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Stress tensors associated with deformation tensors via duality 

P. HAUPT (KASSEL) and CH. TSAKMAKIS (KARLSRUHE) 

THE CONCEPT of dua l variables, initially introduced by HAUI'T and TSAKMAKIS !3] , enables us to 
relate to each other strain and stress tensors, as well as associated rates, independently of particular 
material properties. Generally, it is different than the method of conjugate variables, as defined e.g. 
by MAcVEAN 121 or HILL ｉ ｾｊＮ＠ The duality concept postulated by HAuPT and TSAKMAK IS [3] deals 
only wit h two classes of dual stress and strain tensors. The second Piola-Kirchhoff stress tensor 
and the Green strain tensor, as well as the negative convected stress tensor and the Piola strain 
tensor, arc respectively the Lagrangean stress and strain tensors included in the two classes of 
dual stress and strain tensors. However, there are further (infinitely many) Lagrangean stress and 
strain tensors, which may be taken into consideration. The aim of the present paper is to develop 
further the concept of dual variables to take into account the whole set of Lagrangean stress and 
strain tensors. Doing this, we obtain a specific mathematica l structure in the sets of all strain and 
stress tensors, which makes it possible to re late strain and stress tensors, as well as associated rates, 
independently of the particula r material properties. 

1. Introduction 

IT IS WELL-KNOWN that in the theory of fi nite deformations, several stress and strain 
tensors can be introduced in various ways. These stress and strain tensors are not 
a priori related to each other, raising the question of whether or not there exists 
a method to associate with each stress tensor a strain tensor independently of 
specific material properties. The stress power is usually the convenient framework 
for answering this question. 

According to ZIEGLER and MAc VEAN [1, 2], a stress tensor is assigned to a 
given strain tensor, if the stress power can be represented by this stress tensor 
and an appropriate rate of the given strain tensor. We call stress and strain 
tensors related in this way conjugate in the sense of Ziegler and MacVean. Note 
in passing that this definition of conjugancy was also adopted by HAuPT and 
TsAKMAKlS (3]. However, in HAUPT and TSAKMAKIS (3], it was also shown that the 
above definiti on brings out the difficulty that arises because the stress and strain 
tensors associated in such a manner are not unique. For example, consider the 

strain tensor K = 1 ( 1 - F- 1 FT- I ) . K is conjugate in the sense of Z iegler and 

MacVean, on the one hand, to the stress tensor T = (det F)FTTF, with respect 

to the material time derivative K, and on the other hand, to the stress tensor 
- 6 • • • 

S = (detF)RTTR, with respect to the rate K= K + (uu- 1)K + K(uu- 1), 

- • - 6 

HI =T·K =S·K 
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In these relations e), F denotes the deformation gradient tensor, with polar de-
composition F = RU, T is the Cauchy stress tensor, and I V the stress power per 
unit volume of the reference configuration. 

Another concept used to relate stress and strain tensors within the framework 
of the stress power is due to Hill (see e.g. HILL [4--6] as well as HAVNER [7] , 
0GDEN (8, Sec. 3.5.2] and WANG and TRUESDELL (9, Secs. 3.8 and 3.9]). According 
to this concept, a stress tensor t is postulated to be conjugate (in the sequel called 
conjugate in Hill 's sense) to a given strain tensor e if the inner product of t with 
the material time derivative of e yields the stress power W, i.e., if 

w = t·e. 
Clearly, all pairs of stress and strain variables conjugate in Hill's sense are also 
conjugate in the sense of Ziegler and MacVean, but the converse is generall y not 
true. 

Hill 's concept of conjugancy has the characteristic feature that there exjst stress 
tensors which do not necessaril y have any conjugate strain tensor associated with 
them having an integrable strain rate. Strain rate tensors are call ed integrable (Z) 
(not-integrable) if they are expressibl e (not-expressibl e) as material time deriva-
tives of some strain tensors, which are defined as functions of the deformation. 
It is well-known that the strain rate D, representing the symmetri cal part of the 

velocity gradient tensor L = F F- 1, is a non-integrable rate in general. Thus the 
weighted Cauchy stress tensor S = (det F)T, having the property IV = S ·D, is 
e.g. not conjugate in Hill 's sense to a strain tensor which possesses an integrable 
rate. The same is also true for the stress tensor S. On the other hand, if a strain 
tensor is given, it must not necessarily have a conjugate stress tensor associated 
wi th it. As an example of strain tensors to which no stress tensor conjugate in 

Hill's sense exjsts, we mention the A lmansi strain tensor A= ｾＨ ｉ Ｍ FT- IF- 1
) . 

These issues have also been discussed e.g. by OGDEN [8, p. 159]. 
A further possibility for associating stress and strain tensors within the frame-

work of the stress power has been proposed by HAuPT and TSAKMAK IS [3], and 
referred to as the concept of dual variables e). Several mathematical aspects 
from a local differential geometric point of view were discussed by SvENDSEN and 
TsAKMAKlS [11 ]. The relation between stress and strain tensors within the dual-
ity concept of HAUPT and TSAKMAK IS [3] is unique; in fact, this constitutes the 

( 1) The nomenclature is introduced in the Secs. 2 and 3. 
(')The term integrable (not-integrable) strain rate is adopted from PALGEN and ｄｒｕｃｋｆＮｉｾ＠ f1 0f. 
(') We take this opportunity to correct some misleading and erroneous statements in HAUI'I' and TSAKMAKIS 

[3]. TI1e notion of conjugancy used in this reference should be unde rstood in the sense of Ziegler and MaeVean, 
even though in some places this notio n was att ributed to Hill. Further, on page 184 in HAUI'r and TSAKMAKI S J31, 
the interpretation of the term "direct flux " in Hill 's expression " RT OR is not a direct flux ", as the specification 
of a strain tensor with the associated rate RT DR, is not correct. Indeed, the term "di rect flux" as used by Hill 
must be interpreted to mean the material time derivative. Furthermore, the statement on p. 174 that 'l', which 
is not necessarily assumed to be the gradient of a vector field, induces a system of spatial coordinates, is not 
true in gene ral. 
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differences to the conjugancy concept according to Ziegler and MacVean. In addi-
tion, concerning dual pairs of variables, use is made not only of the material time 
derivative, but also e.g. of the so-call ed objective derivatives. This clarifi es the dif-
ferences compared with the conjugancy concept due to Hill. In the present work, 
the concept of duality will appropriately be generali zed, to include the general-
ized Lagrangean strain tensors, which are introduced in Sec. 5.1. To be definite, 
the duali ty concept postulated in HAUPT and TsAKMAK!S [3] deals only with two 
classes of dual stress and strain tensors, call ed family 1 and 2. Representative 

(Lagrangean) strain tensors are the Green strain tensor E = ｾ Ｈｆ ｔ ｆ Ｍ 1) (family 

1) and the Piola strain tensor E = ｾ Ｈｆ Ｍ Ｑ ｆ ｔＭ ｊ Ｍ 1) (family 2). The purpose of 

the present paper is to complete the duality concept of HAUPT and TSAKMAK1S 
[3] by introducing further classes of dual strain and stress tensors, which include 
the whole set of generalized Lagrangean strain tensors. 

After introducing the notation and some background relations in Secs. 2 and 
3 we show in Sec. 4 how various so-call ed objective time derivatives can be as-
signed to the Cauchy stress tensor. To each of these objective time derivatives 
of the Cauchy stress tensor corresponds a Lagrangean stress tensor. It turns out 
that, among all these derivatives, only two possess the structure of generali zed 
Oldroyd time derivatives (the term "generalized" Oldroyd time derivative is spec-
ified in Chapter 3). In other words, among all Lagrangean stress tensors, only two 
are associated to the Cauchy stress tensor with respect to the defi niti on of the 
generalized Oldroyd time derivatives. This resul t motivates in Sec. 5 the intro-
duction of a set of generalized strain and stress tensors respectively. Considering 
various scalar quantities, which are required to be form-invariant with respect 
to the chosen configuration, the above sets can be partiti oned into equivalence 
classes of generali zed strains and associated generali zed dual stress tensors, re-
specti vely. The concept of duality used here is a generali zation of that in HAUlYf 
and TSAKMA KI S [3]. Furthermore, to each strain and stress tensor, a time deriva-
tive can be associated, having the form of "generali zed" Oldroyd time derivative. 
This way, we obtain a specifi c mathematical structure in the sets of all strain and 
stress tensors, which enables us to relate strain and stress tensors, as well as the 
associated rates, independently of particular material properti es. Some examples 
formulated using strain and associated dual stress tensors, are briefl y discussed 
in Sec. 6. Finally, in Sec. 7, the duality concept is appropriately extended to take 
into account two-point tensor fie lds, as well. 

2. Preliminaries 

We denote by lR and N the sets of real and natural numbers, respectively. 
The absolute value of c E lR is le/. We use the letter I for the time vari able. If cp 
is a function of t we writ e 9 or dcp / dt for its material time derivative. For the 



http://rcin.org.pl

350 P. IIA UPT AND C H. TSAI<MAK IS 

n-th material t ime derivative of t.p we write also dnt.p/dln, where n E N, n 2: 0. 
If x is a scalar variable other than t and f (x ) is a function of x, then we denote 
the derivative of f(x) with respect to x by f'(x). In particular, we write f'(a), 
a E IR, instead of f'( x )i x=a· Commonly the same symbol is used to designate 
a function and the value of that function at a point. However, if we deal with 
different representations of the same function, then use will be made of different 
symbols. 

