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Stress tensors associated with deformation tensors via duality

P. HAUPT (KASSEL) and CH. TSAKMAKIS (KARLSRUHE)

Tue CONCEPT of dual variables, initially introduced by HAUPT and TSAKMAKIS [3], enables us to
relate to each other strain and stress tensors, as well as associated rates, independently of particular
material properties. Generally, it is different than the method of conjugate variables, as defined e.g.
by MAC VEAN [2] or HiLL [4-6]. The duality concept postulated by HAurT and TsAkMAKis [3] deals
only with two classes of dual stress and strain tensors, The second Piola-Kirchhoff stress tensor
and the Green strain tensor, as well as the negative convected stress tensor and the Piola strain
tensor, are respectively the Lagrangean stress and strain tensors included in the two classes of
dual stress and strain tensors. However, there are further (infinitely many) Lagrangean stress and
strain tensors, which may be taken into consideration. The aim of the present paper is to develop
further the concept of dual variables to take into account the whole set of Lagrangean stress and
strain tensors. Doing this, we obtain a specific mathematical structure in the sets of all strain and
stress tensors, which makes it possible to relate strain and stress tensors, as well as associated rates,
independently of the particular material properties.

1. Introduction

IT1s WELL-.KNOWN that in the theory of finite deformations, several stress and strain
tensors can be introduced in various ways. These stress and strain tensors are not
a prioni related to each other, raising the question of whether or not there exists
a method to associate with each stress tensor a strain tensor independently of
specific material properties. The stress power is usually the convenient framework
for answering this question.

According to ZIEGLER and MAcC VEAN [1, 2], a stress tensor is assigned to a
given strain tensor, if the stress power can be represented by this stress tensor
and an appropriate rate of the given strain tensor. We call stress and strain
tensors related in this way conjugate in the sense of Ziegler and MacVean. Note
in passing that this definition of conjugancy was also adopted by Haupt and
TsakMAKIs [3]. However, in HAuPT and TSAKMAKIS [3], it was also shown that the
above definition brings out the difficulty that arises because the stress and strain
tensors associated in such a manner are not unique. For example, consider the
strain tensor K = % (1 — F‘lFT‘l). K is conjugate in the sense of Ziegler and
MacVean, on the one hand, to the stress tensor T = (det F)F’ TF, with respect

to the material time derivative K, and on the other hand, to the stress tensor
e . A . D .
S = (det F)RT TR, with respect to the rate K= K + (UU )K + K(UU™!),

W=T.-K=§.

==
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In these relations (1), F denotes the deformation gradient tensor, with polar de-
composition F = RU, T is the Cauchy stress tensor, and 1" the stress power per
unit volume of the reference configuration.

Another concept used to relate stress and strain tensors within the framework
of the stress power is due to Hill (see e.g. HiLL [4-6] as well as HAVNER [7],
OGDEN [8, Sec.3.5.2] and WANG and TRUESDELL [9, Secs. 3.8 and 3.9]). According
to this concept, a stress tensor t is postulated to be conjugate (in the sequel called
conjugate in Hill’s sense) to a given strain tensor e if the inner product of t with
the material time derivative of e yields the stress power W, i.e., if

W=t-é.

Clearly, all pairs of stress and strain variables conjugate in Hill’s sense are also
conjugate in the sense of Ziegler and MacVean, but the converse is generally not
true.

Hill’s concept of conjugancy has the characteristic feature that there exist stress
tensors which do not necessarily have any conjugate strain tensor associated with
them having an integrable strain rate. Strain rate tensors are called integrable (%)
(not-integrable) if they are expressible (not-expressible) as material time deriva-
tives of some strain tensors, which are defined as functions of the deformation.
It is well-known that the strain rate D, representing the symmetrical part of the

velocity gradient tensor L = FF-1isa non-integrable rate in general. Thus the
weighted Cauchy stress tensor § = (det F)T, having the property W = S-D, is
e.g. not conjugate in Hill’s sense to a strain tensor which possesses an integrable
rate. The same is also true for the stress tensor S. On the other hand, if a strain
tensor is given, it must not necessarily have a conjugate stress tensor associated
with it. As an example of strain tensors to which no stress tensor conjugate in

. . . . . 1 T — o
Hill’s sense exists, we mention the Almansi strain tensor A = 3(1 ~ FI-'f l).

These issues have also been discussed e.g. by OGDEN [8, p. 159].‘-

A further possibility for associating stress and strain tensors within the frame-
work of the stress power has been proposed by Havurr and Tsakmakis [3], and
referred to as the concept of dual variables (®). Several mathematical aspects
from a local differential geometric point of view were discussed by SVENDSEN and
TsakMmakis [11]. The relation between stress and strain tensors within the dual-
ity concept of Haupr and Tsakmakis [3] is unique; in fact, this constitutes the

(*) The nomenclature is introduced in the Secs. 2 and 3.

(?) The term integrable (not-integrable) strain rate is adopted from PALGEN and DRUCKER [10].

