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On the existence of solutions for two-dimensional Stokes flows
past rigid obstacles

M. KOHR-ILE (CLUJ-NAPOCA)

In THIS PAPER We obtain some existence and uniqueness properties for the solution corresponding
to the problem of the plane unbounded Stokes flow past rigid obstacles. The stream function of
the flow is represented in the form of simple layer potentials.

1. Introduction

IN sOoME PREVIOUSLY published papers [5, 6, 7], the authors treated the problem of
an unbounded two-dimensional viscous flow past an arbitrary obstacle, using the
method of matched inner and outer expansions of the corresponding solution.
These results were then generalized to the three-dimensional case.

The purpose of this paper is to present a method for studying the problem of
the Stokes flow past some rigid two-dimensional obstacles, using the properties
of simple layer potentials.

Let N > 2 be the number of obstacles denoted by £2;,i = 1, N, {2 denoting the
region exterior to these obstacles. The flow is described by the velocity u and the
pressure p. We suppose that u — Ui, p — p, as |z| — oo, where z = zi + 27},
and U, p are prescribed constants. Using the dimensionless variables: =/ = z /I,
v =u/U, p =1l(p— p)/plU and the Reynolds number Re = plU/u, where [ is
a characteristic length, ;¢ the dynamic viscosity, and ¢ the fluid density, then v’
and p’ are solutions of the Navier - Stokes problem (disregarding the primes over
u and p)

Au—Vp = Re(u-V)u in £,

Veu = 0,
(1.1) | R
u=1f on ¢'=@8%2;, i1=LJN,
u — i, p— 0, as |z| — oc.

Here A and V denote the two-dimensional Laplacean and the gradient operator,
respectively. We require the given velocities f*, i = 1, NV to satisfy the zero outflow
conditions:

(1.2) /f".n" ds =0,
'

where n' is the exterior vector normal to 2;, i = 1, N.
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We suppose that the Reynolds number defined above is sufficiently small.
The Navier - Stokes problem (1.1), for the case N = 1, is singular in the sense
that the linearized Stokes form:

Au—-Vp = 0,

1.3
(1.3) Veu = 0,

together with the same conditions as in (1.1)3 4, has no solution in view of the
Stokes paradox. But, in this case, it is possible to obtain a solution, if the condition
at infinity is replaced by:

(1.4) u=Aln|z| + O(1), as |z| — oo,

for any given constant vector A [6, 7]. Also, in the case of N > 2, we prove that
there exists a constant vector A such that the problem (1.3) has a solution, if the
condition at infinity is replaced with (1.4).

2. Integral equation of the first kind

The equation of continuity V-u = 0 implies the existence of a stream function
¥ such that

(2.1) u= (V)

where v+ denotes the vector obtained by rotating the vector v = vji+ vy j by 7/2
counterclockwise, so that v = —u;i + vj. Because the domain {2 is not simply
connected, the condition (1.4) is only local, i.e. ¥» might not be a single-valued
function. But the following arguments prove that 1> is necessarily a single-valued
function.

Let C be any closed curve bounding the domain 2° C 2 and 2% = (2\2% N
Br, where Bp is a large disk of radius R. Applying the Green’s formula, we
obtain:

2.2) 0—/d1vu(11 _Z/ -nds+/umls— /u-nds.

1= lC' )BR

From (1.1)3 and (1.2), it results that /u-n ds=0,i=1,N.
(4]

From Green’s formula in 2 = 2 N Bgr, we have:

(2.3) O—/dlvudr—Z/u ‘nds + /u-nds.

1=1 C ()BR
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Hence (2.3) implies that / u-nds = 0. The above arguments show that
aBp

/u-ml.g =1, SO fuL-ds =i

(S ¢

Then we express 1 in the form

2.4) z) = —/ni-ds, z€R,

Sd!]

where x¢ is a fixed point in 2, z is an arbitrary point in {2, and the integral is
evaluated along an arbitrary polygonal line between zy and z. Also, it is easy to
establish the condition (2.1).

Using (1.3) and (2.1), we obtain the Stokes problem for stream function

A2 =0 in £,

25 : :
(23) V() = j- (), z€C i=1N,

We shall prove that there exists a real constant vector A such that
(2.6) Vi(z) = Alnjz| + O(1),  as |z| — o,

and that the problem (2.5)-(2.6) has a solution.
For these purposes, we represent the stream function @ in the form:

N _ _ N
(2.7) P(z) = Z /Vy F(a,y)-d'(y)ds,, x € U (U (”) ]
i=1

i=1 o

where s, denotes the arc length measured along C', i = 1,N and F is the

fundamental solution of biharmonic equation:

(2.8) Fz,y) = gi"p;z- — y[HIn |z — y| - 1].