Given two sets A and B, the Cartesian product of A and B is denoted by 
A x JJ . In particular, we write 

An = A X A X ···X A , 

n-timcs 

n E N, n 2: 1. Let a and b be elements of a three-dimensional Euclidean vector 
space V. By a ® b, a x b and a ·b we denote the tensor product, the vector 
product and the inner product, respectively. The magnitude of a is denoted by 
llall = ｾＭｉｮ＠ this work, we identify the vector space V with its dual space V*, 
the identification being specified with the help of the metric tensor induced hy the 
inner product in V. Thus, any n-order tensor T on V is regarded as an n-Iinear 
function from vn to IR, denoted by T E L(V", R). In the following, second-order 
tensors (like vectors) are denoted by boldface letters, whereas for fourth-order 
tensors we use script letters. For example, A, B, . .. denote second-order tensors, 
whereas A, B, . .. denote fourth-order tensors, respectively. 

Let A, B he second-order tensors. We write tr A, det A and AT for the trace, 
the determinant and the transpose of A, respectively, whil e A ·B = tr (ABT) is the 
inner product between A and B. We write I = o,J e; (>) e1 for the identity tensor 
of second order, where o;j is the Kronecker delta symbol and { e; }, i = 1, 2. 3, 
is an orthonormal basis in V. Further, we use the notations AB = ;\ ij lJ;kei 0 ek 
and AT- I = (A - 1f, provided A- 1 exists. In these relations the convention of 
summation over repeated indices is employed. 

If A is a symmetri c and positive definit e second-order tensor having eigen-
values ..\; and corresponding eigenvectors a;, then the spectral decomposition 
(see e.g. GuRTlN [1 2, Ch. I.2]) 

3 

A= L..\;a; ® a; 
i=l 

applies. In this case, we denote by A"', m E R, the second-order tensor 

3 

A"' = I:.>.i' a; IS) a,. 
i= 1 

Let K, P be two fourth-order tensors, i.e., linear transformations from the space 
of second-order tensors into itself. With respect to the orthonormal basis { ei}, the 
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fo ll owing rules apply: if K , P and A are represented by K = k ijkl ei ® ej 0 ek ® e,, 
P = P ijkl e i ® ej ® ek ® e,, and A = A;j ei ® ej, respectively, the relations 

KP = l\' ijmn P mnklei ® e1 ® ek ® e, , 

K T = A ' i j kl ek ® e, ® ei ® ej , 

K(A] = A .ijmnAmnei ® ei 

hold. In additi on, if B is a second-order tensor, we have A ·K(B] = B .J.CT[A] . We 
write I fo r the fourth-order identity tensor, 

The tensor I can be decomposed in the form 

I = £ + .], 

where 

and 
1 

ｾ Ｑ＠ = 2 (b;j bmn- b;"bmj)e; ® em 0 ej ® en. 

This implies £[A] = ｾＨａＫ＠ AT), .J[A] = ｾＨａ Ｍ AT), and I [A] = A. 

3. Background relations 

Consider a materia l body B which occupies the region Ro in the three-dimen-
sional E uclidean point space E in some reference configuration. Choosing a fixed 
point (origin) in E, we identify each particle of [] by the positi on vecto r X to the 
place X in Ro occupied by the considered particl e. We write x fo r the positi on 
vecto r to the p lace x occupied by the same material particl e in the (current) 
configuration a t time t . In this confi gurati on, the body B occupies the region R1 

in E. 
A motion of fl in E, i.e., an o ne-parameter family o f configurati ons parame-

terized by the time t, is a mapping 

(3.1) x : (X, t) >----+ x = x(X, t) , 

which has an inverse X = X(x, t) fo r fix ed time l . In what foll ows, it is assumed 
that all functio ns possess continuous derivatives up to any desired order with 
respect to the space vari ables and the time l . 

The deformatio n gradient tensor corresponding to (3.1) is denoted by 

(3.2) 
Dx 

F = oX= GRADx. 
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We distinguish between GRAD and grad, representing the gradient operato r with 
respect to X and x, respectively. Furthermore, det F > 0 is assumed. 

The right Cauchy-Green tensor C and the left Cauchy-Green tensor 8 are 
given by 

(3.3) 

(3.4) 

in which U and V are the right and the left stretch tensor, respectively, appearing 
in the polar decompositi on of F: 

(3.5) F = RU = VR . 

Here, R represents a proper orthogonal second-order tensor. Since U and V are 
symmetric and positive definit e, they possess the spectral decompositio ns 

3 

(3.6) u = L Aj M; ® M; , 
i= l 

and 

(3.7) 
i= l 

respectively, with 
(3.8) 1-L; = R M; . 

A; (i = 1, 2, 3) are positi ve eigenvalues and M ;, as well as 1-L; are the corresponding 
unit eigenvecto rs. I t is common (see e.g. O GDEN [8, Sec. 2.2.5]) to call M; and 1-L; 
the Lagrangean and Eulerian principal axes, respectively. Note tha t the spectral 
decomposition (3.6) implies 

(3.9) 
3 1 

u- ' = 2: - M ; 0 M ,. . 
i= t A; 

Let X be the place of a material particle in Ro and denote by y the place of 
the same material particle in an arbitrary configuration, in which IJ occupies the 
region M. Further, we denote by TyM the tangent space o f M at y. Note that 
M does not need to be an Euclidean manifold. This is fo r example the case fo r 
the non-Euclidean intermediate configuration in plasticity. An n-order tensor A is 
called a tensor at y E M if A E L((TyM)n, ｾ Ｉ Ｎ ｉｦ＠ M = R0, A is call ed a Lagrangean 
tensor at y E Ro. In the case when M is different than R0, the tensor A is call ed 
a spatial tensor at y E M. In particular, if M = Rt. then A is called an Eulerian 
tensor(4) at y E R1. In the following, we denote by 

(3.10) 'l1 = ｾＨｘ Ｌ ｴ Ｉ＠ E Lin + 

{
4

) The definition on spatial tensors given here is not standard. The definiti ons on Lagrangcan and Eulcrian 
tenso rs are taken from OGDEN (8, Sec. 2.4.1 ]. 
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a space-and time-dependent linear transformation (second-order two-point ten-
sor field CS)) mapping vecto rs from Tx Ro onto TyM ("W E L(Tx Ro x TyM, !R)) and 
having a positi ve determinant. 

Let X k ( k = 1, 2, 3) be a system of material coordinates, and let 

(3.11) 

be the position vector of a material particle in the reference configuration. The 
coordinate system induces the local basis of tangent vectors {Gk}, 

(3.12) 

and the gradient vectors { Gk}, 

(3.13) 

being the reciprocal basis o f the tangent vectors {Gk} , where 

(3.14) 

are the relations inverse to (3.11 ). With respect to (3.1 0), (3.12) and (3.13), various 
bases ｻ ｧ ｾｴｊｩＩｽ＠ in Ty M, with reciprocal basis {g(tJi)k}, can be defin ed by 

(3.15) 

(3.16) 

(tJi) · -gk . - 'l!Gk, 

(tJi)k ·- ,T, T - l G k g .- 'i.' r . 

Note that the special case "W = F defin es the so-call ed convected coordinate 
systems. From (3.15), (3.16), 

(3.17) .(tJi) ｾ Ｍｷ Ｍ ｬＨ ｴｊｩＩ＠
g k gk , 

(3.18) g (tJ!)k = Ｍ ｣ｾＭｷ Ｍｬ ｦｧ Ｈ ｴｊＡ Ｉｫ Ｎ＠

Next consider the spatial, ti me-dependent tensor field u, having the representation 

(3.19) 

The relations 

(3.20) 
8( . ) 
- u ·= 8t . 

(3.21) ｾ ｵ ﾷ ］＠8t . 

(') 'llf can be interpreted to be related with a local deformation process. 
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define time derivatives which are call ed generalized Oldroyd time derivatives of 
u. Clearly, from (3.17)-(3.21 ), 

(3.22) 

(3.23) 

r ( .) 
U ' •Tr •Tr - 1 Ttu = u - ':t:" ':t:" u , 

ｾ ｵ］＠ ｵＫＨｾｗ Ｍ ｬＩｔｵＮ＠
ot 

Note that the time derivatives o(·)ujot and o<·> uj ot are related to the material 

time derivative of the Lagrangean vectors u<L), u(L)• 

(3.24) 

(3.25) 

through 

(3.26) 

(3.27) 

u(L) := q,- 1u ' 

U(L) := q,T U ' 

respectively. These definition s of generalized Oldroyd time derivatives for vector 
fields can easily be extended to introduce generalized Oldroyd time derivatives 
for tensor fields. For example, for a spatial symmetric second-order tensor 

(3.28) 

the corresponding symmetric generali zed Oldroyd rates are defined by 

(3.29) 

(3.30) 

It follows that 

(3.31) 

(3.32) 

and that 

(3.33) 

(3.34) 

8(") kl - A -- '1 . (</!) (</!) 
ot ; g" ® g, 

\;>A = it ｾＬ Ｎ Ｌｧ＼ＢＧ＾ Ｂ＠ ® g(tf!)l. 