(*) We take this opportunity to correct some misleading and erroneous statements in HAurT and TSAKMAKIS
[3]. The notion of conjugancy used in this reference should be understood in the sense of Ziegler and MacVean,
even though in some places this notion was attributed to Hill. Further, on page 184 in HAurT and TSAKMAKIS | 3],
the interpretation of the term “direct flux” in Hill’s expression “R” DR is not a direct flux”, as the specification
of a strain tensor with the associated rate R7 DR, is not correct. Indeed, the term “direct flux” as used by Hill
must be interpreted to mean the material time derivative, Furthermore, the statement on p, 174 that ¥, which
is not necessarily assumed to be the gradient of a vector field, induces a system of spatial coordinates, is not
true in general.
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differences to the conjugancy concept according to Ziegler and MacVean. In addi-
tion, concerning dual pairs of variables, use is made not only of the material time
derivative, but also e.g. of the so-called objective derivatives. This clarifies the dif-
ferences compared with the conjugancy concept due to Hill. In the present work,
the concept of duality will appropriately be generalized, to include the general-
ized Lagrangean strain tensors, which are introduced in Sec.5.1. To be definite,
the duality concept postulated in Haupt and TsAkmakis [3] deals only with two
classes of dual stress and strain tensors, called family 1 and 2. Representative

1,
(Lagrangean) strain tensors are the Green strain tensor E = E(F’ F — 1) (family

1) and the Piola strain tensor € = %(F“FT"1 — 1) (family 2). The purpose of
the present paper is to complete the duality concept of HAupT and TSAKMAKIS
[3] by introducing further classes of dual strain and stress tensors, which include
the whole set of generalized Lagrangean strain tensors.

After introducing the notation and some background relations in Secs.2 and
3 we show in Sec.4 how various so-called objective time derivatives can be as-
signed to the Cauchy stress tensor. To each of these objective time derivatives
of the Cauchy stress tensor corresponds a Lagrangean stress tensor. It turns out
that, among all these derivatives, only two possess the structure of generalized
Oldroyd time derivatives (the term “generalized” Oldroyd time derivative is spec-
ified in Chapter 3). In other words, among all Lagrangean stress tensors, only two
are associated to the Cauchy stress tensor with respect to the definition of the
generalized Oldroyd time derivatives. This result motivates in Sec.5 the intro-
duction of a set of generalized strain and stress tensors respectively. Considering
various scalar quantities, which are required to be form-invariant with respect
to the chosen configuration, the above sets can be partitioned into equivalence
classes of generalized strains and associated generalized dual stress tensors, re-
spectively. The concept of duality used here is a generalization of that in Haurr
and TsakMmaKkis [3]. Furthermore, to each strain and stress tensor, a time deriva-
tive can be associated, having the form of “generalized” Oldroyd time derivative.
This way, we obtain a specific mathematical structure in the sets of all strain and
stress tensors, which enables us to relate strain and stress tensors, as well as the
associated rates, independently of particular material properties. Some examples
formulated using strain and associated dual stress tensors, are briefly discussed
in Sec. 6. Finally, in Sec. 7, the duality concept is appropriately extended to take
into account two-point tensor fields, as well.

2. Preliminaries

We denote by R and N the sets of real and natural numbers, respectively.
The absolute value of ¢ € R is |¢|. We use the letter ¢ for the time variable. If
is a function of ¢ we write » or dy/dt for its material time derivative. For the

http://rcin.org.pl
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n-th material time derivative of ¢ we write also d"¢/dt"™, where n € N, n > 0.
If 2 is a scalar variable other than ¢ and f(xz) is a function of z, then we denote
the derivative of f(x) with respect to « by f'(z). In particular, we write f'(a),
a € R, instead of f'(z)|;=.,. Commonly the same symbol is used to designate
a function and the value of that function at a point. However, if we deal with
different representations of the same function, then use will be made of different
symbols.

Given two sets A and B, the Cartesian product of A and B is denoted by
A x B. In particular, we write

A"=Ax Ax---x A,

n—times

n € N, n > 1. Let a and b be elements of a three-dimensional Euclidean vector
space V. By a® b, a x b and a-b we denote the tensor product, the vector
product and the inner product, respectively. The magnitude of a is denoted by
|la]| = /a-a. In this work, we identify the vector space V with its dual space V~,
the identification being specified with the help of the metric tensor induced by the
inner product in V. Thus, any n-order tensor T on V is regarded as an n-linear
function from V" to R, denoted by T € L(V",R). In the following, second-order
tensors (like vectors) are denoted by boldface letters, whereas for fourth-order
tensors we use script letters. For example, A, B, ... denote second-order tensors,
whereas A, B, ... denote fourth-order tensors, respectively.

Let A, B be second-order tensors. We write tr A, det A and AT for the trace,
the determinant and the transpose of A, respectively, while A -B = tr (AB”) is the
inner product between A and B. We write 1 = §,,¢; o e; for the identity tensor
of second order, where 6;; is the Kronecker delta symbol and {e;}, i = 1,2.3,
is an orthonormal basis in V. Further, we use the notations AB = A;; B;re; © e
and AT-1 = (A~1)T, provided A~! exists. In these relations the convention of
summation over repeated indices is employed.

