 5° was estimated. For
the boundary condition (1.4) D, = D, = 0 was specified. There exists the range
of values I' = (0 : —0.21) where the condition of pressure uniqueness over the
trailing edge is satisfied [9, 10]. The pressure coefficient €, = (p — p..)/30U2 is
presented in Fig. S, where a) [' = 0; b) I' = —-0.21; ¢) I' = —0.40. The vortex
within the domain limited by S, is placed rather arbitrarily. For example, when
the centre of the vortex with intensity " = —(0.21 lies on the positive 0.X' axis
downstream the airfoil at X, = 0.5 or X, = 2, we obtain the coefficient C,
presented in Fig.5d or Se, respectively. Pressure coefficient (', in both cases is
the same and close to that occurring in the case with X, = 0 (Fig.5b).

When an asymptote of far field flow with two vortices is specified over 5.,
we conclude the following: if the second vortex is outside the domain bounded

http://rcin.org.pl
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by 5., then it insignificantly affects the integral characteristics and ), (Fig.5f,
X, =12, I' = —0.21). In this case the first vortex can be located inside the
computational region (bounded by S. ) arbitrarily, retaining the integral char-
acteristics unchanged. Such a dependence of /" on 5., and ', emphasizes the
connection of this asymptotics with the lifting capability of the airfoil and makes
it very suitable for modelling these phenomena.

The dipole term effect was studied. For example, Fig. 6 presents the stream-
lines and the equi-vorticity lines (Fig.6 ) in the vicinity of the 1/4 chord of the
12% Zhukovsky airfoil; Reynolds number Re = 104, angle of attack o = 7.25°.
Parameters in (1.4) are as follows: D, = D, = I' = 0 (Fig.6a-f) and D, = —4,
D, =4, 1" = —0.20 (Fig. 6 g-1). Development of coherent vortex structures in the
vicinity of the trailing edge was obtained. This study is discussed in detail in [2].

The next step of the investigation is to study the flow with an increasing
Reynolds number. Figure 7 presents the streamlines (7a-7f) and equi-vorticity
lines (7g-71) for the 12% Zhukovsky airfoil at « = 5°, D, = D, = 0 and

= —0.21, when the Reynolds numbers are the following: a), g) Re = 1.5 x 10%
b), h) Re = 2x10% ¢) i) Re = 2.5 x 10% d), j) Re = 3x10% e), k) Re = 3.5x 10%
f), 1) Re = 3.75 x 10%

Considerable development of separation over the leeward side of the airfoil is
observed. Reynolds number of 37500 is the highest value at which the computation
convergence in the framework of laminar flow is obtained (at o = 5°). In this
experiment the computations are performed with successively increasing Re and
the flow for previous Re is the initial condition for computations of flow at a next
Re. The fact that distributions ', over S (Fig.8a for Re = 15000), obtained by
integrating (along the different paths but with the same method of integration)

http://rcin.org.pl
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the equation of motion, do not coincide, indicates that the solution is not quite
correct [11]. The study in [12] for a circular cylinder rotating in viscous flow
shows that asymptotic condition for far field flow may be properly stated so as
to eliminate the pressure nonuniqueness. This is one of the goals of our study of
the viscous flow around a body with boundary conditions (1.3) and (1.4), where
the number of terms in the asymptotic expansion may be increased.

The effect of scheme factors and parameters of the mathematical model on
the problem solution is studied. It has been found that, within the investigated
angles-of-attack and Reynolds numbers ranges, the flow turbulization cannot yet

http://rcin.org.pl
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reduce the separation region, presented in Fig. 7. The Boldwin-Lomax model was
used.

The search of explanations of the causes of the presented topology of flow
around an airfoil results in construction of a flow model including a laminar
wake [13]. In this case the theory suggests the solution in which the flow in
the wake conserves (and convects) momentum losses of two types. The first one
defines the drag acting on an airfoil due to viscous friction. The second one
corresponds to lift variation. Those losses must occur within the near-wall layer
and then be convected by the wake. In the framework of this theory, construction
of distributed sources and sinks is necessary.

We will synthesize the above-mentioned theory [13] with the Lighthill con-
struction [14], where the near-wall layer momentum losses are simulated by dis-
tributed sources and sinks with their extension into the wake. The latter combines
the suggestion of [13] and the model of [14].
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However, practical application of the part of this theory which deals with
specification of distributed wake singularities is a difficult problem. It has been
found that application of this model doesn’t resolve yet all the difficulties which
we have in numerical solution for the flow presented in Fig. 7. Thus, generation of
a developed separated flow is connected with construction of a general asymptotic
behaviour of the solution for flow around an airfoil.

A detailed study by including additional sources, dipoles and vortex terms in
the asymptotic expansion for velocity over S, was conducted. It is obtained that
at least one of possible representations includes the additional asymptotics of two
vortices with opposite signs of circulation and their centres are located inside the
airfoil.

a)

ik
M%//

b)

FiG. 9.

Figure 9 a, b present the topology for Re = 1.5 x 10%, & = 5°, and Fig.8 b, the
pressure distribution when the mentioned singularities are added to the initial
state shown in Fig.7a,g. As we see, the flow obtained is similar to that studied
before at Re = 10* and @ = 5° and is in agreement with our knowledge of
the full-scale experiment. Note that the separation region disappears, what is
especially clear in comparison with flow in Fig.7. The agreement between (',
and C0 obtained by different ways of integration [11] indicates mathematical
accuracy of the solution obtained.
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After the same construction, the elimination of massive separation in the flow
at Re = 3.5 x 10* is obtained too. It should be noted that the flow topology
singularities that were presented in Fig.7, are still of interest to investigators
because similar vortex structures are realized obviously at high angles of attack.

At last, Fig. 10 shows a distribution of circulation v along a coordinate line
& = const as a function of the coordinate = at which this line intersects the positive
0z axis; these data indicate that, in accordance with the model of [13], solutions
can be realized when value of v is bounded by /" given at S, from below, see
Fig.10a (o = 5°, Re = 1.5 x 104, I' = -0.21, D, = D, = 0) and flows where
lv| < I'| (at the same Re, D,, D,, but the above mentioned two vortices with
opposite signs of circulation are included in (1.4)). The latter means that in the
airfoil wall region there occur momentum losses resulting in a decrease of ', in
comparison with that ', defined by I in the framework of potential flow theory
for an ideal fluid.

16, 10.

It can be noted briefly that inclusion of additional vortices into the asymptotic
for S.. affects significantly the aerodynamic moment that is induced by the po-
tential part of the solution. This follows from the Chaplygin - Blasius theorem for
an ideal fluid. The results obtained for an ideal fluid are not related directly to
viscous flows, but mechanical meaning of inclusion of the mentioned singularities
— to change the aerodynamic moment — is certainly the same.

The examples presented have shown that the application of the technology
of the numerical experiment allows us not only to reveal disadvantages of the
problem statement but also to eliminate the difficulties. The results concerning
the flow past the circular cylinder present new problems that couldn’t be studied
earlier in the framework of numerical experiments.
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