8< ··> 
- A= 
8t 

8( .. ) 
- A= 
ot 

A - ｾ＠ q, - I A - ａＨｾ＠ q, - 1 f ' 

A ＫＨｾｷ Ｍ Ｑ ｦａ Ｋａｾｷ Ｍ Ｑ Ｌ＠

A (L) = q, - 1 (
0{") A) q,T-1 
ot ' 

• T (8(") ) 
A(L) = W 8i: A W, 
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where 

(3.35) 

(3.36) 

A(L) := w- 1AwT-I , 

A(L) := 'l!A'l! T. 

355 

Next we note that with respect to the basis {Mi}, various strain tensors can be 
defined. In order to obtain the Lagrangean strain tensors introduced by Hill (6), 

we consider monotonic scalar functions g : (0, oo) --. IR, such that 

(3.37) g(1)=0, g'(l ) = 1. 

Then, the symmetric tensors G(g)• defined by means of the isotropic tensor-valued 
function g( · ), 

3 

(3.38) g : u ..___. G(g) = g(U) := L g(>.;) M; @ M;' 
i= l 

represent Lagrangean measures of strain, referred to as Hill 's Lagrangean strain 
tensors. Examples of such functions are given hy (m E IR) 

(3.39) 
{ 

2_(,\'!l- 1) 
g(m)(-\ ;) := m ' 

In>.; 

if 11/ t= 0, 

if m= 0, 

inducing the strain tensors C) 

(3.40) 

3 1 1 L - (>.in - l)M; ® M ; = - (um - 1) if mE (IR\0), 
i= l rn m 

3 

L(ln >.;)M; 0 M; = In U ;f m = 0. 
i = l 

In relating stress tensors to the given strain tensors, we will employ the stress 
power per unit volume of the reference configuration W, which can also be 
written in the form 
(3.41) l i'= Tn ·F . 

In this formula, T n stands for the fir st Piola- Kirchhoff stress tensor, i.e., 

(3.42) T 17 = (det F)TFT- I = SFT- I , 

(
6

) The treatment of Hill 's Lagrangean strain tensors given here is taken f rom O GDEN [8, Sec. 2.2.71 as well 
as WANG and TRUESDELL [9, Sec. 3.8]. 

(') These Lagrangean strain tensors were introduced for the first time by DOYLE and ERtCKSEN Jl3, Ch. 4J. 
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where T and S :;;: (det F)T are the Cauchy and the weighted Cauchy (or Kirchhoff) 
stress tensor (8), respectively. Furthermore, we have 

(3.43) W:;;: S·D, 

where D represents the symmetric part of the velocity gradient tensor L (the 
antisymmetric part of L being W): 

(3.44) 

(3.45) 

(3.46) 

4. Objective rates for S 

L :;;: grad x :;;: F F- 1 :;;: D + W , 

1 D :;;: 2(L +LT) , 

1 T W:;;: 2(L - L ). 

In this section, we shall consider the Lagrangean stress tensors conjugate 
(in Hill 's sense) to the strain tensors (3.37)-(3.40). As a fir st step towards the 
development of a general duality concept for associating strain and stress tensors, 
we will derive the relations between these Lagrangean stress tensors and the 
weighted Cauchy stress tensor S. These relations are expressed in terms of lin ear 
transformations and using the same transformations, we shall establish various 
so-called objective rates for S. It turns out that, among all the transformations 
corresponding to arbitrary m, only those for 111 :;;: ± 2 lead to objective rates for 
S having the structure of a generalized Oldroyd time derivative. 

In order to derive this result, we turn to the strain tensors Gc9 > defin ed by 
(3.38), where g(>. i) may be specifi ed by (3.29). First of all, the stress power 11' is 
rewritten as 
(4.1) w :;;: Tens) • U • 

where 

(4.2) 

is the symmetric part of the Biot stress tensor 

(4.3) T T(B) := R Tn 

(see OGDEN [8, Sec. 3.5.2]). The definition of the stress tensors T (g)• conjugate in 
Hill's sense to G (.q)• should be based on the identity 

. . 
(4.4) T (BS) • U = T (y) • G (y) . 

( 8 ) We are concerned here only with nonpolar materials, so tha t T, and therefore S, is symmetric. 
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In view of G (g) = g(U), by (3.38), we obtain 

(4.5) G (g ) = U(g )[l J] 

where 

(4.6) 
8g 

u<9> = av 
and 
(4.7) u<9> = ｵ＼ ｾ ＾ Ｌ＠
i.e., U(g) is symmetric. Furthermore, there exists a symmetric fourth-order tensor 
1(9 ) satisfyin g the re lation 

(4.8) 

Thus, 

(4.9) 

and 
(4.10) 

With respect to the basis {M;}, the foll owing representati ons hold: 

3 

(4.11) U(g) = Lg'(>.;)M; ® M; 0 M; ® M, 
i = l 

(4.12) 

where 
{ !g(.\j ) - g(.\;) if >.; f >.i ' i f j, 

2 >. · - >. · (4.13) e< > . . ·= J • g l ) . 1 
2g'(>. ;) if >.; = >. j, if j . 

(For a more detailed derivation of the relations ( 4.1 )-( 4.13) see OGDEN (8, 
Sec. 3.5.2]) . 

In order to express the dependence on the weighted Cauchy stress tensor S, 
we note that in view of ( 4.2) and (3.42)2, (3.5), the equation 

(4.14) T (BS) = ｾ＠ (u - tRTSR + RTSRU- 1
) = : K[S] 
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applies. Taking into account the relations (3.6)-(3.9), it is not diffi cult to derive 
for K the representation 

3 3 
ｾ＠ 1 "" "" ..\; + ..\ j ( ) (4.15) K = 4 0 0 ..\ ·..\ . M; ® Mj ® ｾ ［＠ ® ｾ ｊ＠ +M; ® Mj ® ｾ ｊ＠ ® ｾ ｩ＠ . 

i =l j = l l J 

Inserting (4.14)2 in (4.10) yields 

(4.16) 

with 

(4.17) A (g) := 7(9 )K . 

From (4.12) and (4.15) we obtain 

(4.18) 
3 1 

A (g) = L ..\ · ＧＨＮＮ｜Ｉ ｍ ［ ﾮ ｍ ［ ﾮ ｾ ［ Ｐ ｾ ［＠
i=\ ,g I 

+ L O'(g )i j ( M; ® Mj ® ｾ ｩ＠ ® ｾ ｪ＠ +M; ® M; @ ｾ ｪ＠ ® ｾ ［Ｉ＠ , 
ih 

where (no summation over i, j, i 'f j) 

(4.19) 

Introducing the fourth-order tensor P (g) by 

(4.20) 

where 

3 

(4.21) P (g) = L ＮＮ｜［ｧＧＨＮＮ｜ ［ Ｉｾ ［＠ ® ｾ ｩ＠ ® M; @ M; 
i= l 

in view of (4.18), we deduce fro m (4.16)z that 

(4.22) 
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The tensors P(g) and A(g) induce transformations relating the stress tensors T(g) 

and S, respectively. This enables us to associate with each function g( ·) an ob-
jective rate of S, defined by application of the same transformation P(g) to the 
material time derivative of the Lagrangean stress tensor T(9): 

(4.23) • [D(g) ] T (g) = A(g) Dt S . 

From this, as well as from (4.16)2, we obtain 

(4.24) 

Inserting herein the relation 

. . 
(4.25) P(g) A (g) = - P (g)A(g) , 

which follows from (4.20), and taking into account (4.20), we see that 

(4.26) D(g ) S = . . [S] 
DL S - p (g)A(g) . 

It is verified in Appendix A that the rate D(g)S / Dt constitutes an objective Eu-
lerian tensor. 

Next, we discuss the requirement that the objective stress rate D(g)S / DL should 
fit into the structure of a generalized Oldroyd time derivative. We see, that this 
requirement implies a special structure of the fourth-order tensor A(g), namely 
the property 
(4.27) A(9)[S] = ＧｬＡ ｾ Ｉｓ Ｇｬｬ Ｈ Ｙ Ｉ Ｌ＠

valid for all Eulerian second-order tensors S, where '11 (g ) E Lin +. Indeed, if this 
relation is true, ( 4.16)2 reads 

(4.28) 

and (4.23)2 implies 

(4.29) 

with 

(4.30) 

Using the representation 

(4.31) '11 (g) = ｴｊｩＨｧＩ ｩｪ ｾ ［＠ 0 M j , 
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we conclude from ( 4.28) that 

(4.32) A(g) = ｾ ＱＯｩ Ｈ ｧ Ｉ ｰ ｱ ｬＯｩ Ｈ ｧ Ｉ ｭｮ＠ ( M q ® Mn ® J..l.p ® J..Lm + M q ® Mn ® J..Lm ® J..Lp). 