If A is a symmetric and positive definite second-order tensor having eigen-
values A; and corresponding eigenvectors a;, then the spectral decomposition
(see e.g. GURTIN [12, Ch.1.2])

3
A= Z Aa; © a;

1=1
applies. In this case, we denote by A™, m € R, the second-order tensor

3
A" =" Ata; @a;.

i=1

Let K, P be two fourth-order tensors, i.e., linear transformations from the space
of second-order tensors into itself. With respect to the orthonormal basis {e; }, the
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following rules apply: if A, P and A are represented by X' = K6, De; Qep Qe
P = Pijne; ®e; @ex e, and A = A;;e; ® ej, respectively, the relations

KP = ]\.ijmnpmnklei ® €, & er & e,
KT = Kjue0e0e0e;,
A:[A] = I\'ijmn Apne ® €;

hold. In addition, if B is a second-order tensor, we have A -A'[B] = B -K7[A]. We
write 7 for the fourth-order identity tensor,

1= 6ijbmnei ® ey ® € X ey .
The tensor Z can be decomposed in the form
I=¢8+7T,

where

O
|

(51'_)'(517111 * binbmj)e{ ® en ® €; ® e,

| =

and

1 : )
J = Py (bij‘smu - biubm_j)ei ¥ en e ey,

This implies £[A] = %(A + AT, J[A) = %(A — AT), and Z[A] = A.

3. Background relations

Consider a material body B which occupies the region Ry in the three-dimen-
sional Euclidean point space E in some reference configuration. Choosing a fixed
point (origin) in E, we identify each particle of B by the position vector X to the
place X in Ry occupied by the considered particle. We write x for the position
vector to the place z occupied by the same material particle in the (current)
configuration at time ¢. In this configuration, the body I3 occupies the region R,
in E.

A motion of I} in E, i.e., an one-parameter family of configurations parame-
terized by the time ¢, is a mapping

(3.1) (X, 1) —  x=xX.1),

which has an inverse X = X(x, ) for fixed time (. In what follows, it is assumed
that all functions possess continuous derivatives up to any desired order with
respect to the space variables and the time {.
The deformation gradient tensor corresponding to (3.1) is denoted by
ox
3.2 F = — = GRADX.
(3.2) X G X
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We distinguish between GRAD and grad, representing the gradient operator with
respect to X and x, respectively. Furthermore, detF > 0 is assumed.

The right Cauchy-Green tensor C and the left Cauchy-Green tensor B are
given by
(3.3) ¢ =FF=U",
(3.4) B = FFT = V2,
in which U and V are the right and the left stretch tensor, respectively, appearing
in the polar decomposition of F:
(3.5) F = RU = VR.

Here, R represents a proper orthogonal second-order tensor. Since U and V are
symmetric and positive definite, they possess the spectral decompositions

3

(3.6) U= AM oM,
i=1

and
3

(3.7) V=3 Mmoo

o
respectively, with
(38) B, = RM;.
A; (2 = 1,2, 3) are positive eigenvalues and M;, as well as p; are the corresponding
unit eigenvectors. It is common (see e.g. OGDEN [8, Sec. 2.2.5]) to call M; and p,
the Lagrangean and Eulerian principal axes, respectively. Note that the spectral
decomposition (3.6) implies

1
39 U'=% —M oM.
(3.9) ; x
Let X be the place of a material particle in Ry and denote by y the place of
the same material particle in an arbitrary configuration, in which B occupies the
region M. Further, we denote by 7,M the tangent space of M at y. Note that
M does not need to be an Euclidean manifold. This is for example the case for
the non-Euclidean intermediate configuration in plasticity. An n-order tensor A is
called a tensor at y € M if A € L((T,M)",R). If M = Ry, A is called a Lagrangean
tensor at y € Ry. In the case when M is different than Ry, the tensor A is called
a spatial tensor at y € M. In particular, if M = R, then A is called an Eulerian
tensor (*) at y € R,. In the following, we denote by

(3.10) ¥ = W(X,!) € Lin*

(*) The definition on spatial tensors given here is not standard. The definitions on Lagrangean and Eulerian
tensors are taken from OGDEN [8, Sec. 2.4.1].
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a space- and time-dependent linear transformation (second-order two-point ten-
sor field (°)) mapping vectors from 7'y Ry onto T,M (¥ € L(Tx Ry x T,M, R)) and
having a positive determinant.

Let X* (k = 1,2,3) be a system of material coordinates, and let

(3.11) X = X(X*)

be the position vector of a material particle in the reference configuration. The
coordinate system induces the local basis of tangent vectors {Gy },

X
(3.12) G = IXE
and the gradient vectors {G“'},
(3.13) G* = GRAD X*(X),

being the reciprocal basis of the tangent vectors {G,}, where
(3.14) Xk = XKX)

are the relations inverse to (3.11). With respect to (3.10), (3.12) and (3.13), various
bases {g\"’} in T,M, with reciprocal basis {g(*)*}, can be defined by

(3.15) g .= WG,
(3.16) gk .= gT-1GE,

Note that the special case W = F defines the so-called convected coordinate
systems. From (3.15), (3.16),

(V) R iy (17
(3.17) g, = wvV¥ lgi ),
o (W)k £ - i -
(3.18) g = —(Ww) gk,
Next consider the spatial, time-dependent tensor field u, having the representation

(3.19) u= nkggp) = u, gk,

The relations

(-

(3.20) X = g,
ot
.