It is easy to show that ¢ given by (2.7), satisfies the equation (2.5); and will
be a solution of the boundary conditions (2.5),, if the density function ¢, with
B(z) = §'(x), z € C',i = 1, N, satisfies the following system of integral equations
of the first kind:

N
(2.9) > /VIVyF(;rk,y)d)’(y) (lS; = g"(z"), z* e ¢, k=1,N,
i=1 g

http://rcin.org.pl
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where
(2.10) g¥ o j — L.

The integral operator V' defined by

Vig'(z) == fvl.vyp(z,y)q)i(y)ds;, 5 e "
o

has a kernel with logarithmic singularity.
Differentiating (2.9) with respect to the arc length s*, k = 1, N, we obtain the
set of integral equations with a Cauchy singularity:

@2.11) Z/akv Y, F(*, y) - 6 (y) ds} =d‘— %), k=T,N.

11(_|

Because F'is a function of |z — y| only, it is seen that the adjoint homogeneous
system of (2.11) has the form:

(2.12) Z / V.V, F(z,y")-Si(z)ds, =0, g*eC*  k=T,N.
i=1 ¢,
. N
We remark that the functions 5": U ¢ — R?, given by

1=1

(2.13) g’(J) = (lj-.’l.‘ + bj-, ze (Y, j=1,N,

with a b' denoting constants, are the solutions of the system (2.12). These
functlons determme a linear space with 3N dimensions, which implies that the
dimension of to solution space corresponding to the homogeneous system (2.11)
is at least 3NV. We use here the fact that the homogeneous system (2.11) and the
adjoint system (2.12) have the same number of linearly independent solutions
(see [10]).

THEOREM 1. There exist at most 3N linearly independent solutions of the homo-
geneous system (2.11).

P ro o f. The functions

N 0, rel i
Uci - R, “"()—{ 7
g=1 a ( ) S C‘i,

i = 1, N, where T¢(z) denotes the unit tangent vector in the point z € C%, are N
linearly independent solutions of the homogeneous system (2.11).
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N
@'t |J €7 — R? be any 2N +1 solutions of the homogeneous system

(2.11), and ¥* = ¢($'), i = 1, 2N +1, denote the corresponding stream func-
tions, as in (2.7). Then functions ¢ satisfy the equations

A%p'=0 in 2,
# | j y =
(2.14) W_Jm Cf, j=T,N,
Vi'i(z) = A'ln|z| + O(1), as |z| — oo,

where C{ is a constant vector and
1N
=) el
i=lg;

We define the function &' as ¢*(z) = @' () forz € C7, j =1, N.
We can choose real constants ay,..., a2y, not all equal to zero, and the
vector ¢(cq, ¢3), such that:

2N +1

S el -

=1
N »
E:(UA‘= 0
=1

because we have here 2NV +2 homogeneous equations with 2NV + 3 unknowns.
Let the functions vy and ¢y be defined by:

0, j=1,N,
(2.15)

2N +1 N

(2.16) Yo= 3 aivt, =) ad.

i=1 i=1
Then v satisfies the equation

A%y =0 in £,
(2.17) Vipo(z) =C, zeC?, j=T1,N,
Vib(z) = O(1), as |x| — oo.

The problem (2.17) has a solution of linear form iy(x) = e¢-x. From the
uniqueness theorem of the solution corresponding to the exterior Stokes problem
(see Theorem 3), we deduce that v is the unique solution of (2.17). The function
g given by (2.16) is also biharmonic in each domain {2; and is continuous together
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with its first derivatives on ", i = 1, N. Using the uniqueness result of the inner
Stokes problem, we conclude that >y has also a linear form in (2;, 1 = 1, N.

Using [5], it is easy to prove that on each contour C7, j = 1, N, the stream
function ¢ given by (2.7) has the properties:

(AY)* = (Ag)™ = Mg,
J * i) - . o .
(00) (o) =i (0).

where the symbols +, — denote the limits in {2 and {2;, respectively, and 9/dn’
is the normal derivative on ¢/, j = 1, N,

Since vy has a linear form in (2 and 2;, respectively, from (2.18) we obtain
that there exists a constant 37 such that:

(2.18)

(2.19) dj(z) = FT(), =zeC!, j=1N,

where the function &}, is defined by dg(x) = dj(z), + € €7, j = T, N.
Hence we deduce that

N N
(2.20) do(z) = > AFF(@)=0, =zel|]C
3= j=1
or
2N +1 N N
(2.21) > i@ (@) - F() =0, re |,

i=1 =1 =1

with the functions 7/ defined above. It results that the functions &', 77, i =
1, 2N +1,5 = 1, N, are linearly dependent.