Comparing this with ( 4.18), ( 4.19) yields 

( 4.33) 
3 

w (g ) = L 1/i(g )ii J..L; ® M; , 
i= l 

and therefore 

3 

(4.34) A(g) = L(l/i( g)ii )
2M; ® M; ® J..L; ® J..Li 

+ ｾ＠ L l]i( g)ii l]i( g )jj (M; ® Mj ® J..Li ® J..l.j +M; ® Mj ® J..l.j ® J..L;) . 
ifj 

Hence, through ( 4.34) and ( 4.18), ( 4.19), it foll ows (no summation over i , j ) 

(4.35) 
2 1 

(1/i(g)ii ) = .A;g'(.A ;) ' 

1 )..2 - )..2 
l]i l]i - ! J 

(g)ii (g )jj - 2 .A ;.AJ(g(.A ;) - g(.A j )) (4.36) 

If i ::f j and ).. i = >.1, only (4.35) applies, so that it suffices to concentrate on 
.A; ::f ).. i· Since ｻ Ｈ Ｎａｾ Ｍ .AJ)/ (g(.A;) - g(>.1))} > 0, from (4.35), (4.36), we have 

( 4.37) 

We recall that .A ;, being eigenvalues of the positi ve defini te second-order tensor 
U, are positive. Thus, if ( 4.29) ho lds, the function g( ·) has to satisfy the relation 
( 4.37) for all positi ve Ai , ).. 1. 

Now, suppose g( ·) belonging to the one-parameter set of functions !J(m ) ( • ) , 

defin ed by (3.39). It is readily seen that for m = 0, equatio n ( 4.37) cannot be 
satisfied. For m ::f 0, on use of (3 .39)1> we obtain fro m ( 4.37), afte r some algebraic 
manipulations, 

On taking the derivative with respect to .A; and then to >.1, (4.38) reduces to 

(4.39) ｣［ ｾ＠ + 1) (; - 1) (>./ .>..'f -
2 

_ )..,_
2

>.j ) = 0. 
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This formula must be satisfied for all >.;, Aj > 0 with>.; ::f >. j , which is possible if 
and only if 
(4.40) m= 2 or m = -2. 

For m = 2, on the basis of (3.40)t. we have 

(4.41) G(2) : = E = ｾ＠ ( U2 
- 1) , 

which is called the Green strain tensor, while for m = -2 we have 

(4.42) G(-2) := -£ = ｾ＠ (u-2 -t) . 
£ is called the Piola strain tensor. The corresponding conjugate stress tensors in 
the sense of Hill are given by 

(4.43) T(2) := i' = F- 1sFr-1 

and 
(4.44) 

referred to as the second Piola- Kirchhoff stress tensor and the convected stress 
tensor, respectively. Clearly, along wit h G( _2) and T( _2), the variables £ and - T 
form also a pair of conjugate (in Hill 's sense) strain and stress tensors. 

This general result suggests the following restriction on the choice of La-
grangean strain tensors: If we define the associated Lagrangean stress tensors 
which are conjugate in the sense of Hill , various objective time derivatives can be 
assigned to S. If we require from these derivatives the structure of generali zed 
Oldroyd time derivatives, then only two strain tensors are left, namely E and £ . 
We remark that the Lagrangean variables (E, T) and (£, T), where 

(4.45) T := - T = FT <;F 

and 
(4.46) <; := - S , 

were chosen in HAuPT and TSAKMAKIS [3] as basic pairs for introducing, by means 
of linear transformations, two different classes of pairs of spatial strain and stress 
tensors, referred to as family 1 and family 2, respectively. Strain and stress meas-
ures forming a pair belonging to one of the two classes were called dual variables. 
As it will be seen in what follows, the pairs of Lagrangean variables (G(m) , T(m)) if 
m > 0, or ( - G(m), - T(m)) if m < 0, are representatives of related classes, which 
can be interpreted as classes of generalized dual variables. Moreover, similar to 
the cases m = ± 2, each of the Lagrangean stress tensors introduces a specific 
"generalized" Oldroyd time derivative for each of the stress tensors belonging 
to the same class. In fact, such a concept is establi shed in the next section and 
essentially, it can be conceived as a generalization of the concept developed in 
HAUPT and TSAKMA K1S (3]. 
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S. The concept of generalized dual variables 

5.1. Generalized Lagrangean strain tensors 

We remark that the set of strain tensors defined by (3.40) includes for each 
m 'f 0 the strain tensor G(m) as well as its counterpart G(-m)· However, if m = 0, 
there is no such counterpart for In U. This motivates the definition of a set of 
generalized Lagrangean strain tensors, slightly different from that introduced in 
(3.40), as follows. 

The two-parameter set of functions 

(5.1) 

where 
(5.2) qE{-1 , 1} and mE (0, oo), 

introduces the strain tensors 

(5.3) 
3 

_ "' l ( qm ) E.(qm) - L - \ - 1 M; ® M;. 
i = l 7n 

Note that the functions g(qm )• in contrast to (3.37), are monotonic but not necess-
arily increasing with 

(5.4) g(qm)(1) = 0, 

Since q is equal either to + 1 or to - 1, we have 

(5.5) 

(5.6) 
t(qm)lq=-1 = E.(-m) ' 

E.(qm)l q=l = E.(m ) · 

Notice that, by taking the limit for m ---+ 0, we arrive at the strain tensors 

(5.7) 

which is equivalent to 

(5.8) 

lim E.(qm) = q In U , 
ｭｾｏ＠

{ 
lnU 

lim E. (qm ) = 
ｭｾ ｯ＠ In u-1 

if q = 1' 

if q = - 1. 

We call the set of all strain tensors defined by (5.2), (5.3), together with the strain 
tensors In U and In u- 1, the set of generalized Lagrangean strain (deformation) 
tensors and denote it by DL: 
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In order to give a geometrical interpretation to the Lagrangean strain tensors 
included in DL, it is convenient to introduce the generalized Green strain tensors 
E(m)• and the generalized Piola strain tensors E.(m)• defined by 

C5.10) 

C5.11) 

{ 
t(m) = m1 

cum- 1) 
E(m) := 

In U 

· - { E.(-m) = _!_cu-m - 1) 
E:(m) .- m 

Inu- 1 

if m, > 0, 

if m= 0, 

if m> 0, 

if m= 0. 

Further, we denote the set of all E(m) by DLG and the set of all E:(m ) by DLP, 

C5.12) 

C5.13) 

Clearly, 
C5.14) 

and 
C5.15) 

DLG := {E( m)/m ｾ＠ 0} , 

DLP := { E:(m)/m ｾ＠ 0} . 

Next, we give geometric interpretations for the Green strain tensor E = E{2), 
defined by C4.41), and the Piola strain tensor E: = £(2), defined by C4.42). As we 
shall see below, the geometric interpretation of the generali zed strains E(m ) and 
E:(m ) is similar to that for E and E:, respectively. 

Let dX be a material line element in the reference configuration, which is 
transformed, under the deformation, into the material line element dx in the 
current configuration, i.e., 
C5.16) dx = FdX. 

Then we have the well-known formula 

(5.17) 
1 

L1 := "2 (dx ·dx - dX ·dX) = dX ·EdX. 

To obtain a geometric interpretation for the Piola strain tensor E: , we consider 
a material surface PCX) = C = const in the reference configuration. In the 
current configuration this surface has the time-dependent form cpCx, t) = C, where 
cp(x(X , t) , t) = ct>(X) holds for all X satisfying ct>(X) = C. It follows that 

(5.18) 

where 

C5.19) 

C5.20) 

f. = grad cpCx, l) , 
8 = GRADct>CX) 
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and 

(5.21) 
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8 := ｾ＠ (f_ of_ - 8 o 8 ) = 8 o e:8. 

Thus, the Green strain tensor E is used to refer to the reference configuration 
the difference Ll between material line elements in the current and the reference 
configuration. Analogously, one can make use of the Piola strain tensor e: in 
order to refer to the reference configuration the diffe rence 8 between normals to 
material surfaces in the current and the reference configuration. 

Now, consider linear transformatio ns descri bed by F (m)• det F(m) > 0, m > 0, 
where F(m) is constructed as follows. From the polar decomposition theorem we 
have 

(5.22) F (m) = ｾ ｭＩ ｕ ＨｭＩ＠ = ｖＨｭＩ ｾ ｭＩＬ＠

(5.23) Ufm) = c (m) = FTml(m) ' 

(5.24) V fm) = B (m) = F (m)F Tm)' 

where R (m) denotes a proper orthogonal tensor. If we defi ne 

3 

(5.25) U ·- u m/2- ".xm/2M ·"" M · (m).- - ｾ＠ i t v t ' 

i= l 

(m > 0), then it fo ll ows that U(m ) descri bes a class of ri ght stretch tensors. Fur-
thermore, defining R (2) = R , we have F(2) = F. Clearly F, and so U, must sati sfy 
the compatibili ty conditions e) in order to form a deformation gradient tensor 
derived from a deformati on functio n. Although U and F satisfy the appropriate 
compatibili ty conditions, U (m) and F (m ) in general do not. 

Proceeding to complete the definiti o n o f F (,n ) • we note that all U(m) possess 
the same principal vectors M;. This motivates to defin e all the corresponding 
left stretch tensors V (m) to have the same principal vectors. Since the principal 
vectors of V(2) = V are ｾ Ｈ ｩ Ｉ＠ (see Eqs. (3.7), (3.8)), we have 

(5.26) 

and 
(5.27) 

3 
V ·- y m/2 - "A m/211 "" 11 (m) .- - ｾ＠ i r i 'U r i 

i= l 

R (m ) := R . 