(3.21) %u = gk,

(*) ¥ can be interpreted to be related with a local deformation process.
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define time derivatives which are called generalized Oldroyd time derivatives of
u. Clearly, from (3.17)-(3.21),

5¢)

(3.22) Su= - A
8 . ,
(3.23) ;t) =0+ (U¥ Y y.

Note that the time derivatives & u/ét and é6(u/ét are related to the material
time derivative of the Lagrangean vectors u™, u,,

(3.24) uD = wly,
(3.25) uyy = ¥,
through
(L) _ g-18
(3.26) u o= w el
0T
(327) l‘l([_) .= ‘I’I %u,

respectively. These definitions of generalized Oldroyd time derivatives for vector
fields can easily be extended to introduce generalized Oldroyd time derivatives
for tensor fields. For example, for a spatial symmetric second-order tensor
(3.28) A= AMg") g g™ = 4, g0k g )
the corresponding symmetric generalized Oldroyd rates are defined by

§0°) o ki

(3.29) TSTA = A g(k_w) @ gfw),

0. .
(3.30) TA = A ek g g,

It follows that

(3.31) % = A-WUIA-AWE Y
(3.32) %A = A+ (VU )Y A+ATT !
and that

(3.33) AL = w- (ﬁ”u) ol

3 . (=)
(3.34) Ag =T (%A) i,
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where
(3.35) AL = PIAET T
(3.36) Ay = TAYT.

Next we note that with respect to the basis {M,}, various strain tensors can be
defined. In order to obtain the Lagrangean strain tensors introduced by Hill (°),
we consider monotonic scalar functions g : (0,00) — R, such that

(3.37) g(1) =0, g'(1) =1.

Then, the symmetric tensors Gy, defined by means of the isotropic tensor-valued
function g(-),

3
(3.38) g: U — Gy =gU):=) g)M M,
=1

represent Lagrangean measures of strain, referred to as Hill’s Lagrangean strain
tensors. Examples of such functions are given by (m € R)

1

— (A" =1 if 0,
(3.39) gpilidi= 4 met 0 mE

In A; if m=0,

inducing the strain tensors (7)

3
1 ¥ . :
ST —(P-1DM; @ M;=—(U™-1) if me (R\0),
m m

(340) G(m) = G(g(m)) = lil
Z(ln AM; @ M; =1nU ifm=0.
=1

In relating stress tensors to the given strain tensors, we will employ the stress
power per unit volume of the reference configuration W, which can also be
written in the form )

(3.41) W = TR +F.

In this formula, Ty stands for the first Piola - Kirchhoff stress tensor, i.e.,
(3.42) T = (det F)TF ! = SF7 !,

(®) The treatment of Hill’s Lagrangean strain tensors given here is taken from OGDEN [8, Sec.2.2.7] as well
as WANG and TRUESDELL [9, Sec. 3.8].
(") These Lagrangean strain tensors were introduced for the first time by DoyLe and Ericksen [13, Ch. 4].
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where T and S = (det F)T are the Cauchy and the weighted Cauchy (or KirchhofF)
stress tensor (%), respectively. Furthermore, we have

(3.43) W=8-D,

where D represents the symmetric part of the velocity gradient tensor L (the
antisymmetric part of L being W):

(3.44) L=gradx = FF'=D+W,
(3.45) D= %(L +L7,
(3.46) = %(L ~E'y

4. Objective rates for S

In this section, we shall consider the Lagrangean stress tensors conjugate
(in Hill’s sense) to the strain tensors (3.37)-(3.40). As a first step towards the
development of a general duality concept for associating strain and stress tensors,
we will derive the relations between these Lagrangean stress tensors and the
weighted Cauchy stress tensor S. These relations are expressed in terms of linear
transformations and using the same transformations, we shall establish various
so-called objective rates for S. It turns out that, among all the transformations
corresponding to arbitrary m, only those for m = +2 lead to objective rates for
S having the structure of a generalized Oldroyd time derivative.

In order to derive this result, we turn to the strain tensors G,y defined by
(3.38), where ¢(\;) may be specified by (3.29). First of all, the stress power ¥ is
rewritten as

(41) W = T(BS) ‘U,
where

] foer T
(4.2) Tiws) = 5 (TER + R"T)

is the symmetric part of the Biot stress tensor
(4.3) Tsy:= R Ty

(see OGDEN [8, Sec.3.5.2]). The definition of the stress tensors T, conjugate in
Hill’s sense to G, should be based on the identity

(4.4) Tgs)+ U =T Gy

(®) We are concerned here only with nonpolar materials, so that T, and therefore S, is symmetric.

http://rcin.org.pl
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In view of G(,, = g(U), by (3.38), we obtain

(4.5) G (5) = Ui U]
where P

g
(4.6) U = 30
and
(4.7) Uy = U,

i.e., U,y is symmetric. Furthermore, there exists a symmetric fourth-order tensor