So, we have proved that the dimension of the solutions space of the homo-
geneous system (2.12) equals exactly 3N, and each solution S has the form:

(2.22) S(z)=d'z+b', zeC i=1N,

where a‘, b' are constants.
Using the theory of singular integral equations (the Fredholm alternative,
[10]), the system (2.11) has solutions if and only if

N
d . :
(2.23) 3 / g ()8 (@) dsh = 0,
=1 (ol T

where S, with S(z) = S'(z), = € %, i = 1, N, is a solution of the adjoint
system (2.12).
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From (2.22), (2.10) and (1.2) the conditions (2.23) follow lmmedlately
Let ¢° be a solution of the system (2.11), with cbo‘ = i = 1, N. The

corresponding stream function 0 = ¢0(4°) satisfies:

A0 =0 in 0
(2.24) vyl(z) = g@@)+k, =zecC', i=1,N,
vylz) = AlIn|z| + O(1),  as |z] — oo,

where

: —— e B
and ki, i = 1,N are constant vectors. Let k% (J C/ — R? be defined by
3=1

kO

=kj, i=1,
(o8]
Also let 59', = 1,2N and 7/, j = 1, N, be the 3N linearly independent
solutions of the homogeneous system (2.11). Then the stream functions ¢ =
P(@'), 1 = 1,2N satisfy the equations

A%'=0 in 2,
(2.25) Vyi(z) = ki, =ze€C’, j=1N,
Vi'(z) = A'ln|z| + O1), as |z| — oo,

with

(‘ngpfi, j=1,N and k; j=1LN,

Z [ei@ds,

J l(;

— ~. N | =
are the constant vectors, i = 1,2N. Let k': | C7 — R?, be given by &' -

= k',
i=1,N,i=1,2N.
Let V be the set defined by:
~ N . ~ 3 . . i
V=gdk: U Ci - R? | k(2) = k!, 2 € C?, K aconstant vector, j =1, N 3.
i=1

V' is a linear space with dimV = 2N, and the functions EO, ki, i=12N belong
to V. Hence, there exist the real constants ay,...,a,, with the property:

2N N 2N
(2.26) Y wiki(z) + k%) =0, =ze|]CY,
i=1 j=1

http://rcin.org.pl
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if we suppose that the functions ¢, i = 1,2N, satisfy:

(2.27) A'=0, i=1,2N,

since k* are linearly independent functions.
Using (2.24), (2.25) and (2.26), we deduce that the function

8 W
="+ agp

i=1
is a solution of the Stokes problem (2.5). At infinity ¢ satisfies the condition:
(2.28) P(z) = AlIn|z| + O(1),  as |z| — oo,

where A is defined in (2.24).
So, we obtain the following result:

THEOREM 2. If the functions F: C* — R? i = 1, N satisfy the conditions (1.2),
then in the hypothesis (2.27), there exists a constant vector A such that the problem
(2.5) with the condition (2.28) at infinity, has a solution .

In the proof of the Theorem 1, we used the uniqueness property of solution
for the exterior Stokes problem. This result is given by:

THEOREM 3. The Stokes problem (2.5) has at most one solution (up to an
additive constant), under the condition that

229  v@=0 ("), D) =0(2?), m>1, as|e] = o,
and
(2.30) .d—“’(x)ds; =0, i=10N,
an
Ci
where w = A1.

P r o o f. We suppose that there exist two solutions ¢! and /% of the problem
(2.5). If we consider the difference ¢ = ¢! — 2, then v satisfies the equation

Vi =0 in 12,

(231) s
ve|, =0, i=TN,

(&)

with the additional conditions (2.29) and (2.30).
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Let 2 = 2N Bpr, where By is a large disk of radius K. From Green’s formula
we obtain:

(2.32) / (@)% () — (Av())] de

] dst + f[w(.i)g—:(.z) - w(J)%(r) dsy,

dBR

g[[w(a)-——( )-w

where 9 Bg denotes the boundary of the disk Bp.
From (2.32), it results that the integrals taken along 0B are zero, for R — oc.
From the homogeneous conditions (3.31), we have

/w(a”) (T)db =0, i=1,N.

(o4

Also ¢(z) = ¢;, for z € C?, where ¢; is a real constant, i = 1, N.
Now, if we use the conditions (2.30), we deduce:

/¢J(J)—~( Y dst = Zc, (1 )dst. = 0.

z]c. = i

Hence the above identity (2.32) implies Ay = 0 in {2,
Applying again the Green’s formula, we obtain:

(2.33) 0= /'t,l‘r(;r).'_’\z,!(.z:)dm

j P(a )—(a, du+z /y’ )——( )(ls - /(Vz,f’(z)) dz.

8B g =1 Qg

Using the conditions (2.29), (2.30), (2.31), we obtain Vi = 0 in {2, hence
is a constant in 2 and ; = v¥» (up to an additive constant).

REMARK. Since we determine the stream function ¢ in the form (2.7), the
conditions (2.30) are easily obtained as a consequence of Green’s identity.

Using the stream function ¢ determined above, we obtain the velocity u =
(V)*, and the pressure p as the harmonic conjugate of w = A, but only locally,
because the domain 2 is not simply connected.
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