Notice that F (m ) can be interpreted as a two-point tensor fi e ld which maps tangent 
spaces of materi al points in the reference configuratio n onto the corresponding 
tangent spaces of the same material points in confi guratio ns at time t. This fact 

(
9

) A detailed discussio n on the compatibility conditions concerning F, as well as U and R, is given by 
NAGHDI and V ONGSARNPIGOON (14]. 
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follows by virtue of U and V (and therefore U(m) and V{ m) too) operating within 
the tangent spaces of material points in the reference configuration and tangent 
spaces of material points in configurations at time t, respectively, and R mapping 
tangent spaces of material points in the reference configuration to the corre-
sponding tangent spaces of the same material points in configurations at time t 
(see e.g. MARSDEN and HUGHES (15, pp. 51-52]). 

Thus, analogous to Fin (5.16), F{m) transforms lin e elements dX in the refer-
ence configuration to vectors dx(m) in configurations at time t: 

(5.28) 

If we define 

(5.29) 

dx{m) = F(m) dX . 

L1(m) := ..!._ (dx(m) • dx(m) - dX • dX) , 
111 

then we have, in view of the transformation rule (5.28), as well as the relations 
(5.22)t, (5.10)1 and (5.25), 

(5.30) 
1 

L1{ m) := - dX • (Um - 1) dX = rlX • E(m)X , 
m 

wi th the property rlx{2) = dx and .J(2) = L1. On the other hand, F{m) can be inter-
preted to transform normals 3 on material surfaces in the reference confi guration 
to vectors t {m)' 

(5 31) t FT- I -
. ｾ Ｈ ｭ Ｉ＠ = (m ) .::. ' 

in configurations at time l , which generali zes the transformation formula (5.18). 
On defining 

(5.32) 

we obtain, by virt ue of (5.22)11 (5.11) and (5.25), 

(5.33) J: ·- 1 o;:;' cu-m l ) o;:;' - o;:;' £ o;:;' 0 (m ) . - - .._.' - .._. - .._.' {m ) ._. · 
111 

Obviously, we have t {2) = t and 6(2) = D. This completes the geometrical inter-
pretation of E{m) and £(m)· For arbitrary m > 0, these strain tensors represent 
the differences L1(m) and D(m ) with respect to the reference configuration. We 
may extend the result to the limit case m = 0, by definin g 

(5.34) 

and 
(5.35) 

.d(O) := lim .d(m) = dX • E(o)X 
m-0 
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5.2. Generalized strain tensors and associated rates 

Let dX and S be material line elements and normals on material surfaces in 
the reference configuration, which are mapped by the linear transformation w, 
to vector fields dx(l/l) and s<l/l), respectively (cf. (5.16) and (5.18) in Sec.5.1): 

(5.36) 

(5.37) 

rlx(!ft ) := 'l!dX , 

ｾ＠ (!Jt ) := -wr-'s. 
Next, consider for arbitrary but fixed 'l1 E Lin + and m 2: 0, the differences L\(m) 
and O(m)· Requiring the derivatives dn L\(m)/ dtn and dno(m)/ dt11 

( n E N, n 2: 0) 
to be form-invariant with respect to the chosen configuration, various symmetric 

strain tensors ｉｔｾｾｾ＠ and ＧｔｃｾｾＩ Ｇ＠ as well as the associated time derivatives (rates) 

D 1l rr<!Jt) I Dtn and D" 'TC(!Jt) /D l 11 can be defined (10) : 
(m ) (m) 

(5.38) 

(5.39) 

d" 
-.d( ) dt11 m 

These definitions imply 

(5.40) 

(5.41) 

as well as 

(5.42) 

(5.43) 

l>. 

l>. 

/) n d" 
D tn E (m ) = rLt n E (m), 

l>. 

D" d11 

JJtn £ (m ) =: rf tn £ (m) ' 

- 1t >=M - £ nn (1/1 [ d
11 

] 

Dl n (m ) (1/1) dl 11 (m ) ' 

where .C(!ft) and ｾｾＨＡｦｴ Ｉ＠ are fourth-order tensors operating on the set of all La-

grangean symmetric second-order tensors S: 

(5.44) 

(5.45) 

S 1--- .C(!ft)[S] = -wr-'sw-1
, 

- - - T S 1--- M (1/!)[S] = 'l1 S'lf . 

('
0

) Here, and in what follows, symbol 6 denotes the associated time derivative for the strain tenso r consid-
ered. In other words, t>. defines different time derivatives depending on the kind of the strain tensor considered. 
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In particular, for n == 0 we have 

(5.46) 

(5.47) 

n (tJi) _ r [E ) _ ,T,T- 1E ,T,- 1 
(m ) - '--(1/1) (m) - '*' (m )'*' ' 

(tJi) - _ ,T, ,T,T 
1t(m) - M(tJi) [E(m ))- '*'E (m ) '*' . 

It is readily seen that 

(5.48) 

L; L; 

n <"'> ·- _Q_n<"'> == ii<"'> + ｣ｾｷ Ｍ Ｑ Ｉ ｲ ｮ＼ＢＧ ＾＠ + n<"'> ｾｷ Ｍ Ｑ＠
(m ) .- Dl (m ) (m ) (m) (m) ' 

L; 

ｾＨＱＯＱＩ＠ ·- D
2 

n<"'> = Ｈｾ＼ＢＧ＾ＩＮ＠ + Ｈｾｷ Ｍ ｬＩ ｔ＠ ｾＨｬｐＩ＠ + ｾ＼ＢＧ ＾＠ ｾｷ Ｍ Ｑ＠
(m ) .- Dt2 (m) (m) (m) (m) ' 

as well as 

(5.49) 

L; L; 

(tJi) D (tJi)_ .(1/l) ,-f,,T,- 1 (tJi) (tJi)( ,-f,,T, - 1)T 
1t · - - 1t - 1t ( ) - '*' '*' 1t - 1t '*' '*' (m ) .- Dt (m) m (m ) (m ) • 

367 

Further relations are obtained if we represent the various strain tensors with 

respect to the bases ｻｧｾＢＧＩｽ＠ and ｻｧｾＢＧ＾ｽＮ＠ From 

(5.50) 

(5.51) 

as well as 

(5.52) 

(5.53) 

we infer that 
(5.54) 

and 
(5.55) 

kt G G 
E(m ) == E(m ) k ® I' 

1t(l/l) - 1r (tJ!)kl (tJ!) (tJ!) 
(m ) - (m ) ｧ ｾＬＭ 0 gl ' 

l-. 17 (tJ!) 
ｾＨ ｭ Ｉ ｫｬ＠ = (m )kl 

kl - (tJi)kl 
[ (m ) - 7r(m ) ' 
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respectively. In addition, it holds 

"' 
(5.56) D n n <oJi ) = ( !!:_ n<oJi ) ) g<l/l )k 0 g<l// )1 

Dl" (m) dln (m )kl 

and 

(5.57) 

c, n 

which indicates, that the operators D (·)I D ln induce generalized Oldroyd time 

derivatives. We call the strain tensors ｉｉ ｾ ｾ Ｉ＠ and Ｑｴ ｾｾ Ｉ Ｉ＠ generalized strain tensors. 
The set of all generali zed strain tensors is denoted by D, 

(5.58) { 
(VI ) (1/i) 

D := II (m)' 1t(m) I m ｾ＠ 0 , 

Obviously, for arbitrary but fix ed m ｾ＠ 0, the sets of all generalized strain tensors 
related to the difTerences L1 (m ) and b(m ) constitute equivalence classes in D. We 

denote these equivalence classes by ･ ｧ Ｌｾｾ＠ and ･ｾ［ＺＩＧ＠ respectively, 

(5.59) 

(5.60) 

e<n) := {rr(V!) I wE Lin +} 
(m ) (m) ' 

e<") := { 1t(l/i) I w E L in +}. 
(m) (m) 

Then, for the system .r.?0 of all equivalence classes in D, 

(5.61) 

the equali ty holds 

(5.62) 

· - { - ( n ) - ( 11") } .no .- e<m>' e<m> 1 m ｾ＠ o , 

5.3. Generalized stress tensors and associa ted rates 

For defining the generali zed strain tensors and their associated rates, use is 
made o f the scalar quantiti es dnL1(m)l rll n and rlno(m)l dln. These scalars were 
required to be form-invari ant with respect to the chosen co nfiguratio n. In the 
fo ll owing we consider the stress power as well as the material time derivatives 
dn W I dtn and require from these scalar quantities to be form-invariant with re-
spect to the chosen config uratio n. This leads to the introduction o f generalized 
stress tensors and the associated rates. 