T(,) satisfying the relation

(4.8) U T(e) = Ty = € -
Thus,
(4.9) Tiws)* U = Tgy) Uip)[U] = Uy [Tip] - U
and
(4.10) T(y) = Tio)[Tns))-
With respect to the basis {M;}, the following representations hold:

3
(@11) Uy =) dCIM oM, @ M; @ M,

i=1

& Z byii M; OM; OM; @M; + M; @ M; @ M; ® M,),
i#)

2 4
4, =Y — MMM, ®M;
(4.12) 7, Z;l g,(/\i)M. OM; @ M; @ M

+1 : (M; & MJ’ o M; ® M., +M;® M_,' %] MJ' ® M,‘) s
i#) Cgyii
where 1 (> 3
E-‘i’( A')_i’\( Do n#N, i
(4.13) ((g)ij = 1 4 *
Eg'(/\,-) if A=A, i#]

(For a more detailed derivation of the relations (4.1)-(4.13) see OGDEN (8,

Sec. 3.5.2]).

In order to express the dependence on the weighted Cauchy stress tensor S,

we note that in view of (4.2) and (3.42),, (3.5), the equation

[y

(4.14) Ties) = (U‘lRTSR +R'SRU™!) =: K[$]

)
et

http://rcin.org.pl
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applies. Taking into account the relations (3.6)-(3.9), it is not difficult to derive
for K the representation

22 A+
5
i=l =

Inserting (4.14), in (4.10) yields

(415) K= (MioMopon +MoM R, 0N,

SN

Aj
j

with
(4.17) Ay = T -

From (4.12) and (4.15) we obtain

3
1
* = { ';(, ) f 1 ’)) )
(4.18) A i§=1—’\ig/(/\i)M O M; @ p, OW,

+ ZCY(U)[‘J (Mi ® MJ (%) ""i ® IJ-J 4= Mi o) MJ ® lL) (029] 'J'z) 5
i#]

where (no summation over i, j, 1 # j)

! a Ny it A\ #E N, i#
5 1 i y 1 I
(4.19) Qi t= 4 2 Ai(g(A) = 9(A;)) '
(9)is 1 1 N -
200" (\) i =25 YFED

Introducing the fourth-order tensor P, by
(4.20) A Po) = PippAy) =€

where

3
(421) Py = Nig' (0w @ p @ M; @ M;
=1

1

4 vy Xg)ij

(hiOp, M OM; +p Op; OM; O M),

in view of (4.18), we deduce from (4.16), that

(4.22) S = P[Tiy))-
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The tensors P(,) and A,y induce transformations relating the stress tensors T,
and 8, respectively. This enables us to associate with each function ¢(+) an ob-
jective rate of S, defined by application of the same transformation P, to the
material time derivative of the Lagrangean stress tensor T,:

423 Pog._p 1 To0= A [P0
(4.23) T [T )] — (@) = A :

From this, as well as from (4.16);, we obtain

(4.24) D(j)s Plo) [(A(g)lsl).] = Plg) [A(g)[é] + /'4(9)[5]] :

Inserting herein the relation

(4.25) Py Aw = —P@Aw>

which follows from (4.20), and taking into account (4.20), we see that

Porg_§_pooas
= @) A@)[S].

a.
(4.26) Dt

It is verified in Appendix A that the rate D(,)S/ Dt constitutes an objective Eu-
lerian tensor.

Next, we discuss the requirement that the objective stress rate D(,,S/ Dt should
fit into the structure of a generalized Oldroyd time derivative. We see, that this
requirement implies a special structure of the fourth-order tensor A(,), namely
the property
(“27) AIS] = ¥ (;)S¥,

valid for all Eulerian second-order tensors S, where ‘II(g) € Lin*. Indeed, if this
relation is true, (4.16), reads

(4.28) Ty = A[S] = ‘I’(Z)S‘I’(g)v
and (4.23), implies
. Dy, L,
(4.29) T = Aw [ Dt S] V() ( Dt ) ¥
with 5 :
@Wg - & [ -1

Using the representation

(4.31) Wig) = Yigpijh ©M;,
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we conclude from (4.28) that

1 : .
(432) 'A(g) = iw(g)pqw(g)mn (Mq 69 M”- ® p'p & p‘m ¥ M‘l & Mn @ p’m ® p'p) .
Comparing this with (4.18), (4.19) yields

3
(4.33) Wi = Z Vigyii by @ M,

=1

and therefore

3
434)  Ag =Y (Up’MiaM o e p,
=1
1 _ : .
+§ ZW(!))“W(!)}U (M, ® MJ Qp; ® u"} +M;® MJ @ H; ® l.ll) i

i#)
Hence, through (4.34) and (4.18), (4.19), it follows (no summation over ¢, j)
1
’\x'y’(’\i) '
1 Al -\
2 XA (9(A) — 9(A))

If : # j and A\; = Aj, only (4.35) applies, so that it suffices to concentrate on
Ai # Ay Since {(AF — A1) /(g(Ai) — g(A))} > 0, from (4.35), (4.36), we have

(435) (W(g)l'{)z =

(436) Y%, = (M # Aj, T # )

A2 )2
i J
Aidi(g(A) — 9(A\)

1
VARG (M)

We recall that );, being eigenvalues of the positive definite second-order tensor
U, are positive. Thus, if (4.29) holds, the function ¢(+) has to satisfy the relation
(4.37) for all positive A;, A;.