Proceeding to defin e generali zed stress tensors, we draw attention to symmet-
ric stress tensors only and assign to the generalized Lagrangean strain tensors 
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E(m) and e:(m)• the symmetric generalized Lagrangean stress tensors T(m) and 
T(m)• respectively, so that 

(5.63) W = T(m) • E (m) = T(m) • E (m) , 

for each m ｾ＠ 0. The set of all generalized Lagrangean stress tensors is denoted 
by SL 

(5.64) SL := {'f( m)• T(m) I T{ m)• T{ m) : symmetric, 

w = i'<m> • E<m> = 7-<m> • e:<m>• ｭｾ＠ o }. 
The set SL for the stress tensors is the counterpart of the set DL for the strain 
tensors, while the sets 

(5.65) {'f{ m) I ｭ ｾ＠ 0} 

and 
(5.66) { 7-<m> I 111 ｾ＠ o} , 
are the counterparts of the sets DLG and DLr, respectively . Moreover, to the 

genera lized strain tensors ｲｲｾ ＺＩＩ＠ and Ｇｔｴ ｾ ＺＩＩ＠ the symmetric generali zed stress tensors 

(5.67) 

and 
(5.68) 

can be assigned, respectively, so that 

6 6 

(5.69) w = ｾ Ｈ＼ｊｩＩ＠ . rr<"') = a ("') • 'Tt(!Jt) 
(m ) (m ) (m) (m ) ' 

fo r each m > 0 and W E Lin +. 
Notice ｴｬ ｾ｡ ｴ＠ (E(m)• T(m)), as well as (e:(m)• T(m)), are pairs of vari ables which 

are conjugate in the sense of Hill. However, this is in general not true fo r the 
pairs of variables 

(5.70) (rr<"'> ｾ＼ＢＧ＾Ｉ＠(m)' (m ) and ( 
(<Ji) (!Jt)) 

'Tt (m ) ' a (m ) . 

For arbitrary m ｾ＠ 0 and w E Lin +, the pairs o f variables (5.70) are call ed pairs of 
generalized dual variables, or simply dual variables. Equivalently, the generalized 

stress tensors ｾｾ ｾＩ＠ and ｡ｾ ｾＯＩ＠ are said to be dual to the generalized strain tensors 

II(<Ji) and 'Tt (!Jt) respectively and vice versa ( 11 ) . 
(m ) (m)' ' 

( 
11

) This notation of generalized dual variables is just a genc rali7..ation of the duality no tation introduced in 
HAun and T SAKMAKJS [3]. 
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If we write S fo r the set of all stress tensors Ｚｅ ｾ ｾ ＩＩ＠ and ＼ｲ ｾｾ ｾ ＩＩＧ＠

(5.71) ·- { ( </1 ) (</1 ) s .- :E<m>' a<m> I m ｾ＠ o, 

then S can be partitioned into the equivalent classes 

(5.72) 

and 
(5.73) 

e<E) ·= { :E(</1) I w E Lin+} 
(m) • (m ) 

e(u) := {a(l/i) I w E L in +} 
(m ) {m ) ' 

which for m > 0 cover S. No te that the counterpart of the sets D, ｇｾ ｾ ｪ＠ a nd 

･ ｾ ｾ Ｉ＠ for the strain tensors are the sets s, ･ｾ ｾ ｾ＠ and ･ｾ Ｚ ｜＠ for the stress tensors, 
respectively. 

To determine the time derivatives which are associated with the generali zed 

stress tensors Ｚｅｾ ｾＩＩ＠ and ＼ｲｾ ｾＩＩＧ＠ we next co nsider the quanti ty ｜ ｾ ｩ Ｑ Ｌ＠ which lik e W is 
required to be form-invariant with respect to the chosen configuration. On taking 
the material time derivative o f (5.63), we obtain 

. . ..... . - .. 
(5.74) 

W = T (m) • E (m ) + T (m ) ' E( 711 ) . 
"""" . ....... .. 

= T (m)' € (m ) + T {m ) ' € {m) 

Using the stress and strain tensors included in the equivalence classes ｇ ｾｾ ｾｪＬ＠ ･ ｾ ［ ｾｾ＠

and ｇ ｾ ｾ Ｉ Ｇ＠ ･ ｾ ＺＡＩＧ＠ respectively, as well as the associated strain rates defi ned by 

(5.48) and (5.49), the terms T {m) • E (m ) and T (m ) • E (m ) can be rewritten in the 
form 

I:; I:; 

(5.75) - .. = ｾ ＼ｷ Ｉ＠ • n <"'> 
T{ m ) • E(m ) L..r(m ) (m ) ' 

I:; I:; 

(5.76) 
- •• - (</1) (</1 ) 
T(m) ' €(m ) - <T(m ) •1t(m ) · 

Thus, the quantities T(m ) • E(m) and T(m) • E(m ) represent, fo r arbitrary but fix ed 
m ｾ＠ 0, scalars which are form-invariant with respect to the chosen configuration. 
Consequently, the terms 

(5.77) 

and 

(5.78) 

. 
W incr · - T- E. 

(m ) . - (m)' (m ) 

. 
W incr ·- ;r ｾ＠

(m).- 1 (m ) ' c;,(m ) ' 
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which are called the incremental stress powers W(:=) and ｷＨｾＩＮ＠ respectively, must 
also be scalars which are form-invariant with respect to the chosen configuration. 
Indeed, we have 

" 6 

(5.79) wincr - :E(<P) 
(m) - (m ) 

• n <<P> 
(m ) 

and 
" 6 

(5.80) wincr -cr(<P) (<P) 
(m) - (m ) • 1t(m) ' 

where use is made of the definition s C2) 

(5.81) 

(5.82) 

This way, by considering form-i nvariant scalar quantities, we can associate with 

each stress tensor Ｚｅｾ ｾＬ＾Ｉ＠ and ･ｲ ｾｾＩＩ＠ a time derivative of the form (5.81) and (5.82), 

respectively. Similarly, by considering higher time derivatives d11 W / di n , associ-

" " ated time derivatives of higher order Dn Ｚｅ ｾ［ＬＯＯ＠ Dtn and Dn ｡ｾ ［ＬｽＯ＠ /J /11 can be 
introduced in a natural way. In parti cular, we have 

(5.83) 

and 
" 

(5.84) 
_on _ dn _ 

- T ( ) = - T () _D[ n m - din m ' 

as well as 

6 

(5.85) _on :E(<P) -M ｛ ｾｔ＠ ] = W T - I Ｈｾｔ＠ ) w-l 
_D[ n (m ) - ( .P) d/.n (m ) din (m ) 

and 

(5.86) 

C2) Similar to the notation of the symbol 6 for the strain tensors (sec footnote 11), symbol " denotes the 
associated time derivative for the stress tensor considered. 
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5.4. Properties of dual variables 

Using the bases {Gk} , ｻ ｧ ｾ ｴｬｩＩｽ＠ and their reciprocal bases { G k}, { g(tli )k }, as well 
as the representatio ns 

(5.87) 

(5.88) 

and 

(5.89) 

(5.90) 

we readily obtain 

(5.91) 

(5.92) 

and 

(5.93) 

V 

- Gk G1 
T(m) = T(m)kl 0 ' 
<T(( tlim)) = a(l/i ) g(l/i )k 0 g (l/!)1 

(m)kl ' 

j k l _ E (l/l)kl 
(m ) - (m ) ' 

T = a (l/l ) 
(m )kl (m )kl 

(5.94) Dn <1 (1/1) = ( .:!:_a(l/l) ) g(l/l)k 0 g(t/l )l . 
Dt" (m ) rl l" (m )kl 

The relations (5.93), (5.94) together with (5.85) and (5.86) indicate that, simi larly 
V 

to the case of the generali zed strain tensors, the operators f) n ( • )/ Dtn induce 
generalized Oldroyd time derivatives. 

We now compare the relations (5.56), (5.57), which concern the generali zed 
strain tensors, and the relatio ns (5.93), (5.94 ), which concern the generali zed 

stress tensors. It turns out that ｉｔｾ ｾＩＩ＠ and ｾｾ ｾ Ｑ Ｉ Ｉ＠ o r Ｗｴ ｾ ｾ ＩＩ＠ and ｡ ｾ Ｚ ＩＩ Ｇ＠ as well as the 
associated time derivatives, display their physical and geometrical properties in 
the context of a representation relative to a basis and the corresponding reciprocal 
(dual) basis, respectively. Moreover, the duali ty concept can also he verifi ed by 
means of the following scalar products, which are form-invariant with respect to 
the chosen configuratio n: 

(5.95) 

(5.96) 

I N /\ 1 ·-
(m ) . -

i N M · -(m ) . -

D N ｾＨ ＱＯＱＩ＠ ｄ Ａｬ Ｇｾ＠ rr<t/1> 

( 

V ) ( C. ) 
DtN (m ) • Dtll l (m ) ' 

( 

V ) ( C. ) 
D N (1/1) D 111 (t/1) - - a . --7t 
DtN (m ) Dti\1 (m ) ' 
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where m ｾ＠ 0, and N, M E N with N, AI ｾ＠ 0. Some particular cases of (5.95) and 
(5.96) are: 

1 

(5.97) 

(5.98) 

l oo - - E - ｾ＼ＢＧ＾＠ n <"'> 
(m) - T(m) ' (m ) - L.l(m) ' (m)' 

·00 - - - (<Jt) (Vi) 
l(m) - T(m ) 'E(m)- (J'(m ) •1t(m) · 

(Scalar product of dual stress and strain tensors). 

2 
"' 

(5.99) rol _ - • ｾ＼ＢＧ＾＠ n <"'> 
(m ) = W = T(m ) • E(m) = L.l(m) • (m ) ' 

"' 
(5.100) ·01 - - - • - (Vi) (Vi) 

l(m) = W - T (m ) • E (m) - O'(m) • 1'((m ) • 

(Stress power per unit volume of the reference configuration). 

3 
<7 

(5.101) 110 - ｾ＠ (Vi) .n<"'> (m) - T (m) • E(m) = :E(m) (m ) ' 

v 

(5.102) ·10 
t(m) = !. - (Vi) 

T (m) ' E (m) - O'(m) 
(<Jt ) 

• 1'((m). 

(Complementary stress powers). 

4 

(5.103) /11 _ 1,vincr _ 
(m) = (m) -

(5.104) i ll _ 
1 

incr _ 
(m ) = 1 (m ) -

(Incremental stress powers). 

6. Some examples 

<7 
ｾ＠ • - (1/1) 
T(m) • E(m ) -:E(m) 

<7 
ｾ＠ • - (<Jt) 
T (m) • E (m) - O'(m) 

"' . n <"'> 
(m) ' 

"' • 1'((1/1) 
(m ) 

In most applications, m is chosen equal to 2. In such a case, the equivalence 

classes ･ｾｾＩ＠ and ･ｾｾＩ＠ Ｈ･ｾ［＿＠ and ･ｾ［＿Ｉ＠ are denoted as family 1 of strain tensors 
and family 1 of stress tensors (family 2 of strain tensors and family 2 of stress 
tensors), respectively. Some examples for particular choices of 'W are given (13) 

in Tables 1 and 2 (the orthogonal second-order tensor P is given by P = WP). 
Possible physical interpretations for the stress tensors Ｚｅ ｾｾＯ＠ and ｣ｲ ｾ［Ｏ＠ are given in 
Appendix I3. 

('
3

) For more details see liAUI'r and T SAKMAKIS (3]. 
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Table I. Dual variables and associated derivatives: family I. 

A V 

"If ｮ ＼ＧｾＧｬ＠ = \fT- IE\f-1 
(2) 

ｮ＼ ＧｾＧ＾ ］＠ "otr-1 E"ot-1 
(2) 

E('i') = -ii"fT 
(2) 

ｅ ｃＧｾＧｬ ］＠ \f T\fr 
(2) 

1 A i = F-1sFr- l 1 E = - (C - 1) E =: E T 
2 

A= !(I- 8 - 1) 
A V • T F A = A + ｌ ＧｾＢ ａ＠ + AL = D S =(del F)T S = S - LS - SL 

2 

- 1 "' 'V 

R K = - (8 - 1) K= K - RRTK + KRRT ｾ＠ = RTRT ｾ］ｾ Ｍ ｒｬＨ ｲ Ｎｳ｟ Ｍ ｾ ｒｒ ｔ＠
2 

li = ｾＨ Ｑ Ｍ C
1
) 

6. • • ｾ＠
V 

u .K= .K + (U u - 1)7 li s = UTU S= s-uu- 18 
+li u u - • = RTSR -s(uu- lf 

"' E w = P'fPT 
V . 

p n w = PEPT ll iV = ll w- Wll w E w= E w - WEw 

+ll w W +E wW 

Table 2. Dual variables and associated derivatives: family 2. 

"' V 

"If "lt ('i') = "lfE"If T 
(2) 

1{ ('1')= WE WT 
(2) 

＼ ｾ Ｇ＾＠ _ wr-1- w- 1 
CJ(2) - T 

＼ ｾﾷ＾Ｍ wT-1 ｾ＠ w-1 
CJ(2)- T 

I E = !(c-•- 1) 
2 

"' T = FTc;F E =: E T 

1 A 
0. - ｾ Ｍ CLLT = - D c; = - (dct F)T 

V 
+LT<;+ c;L F CL = - ( 1 - B) CL= <; = <; 

2 

"k = !(u-1 - t ) "' 'V 
R k = k - R RTk + kRRT 5. = RTRT s.=s.-R R T 5. + 5. R RT 

2 

1 "' ｵｵ Ｍ ｬｾ＠ <; = u - 1:ru- 1 V 

ｾ ＫＨｵｵ Ｍ ＧＩ ｔｾ［＠u ｾ＠ = 2(1 - C) ｾ］＠ ｾ Ｍ <;= 

Ｍ ｾ Ｈｵ＠ u - ' f = RTc;R +<;uu- l 

p = PEPT "' i:w - W1tw + "lfw W = PTPT 
V 

O. w - Wa w "lf w "lt\- 11 = (J IV a \V= 

+cr w W 

Next, we give the equivalent representations of hyperelastic constitutive equa-
tions using generalized dual variables. By definition, an elastic material is hyper-
elastic if and only if the work done by the the actual surface tracti ons in every 
closed homogeneous deformation process is non-negative (see e.g. TRUESDELL 
and NOLL [1 6, Sect. 82 & 83]) . This is equivalent to the existence of scalar-valued 
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functions II( m ) and h(m)• 

(6.1) 

(6.2) 

satisfying the relations 

(6.3) 

and therefore 

If( m ) = fi (m)(E(m)) , 

h(m ) = h(m)(E(m)), 

. . 
l¥ = H (m) = h (m ) 

- {)J[(m) - Oh(m ) 
(6.4) T(m) = -;;m-, T(m) = Ｍ Ｘ ｾ＠ , 

(m) ｾＨ ｭ Ｉ＠

375 

respectively. Thking into account the relations (5.44)-(5.45), H(m) and h(m) can 
also be written in the form 

(6.5) 

(6.6) 

respectively. From these equations, the stress relations (6.4)1,2 as well as the 
transformation formulas (5.67) and (5.68), we conclude that 

(6.7) :E(<Ji) - arr(m) 
(m) - an<IP> ' 

(m ) 

(6.8) <T(IP) - oh.( m ) 
(m)- 8 (t/1) ' 

1t(m ) 

which are the spatial counterparts of (6.4)1 and (6.4)2, respectively. In view of 
(5.50)-(5.57), also the representations 

(6.9) 

(6.10) 

:E(t/1) = 
(m) 

<T(IP) -
(m ) -

f)lJ( m ) (l]r) (1/i) 
f)E gk 0 g, , 

(m )kl 

f)h(m ) g(l/i)k ,o., g(IP)I 
{) ckl '<Y 
ｾ Ｈ ｭ Ｉ＠

apply, where the functions 11 (m ) and h(m ) are given by 

(6.11) 

(6.12) 

respectively. 
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For m = 2 we write £(2)kl = Ekl and eN) = ckl . Then, for '11 = F, 

(6.13) 

(6.14) 

In this case, (6.7)-(6.10) reduce to 

(6.15) 

(6.16) 

. I F h . G ·- G G - (F) (F) 11 respective y. urt errnore, settmg · ij .- i ' 1• lij :- g i ·g1 , as we as 
Gij := G i .cJ, /.ij := g(F)i .g<F)j, we arrive at the identities 

(6.17) 

(6.18) 

Hence, 

(6.19) 

and 

(6.20) 

1 
Ek1 = 2{Ykl- Gk, ), 

_ 1 ( kl ck') c k/ - -I - · 
2 

81 
c = ＲｾｧＨｆＩｫ＠ 10. g( F )l 
ｾ＠ 81,k, IC:J • 

where the functions li(2)( ·) and h(2)( · ) are defined by 

(6.21) H(2) = Jl(2)(Ek,) = lf (2) Ｈｾ｢ｫｬ Ｍ Gki)) = : lr (2)(!kL), 

(6.22) h =h ( kl ) =h ( 1 ( kl c k')) -1 ( k') (2) = (2) c = (2) 2 I - = : l (2) I · 

Equation (6.19) corresponds to the well-known Doyle- Ericksen formula (see 
DOYLE and ERICKSEN [13]). 

Further examples for the application of dual variables and their associated 
rates in Continuum Mechanics are provided in HAUPT and TsAK.MAKlS [3]. 
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7. Duality for two-point tensors 

The concept of dual variables developed can be extended to two-point tensors 
as well. For example, formula (3.41) shows that F is conjugate in Hill' s sense to . 
T R· However, F does not indicate the same properties as F under an observer 

A 

transformation. Proceeding to define an associated rate F for F which behaves 
like F under the observer transformations, we consider a skew-symmetric tensor 
n, so that (3.41) is rewritten as 

(7.1) W = T n ·(F - OF). 

This is possible, since T nFT is symmetric. Note that by the po lar decomposition 
F is related to the Lagrangean tensor U by means of (3.5)1. Therefore, it appears 

A A • 
natural to define F in such a way, that F is related to U in the same manner as 
F to U: 

A 

(7.2) 
D A • 

- F = F= RU Dt - . 

From this, as well as (3.5)1 and (7.1 ), it foll ows that 

(7.3) 

and therefore 

(7.4) 

A 

It is not difficult now to show that F and F behave simil arly if the observer 
transformations are regarded. 

Foliowing steps simil ar as in the case of symmetric tensors, we define higher 
associated derivatives ofF by 

(7.5) 

A 
Dn 
- F= 
Dln . 

Next, we note that 

(7.6) 

where 

(7.7) 

( 

ｾ ｮ Ｍ Ｑ＠ F)' 
Dtn-1 

- 1 ( T T ) Tp) = T(BS) = 2: T nR + R Tn 
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was referred to in ( 4.2) as the symmetrized 13iot stress tensor C4). This motivates 
us to define the associated time derivatives for T 11 in the form 

(7.8) 

having the property 

(7.9) 

"' "' As a result, we have then (Tn:= D T n/ Dt): 

(7.10) 
"' D. 