Now, suppose g(-) belonging to the one-parameter set of functions g,,)(+),
defined by (3.39). It is readily seen that for mn = 0, equation (4.37) cannot be
satisfied. For m # 0, on use of (3.39), we obtain from (4.37), after some algebraic
manipulations,

(4.37) = %

e m_q

1/ 241, 21, 24l
(438) g(m)(/\z) == g(m)(’\.l) = 5 (/\1_- A_]z - Aiz A.Ib ) '

On taking the derivative with respect to A; and then to A;, (4.38) reduces to

m m m m_»s m_ 5 m
(4.39) (5 + 1) (5 - l) (,\iZ /\j2 - A2 ,\Jz> = (.
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This formula must be satisfied for all A;, A; > 0 with A; # A;, which is possible if
and only if
(4.40) m =2 or m = —2.

For m = 2, on the basis of (3.40),, we have

v R s L Fpy

(4.41) Gg=E= 3 (U*-1),

which is called the Green strain tensor, while for m = —2 we have
I oo

(4.42) Gy = —€ = 5 (U2 -1).

€ is called the Piola strain tensor. The corresponding conjugate stress tensors in
the sense of Hill are given by

(4.43) Ty :=T = FISF’-!
and B
(4.44) Teyy =T = F'SF,

referred to as the second Piola - Kirchhoff stress tensor and the convected stress
tensor, respectively. Clearly, along with G(_yy and T(_,), the variables € and —T
form also a pair of conjugate (in Hill’s sense) strain and stress tensors.

This general result suggests the following restriction on the choice of La-
grangean strain tensors: If we define the associated Lagrangean stress tensors
which are conjugate in the sense of Hill, various objective time derivatives can be
assigned to S. If we require from these derivatives the structure of generalized
Oldroyd time derivatives, then only two strain_tensors are left, namely E and €.
We remark that the Lagrangean variables (E, T) and (€, T), where

(4.45) Fi=-T=FgF
and
(4.46) Q:=-8§,

were chosen in HAupt and TsakMmAKis [3] as basic pairs for introducing, by means
of linear transformations, two different classes of pairs of spatial strain and stress
tensors, referred to as family 1 and family 2, respectively. Strain and stress meas-
ures forming a pair belonging to one of the two classes were called dual variables.
As it will be seen in what follows, the pairs of Lagrangean variables (G(,,.), T(y) if
m > 0, or (=Gpy, =T,y if m < 0, are representatives of related classes, which
can be interpreted as classes of generalized dual variables. Moreover, similar to
the cases m = £2, each of the Lagrangean stress tensors introduces a specific
“generalized” Oldroyd time derivative for each of the stress tensors belonging
to the same class. In fact, such a concept is established in the next section and
essentially, it can be conceived as a generalization of the concept developed in
Haupt and Tsakmaxkis [3].
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5. The concept of generalized dual variables

5.1. Generalized Lagrangean strain tensors

We remark that the set of strain tensors defined by (3.40) includes for each
m # 0 the strain tensor G,y as well as its counterpart G(_,,y. However, if m = 0,
there is no such counterpart for InU. This motivates the definition of a set of
generalized Lagrangean strain tensors, slightly different from that introduced in
(3.40), as follows.

The two-parameter set of functions

, 1 i
(51) g(qm)(/\i) = -77—1 (Ag - 1) »
where
(5.2) ge {-1,1} and m € (0, 00),
introduces the strain tensors

. S
(53) e(qm,) = Z ; (A?m = I)Ml ) Mi 8

=1

Note that the functions g(,,,), in contrast to (3.37), are monotonic but not necess-
arily increasing with

(54) g(qm)(l) = 07 ’ngm)(l)f =1
Since ¢ is equal either to +1 or to —1, we have

(55) €(qm)lq'=—l = E'(—m) s
(5.6) €(qm);q=1 = G'(m) B

Notice that, by taking the limit for m — 0, we arrive at the strain tensors

(5.7) lim €y = q1nU,

m

which is equivalent to

(5.8) lim €,y =

m—0

InU  if g=1,
InU-! if ¢=-1.

We call the set of all strain tensors defined by (5.2), (5.3), together with the strain
tensors In U and In U1, the set of generalized Lagrangean strain (deformation)
tensors and denote it by D:

(5.9) Dy = {e(qm)/qe {-1,1}, m>0}u{nv, mu'}.
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In order to give a geometrical interpretation to the Lagrangean strain tensors
included in Dy, it is convenient to introduce the generalized Green strain tensors
E(m), and the generalized Piola strain tensors €., defined by

1
€m) = —(U" -1) if m >0,
m

In U if m=0,
1 —-m &
(511) E(m) - 6(_m) = E(U = l) if m > 03
InU-! if m=0.
Further, we denote the set of all E(,,y by Dig and the set of all €(,,) by Dyp,
(5.12) DiG = {Ey/m >0},
(5.13) Dip = {€(uy/m > 0}.
Clearly,
(5.14) D = DLG U Dpp
and
(515) DigNDp=90.

Next, we give geometric interpretations for the Green strain tensor E = E(y),
defined by (4.41), and the Piola strain tensor € = €;), defined by (4.42). As we
shall see below, the geometric interpretation of the generalized strains E(,,,, and
€ () is similar to that for E and €, respectively.

Let dX be a material line element in the reference configuration, which is
transformed, under the deformation, into the material line element dx in the
current configuration, i.e.,

(5.16) dx = FdX.

Then we have the well-known formula
1
(5.17) A= 5 (dx «dx — dX «dX) = dX -EdX.

To obtain a geometric interpretation for the Piola strain tensor €, we consider
a material surface #(X) = (' = const in the reference configuration. In the
current configuration this surface has the time-dependent form ¢(x, t) = ', where
w(X(X,1),t) = ¢(X) holds for all X satisfying ¢(X) = C'. It follows that

(5.18) E=F"1g,
where

(5.19) £ = grad o(x, 1),
(5.20) E = GRAD ¢(X)
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and 1
(5.21) 6:=§(£-E—E-E)=

[
(1

<€

Thus, the Green strain tensor E is used to refer to the reference configuration
the difference A between material line elements in the current and the reference
configuration. Analogously, one can make use of the Piola strain tensor € in
order to refer to the reference configuration the difference 6 between normals to
material surfaces in the current and the reference configuration.

Now, consider linear transformations described by F,,), detF,,, > 0, m > 0,
where F,,) is constructed as follows. From the polar decomposition theorem we
have

(522) F(m) = R(Tm)U(m) = v'(m)R(m) 3
(5-23) U(z,ln) = C(,n) = Fz‘m)F("l) ¥

2 - = T
(5.24) VE = By = FimyBlrss

where R(,,) denotes a proper orthogonal tensor. If we define
3

(5.25) Uy := U™2 = 3" 0T°M; @ M,
i=1

(m > 0), then it follows that U,,, describes a class of right stretch tensors. Fur-
thermore, defining R;) = R, we have F(;) = F. Clearly F, and so U, must satisfy
the compatibility conditions (*) in order to form a deformation gradient tensor
derived from a deformation function. Although U and F satisfy the appropriate
compatibility conditions, U,y and F(,, in general do not.

Proceeding to complete the definition of F,,), we note that all Ug,,) possess
the same principal vectors M;. This motivates to define all the corresponding
left stretch tensors V(,, to have the same principal vectors. Since the principal
vectors of V) = V are p, (see Egs.(3.7), (3.8)), we have

3
™m m/2 =
(5.26) Viny := VM2 =3 A o,
i=1
and
(5.27) R():=R.

Notice that F(,,) can be interpreted as a two-point tensor field which maps tangent
spaces of material points in the reference configuration onto the corresponding
tangent spaces of the same material points in configurations at time ¢. This fact

(®) A detailed discussion on the compatibility conditions concerning F, as well as U and R, is given by
NAGHDI and VONGSARNPIGOON [14].
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follows by virtue of U and V (and therefore Uy, and V,,) too) operating within
the tangent spaces of material points in the reference configuration and tangent
spaces of material points in configurations at time ¢, respectively, and R mapping
tangent spaces of material points in the reference configuration to the corre-
sponding tangent spaces of the same material points in configurations at time ¢
(see e.g. MARSDEN and HUGHES [15, pp. 51-52]).

Thus, analogous to F in (5.16), F(,,,) transforms line elements ¢X in the refer-
ence configuration to vectors dx(,,) in configurations at time (:

(528) U’X(m) = F(m) dX .
If we define
(5.29) By o= (r[x(m) dX(my — dX - dX) ,

then we have, in view of the transformatlon rule (5.28), as well as the relations
(5.22),, (5.10), and (5.25),

] m
(5.30) Ay 1= —dX+ (U™ = 1) dX = dX X,

with the property dx(y = dx and Ay = A. On the other hand, F(,,, can be inter-
preted to transform normals & on material surfaces in the reference configuration
to vectors §,,,,,

(531) &y = Fim) 2

in configurations at time {, which generalizes the transformation formula (5.18).
On defining

(532) 6("”) = (E(m) e(m) =. E)

m

we obtain, by virtue of (5.22),, (5.11) and (5.25),

1 [~ ] - Ll - -
(5.33) bmy 1= —E- (U™ ~1E = €&

Obviously, we have § ;) = § and é(5) = 6. This completes the geometrical inter-
pretation of E(,,) and €,,). For arbitrary m > 0, these strain tensors represent
the differences A,y and é(,,) with respect to the reference configuration. We
may extend the result to the limit case m = 0, by defining

534) .J() = l|m Jm =dX. ng
0) - (m) (0)

m —'

and
(535) 5(0) = lim (5(7,1) = e(U)E .

m—0
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5.2. Generalized strain tensors and associated rates

Let dX and = be material line elements and normals on material surfaces in
the reference configuration, which are mapped by the linear transformation W,

to vector fields dx(¥) and EY, respectively (cf. (5.16) and (5.18) in Sec.5.1):
(5.36) dx¥) ;= WX,
(5.37) £V = Tz,