(Tn ·F)' =Tn ·F + Tn • F 

The results derived above, concerning the pair (F, Tn), can be extended, in exactly 
the same way, to the pair (FT - l , T n), where 

(7.11) T n := <;F = - (detF)TF. 

We recall, from the polar decomposition (3.5)1, that 

(7.12) 

This motivates us to defin e the associated time derivatives of FT- I as follows: 

(7.13) 

Thus, the stress power W becomes 

(7.14) 

where 

(7.15) 

(
14

) The analysis in the p resent paper is based o n the re latio n between T n and T(IJS)· However, the results 

remain valid, if the analysis is referred to the relation between T n and the Bio t stress tensor T(IJ) = RTT n, 
defined in ( 4.3 ). 
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Furthermore, the identity 

(7.16) 

holds, where 

(7.17) - 1 ( 7' 7' T) 
'T(I) = 2 'TnR+ R 'T R . 

379 

The last relation motivates us to define the associated time derivatives of 'T n by 

(7.18) ( ｾ＠ )' ( ｾ＠ ) n n- l • T n n-! 
- - 'T - RR --'T Dtn-l R Dtn- l R ' 

satisfying the relation 

(7.19) 

Again, a relation of the form 

(7.20) 

holds, where 

(7.21) 

Traditionally, in formulating constitutive equations, we assume rn = 2. However, 
if we deal e.g. with problems concerning uniqueness o r constitutive inequalities, 
further pairs of dual variables may be convenient in formulating the theory. As 
an example, discussing intrinsic stabili ty of the material, Hill (see H ILL [4-6]) 
proposed a class of constitutive inequaliti es, which must be sati.,fied for some 
domain of deformation spaces. In the nomenclature of the present work, Hill's 
inequaliti es correspond either to 

ｾ＠ A 

(7.22) 
(1/1) (lP) 

wincr = ｾ＠ . n (,n) > 0, (m ) (m) 

or to 
ｾ＠ A 

(7.23) w incr - ｾＨｬｐＩ＠ • ＱｴＨ Ｈ ｮｾ ＩＩ＠ > 0. 
(m)- (m ) , 

As a consequence, fo r m = 1, Eqs. (7.22) and (7.23) reduce to 

(7.24) 
. .!. • '\} D. 

ｗＨｾｲ＠ = T (I)· E(l ) =TR • F > 0 , 
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and 

(7.25) incr T.!. £. T"' ·(FT- I) "" > 0 , 
w (l) = (1) • (I) = n 

respectively. These relations demonstrate that dual variables, in combination with 
associated time derivatives, are appropriate terms for formulating objective con-
stitutive inequalities, even in the case of two-point stress and strain tensors (in 
this context see also OGDEN [8, p. 407]). 

Appendix A 

Let 
(A.l) x* = c(l) + Q(t)x, t* = t- a 

describe an observer transformation in E, where c(t) denotes some vector-valued 
function of time and a E JR. For our purposes, it suffices to assume Q(t) to be a 
proper orthogonal second-order tensor. 

Assuming the reference configuration to be independent of the observer, the 
observer transformation (A.l) implies for the motion (3.1) 

(A.2) x(X , t) = c(t) + Q(t)x(X , t) , 

Well-known results obtainable from (A.2) are the transformation rules 

(A.3) W=QR, u· = u, 

An Eulerian second-order tensor A is said to be objective if it satisfies the trans-
formation rule 
(A.4) A * = QAQT 

under the observer transformatio n (A.l ). Commonly, it is assumed that the stress 
tensor S is objective, i.e., 
(A.5) S* = QSQ T . 

Now, let S be represented by 

(A.6) 

so that 

(A.7) 

by ( 4.16)2, ( 4.18). On using the relations (A.3), it is a straightforward matter to 
derive the transformation rules ( i, j = 1, 2, 3) 

ｾ ｩ＠ = ｑｾ ［Ｇ＠ Mi =M;, 

(AS) X!' = .-\;' g(.Xi ) = g(.X;), g'(.Xi) = g'(.X;), 
' 

f(g )ij = e(g )ij , n(9 )ij = O'(g)ij, ｳＬｾ Ｑ＠ = s.-1 . 
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Hence, 
(A.9) 

from (A.7). Thus, we have 

(A.10) 

and therefore (i,j = 1,2,3) 

{A.11) Mi 0 (T(g))' Mj = M; 0 T (g)Mj . 

381 

Next, we discuss how D(g)S/ Dl is affected under the observer transformation 
(A.1). To this end, using (4.21), we rewrite (4.23)1 in the form 

(A.12) 
D(g) o 

Dt S = P(g)[ T (g)] 

3 

= L A;g'(A;) (M; 0 T(g)M;) ｾ ［＠ ® ｾ ｩ＠ + ｾ＠ 2: :g) (M; oT(g)MJ) ｾ ［＠ ® ｾ ｪ Ｎ＠
•= I •'1-J O;j 

From this result, as well as from (AS) and (All) , we conclude that 

D(g) s· = Q ( D(g) s) QT 
JJt· Dl ' 

which shows that D(g)S/ Dl represents an objective Eulerian second-order tensor. 

Appendix B 

In this Appendix we give possible physical interpretations for the stress tensors 

ＺｅｾｾＯ＠ and ｡ｾｾ ＯＮ＠ which confessedly are somewhat artificial. 
By Cauchy's theorem, we have 

(B.1) 

where t represents the stress vector acting on a surface element in the current 
configuration 
(B.2) da = n da , 

oriented by a unit normal n, and 

(B.3) m := - n . 

Let now da be represented by 

(B.4) da = dxp1 x dx121 , 
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where dx1;1, i = 1, 2, are non-coll inear line elements in the current configuration. 
For the corresponding surface element 

(B.5) rLAQ =No dA0 

(No ·No = 1) in the reference configuration, the well-known formula 

(B.6) 

holds, with 
(B.7) 

and 

da = (det F)FT- l dAQ 

dAQ = dXpJ X dX[21 

(B.8) dXJiJ = F- 1dx(il • 

by (5.16). Furthermore, assuming that the transformation rule (5.16) applies also 
to the vector t da, we can introduce a transformed "force" dQ in the reference 
configuration by 
(B.9) t da = F rLQ . 

Analogously, further transformed " forces" rfQ(tJi) are given by 

(B.1 0) 

with dQ(F) = t da. In addition, we defin e the "stress vecto rs" 

(B.11) 
(tJi ) · - dQ(tJi) 

t . - r/ , \ (tJi) ' 

where dA (tJi) is given by the relation 

(B.12) 

(N(tJi) ·N(tJi) = 1 ), which is analogous to (B.6). Finall y, on the basis of (B.1 )2, it is 
not difficult to derive the relation 

(B.13) 

with Ｈｴ＼ｆ＾ Ｌ ｾｦ［ ＿ Ｌ ｎＨ ｆＩＩ＠ = (t , S, n). Thus, the stress tensor Ｚｅｾ ｾＯ＠ acting on the 

"weighted normal" (detw)- 1N(tJi) gives the "stress vector" t( tJi) . 

The physical interpretation of ｣ｲ ｾｾＩ＠ is simiiar. We start by considering again the 
surface element da (see Eqs. (B.2) and (B.4)). Besides (B.6), the surface element 
da can be mapped on the reference configuration as follows. Let rN1;1 be vectors 
in the reference configuration, which are related to dx1;1 by means of (5.18), 

(B.14) T r/YJiJ = F rlx liJ· 
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We define the transformed "surface element" in the reference configuration da0 
by 

(B.15) dao = nodao = eN[! I x dY121 , 

with no ·no = 1. It is readily shown that da is related to rlao through 

(B.16) da = (detF)- 1Fda0 . 

Next, assuming the transformation formula (5.18) (or (B.14)) to apply also to the 
vector t da, we can introduce a transformed "force" in the reference configuration 
dq by 

(B.17) t da = FT- I dq . 

Analogously, further transformed "forces" dq(eft) are defined through 

(B.18) 

Finally, we introduce the "stress vectors" 

(B.19) 
(eft ) ·- dq(eft) 

t . - cfa(l/l) ' 

where da(eft ) is given by the relation 

(B.20) 

(n(eft) ·n(eft) = 1), which is analogous to (B.16). Then, on the basis of (B.1)3, it can 
be seen that 

(B.21) 

where 

(B.22) 

(1/1) _ (eft) [(det'l!) (eft)] 
t - a (2) ( det F)2 m ' 

and ＨｴＨｆ＾ Ｌ ｡ｾ ｾ＾ Ｌ ｭ＼ ｆ ＾Ｉ＠ (t , <; , m). That is, the stress tensor ｡ｾ ｾ＿＠ acting on the 

"weighted normal" (Cdet'll)/ (detF?) m<eft > gives the "stress vector" t<tP>. 
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INSTITIJT t-oR M ECIIAN IK 

UNrY ERSITAT GESAMTII OCIISCIJULE ｋａ ｓｓｅ ｉ ｾ＠ KA SSF:L 

•nd 

FORSCII UNGSZENTRIJM KARLSRUII £.. Tfi ii NIK UNO I IMWELT, 
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