Next, consider for arbitrary but fixed ¥ € Lin™ and m > 0, the differences Amy
and é(,,). Requiring the derivatives d"A,,/dt" and d"é(,,/dt" (n € N, n > 0)
to be form-invariant with respect to the chosen configuration, various symmetric

strain tensors ITY) and =% , as well as the associated time derivatives (rates
(m) (m)

D"I'I('p)/l)t" and D" w( /DI“ can be defined (1°):

A
dm [
— = . [ 1) (¥)
(538) din -—\(m) dx (I)[“ I_I(m)) dx 5
o
[171 ])7!
art o e, @) | ¢@)
(539) dtn b(’") - e' (Dtn 1‘("')) g '
These definitions imply
D I
n (Tl
! = —E;,,
(3440) /)w' o m) = g )
1)” d"
(5.41) I)I”e(m) = JmEm)>
as well as
D I
n (w) _ ( n
(542) Din H(m) - ‘C'(‘J') [d,n E(”’)]
paY
1 n (W) _ ( n
(543) Din ‘“(m) - uM(lll) [(“.” E’(m)] s

where L) and My, are fourth-order tensors operating on the set of all La-
grangean symmetric second-order tensors S:

(5.44) Lagy: Sr— L[S =¥ 'S¥T,

(5.45) Muy:  Sr— My)[S]=¥S¥’.

(*°) Here, and in what follows, symbol & denotes the associated time derivative for the strain tensor consid-
ered. In other words, 2 defines different time derivatives depending on the kind of the strain tensor considered.
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In particular, for n = 0 we have

(5.46) {“”)
W) _
(5.47) Rim) =
It is readily seen that
A b
(W) . ) _
H(m) e _H(m)
(5.48) .
AA 3,
W) ._ D )y _
My = patlim) =
as well as
_ D
(k") vy _
T
(m) (m) =
(5.49) Dt
AA AZ
¥ .- P w
(m) * D[Z (m)

M (W)[e(m )] = ‘IIE(m)‘I’T

H(m) + (\p\y-l)Tn“” +

A a a
(ngg) FEEY IO 4 T b

= =)
("L) ‘I, \Il n) (m)

a * A(
= () rar—! %)
- (W(m)) - “(m)

= L"(ll')[E(m)] = \I!T-IE(m)‘I’_1 y

o) et

(Tw ),

(*-") (‘I"I’ )l

Further relations are obtained if we represent the various strain tensors with
respect to the bases {g("y)} and {g(w)} From

(550) E(m) = 1’/‘(,,1)“Gk ® Gl [
W)y _ W) _(@)k u)l
(551) II(m) - ]I(m)klg( ) ®g( ) "
as well as
(5.52) E(my = £(m)Cr @ Gy,
¥ WYkl (@ (1
(5.53) wod = el @ gf,
we infer that ,
5 =W
(5:54) Emykt = ”(m)kl
and
Wkl
(5.55) efly =m0,

http://rcin.org.pl
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respectively. In addition, it holds

&
D" @y _ (4" @) W)k o (¥
(556) mn(m) - (dln II(m)H) g ©g
and
Bn I
W) _ (& (WK (F) (V)
(5'57) Din 1‘(171) - ((“n 7T(m) ) ® g

aAn
which indicates, that the operators D (- )/Dt" induce generalized Oldroyd time
derivatives. We call the strain tensors H bt ) and ‘n generalized strain tensors.
The set of all generalized strain tensors is denoted by B,

(5.58) = {0 =)/ m>0, ¥elin*}.

Obviously, for arbitrary but fixed m > 0, the sets of all generalized strain tensors
related to the differences A,,) and 6, constitute equivalence classes in D. We

denote these equivalence classes by 057’:: and ()(m), respectively,

(5.59) (-)fi{; = { i) ) /W e Lin* }

(5.60) e y = {‘K:fl) /W e Lin® }

Ul

Then, for the system {2 of all equivalence classes in D,

(5.61) 2p = {000,607 ) m >0},
the equality holds
(5.62) D= ] ©.

e

5.3. Generalized siress tensors and associated rates

For defining the generalized strain tensors and their associated rates, use is
made of the scalar quantities d"A,,)/dt" and d"é,,)/dl". These scalars were
required to be form-invariant with respect to the chosen configuration. In the
following we consider the stress power as well as the material time derivatives
d"W/dt™ and require from these scalar quantities to be form-invariant with re-
spect to the chosen configuration. This leads to the introduction of generalized
stress tensors and the associated rates.

Proceeding to define generalized stress tensors, we draw attention to symmet-
ric stress tensors only and assign to the generalized Lagrangean strain tensors
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E(.) and €,,), the symmetric generalized Lagrangean stress tensors T, and
:"-(m), respectively, so that

(563) W = T(m) . E(m) = :i-(m) L é (m) >

for each m > 0. The set of all generalized Lagrangean stress tensors is denoted
by Sp

(5.64) By, = {'f‘(,n),’?(,n) / Timys Tmy:  Symmetric,
W = T(m) 'E(m) = T(m) 'E(m)v m Z O}

The set S for the stress tensors is the counterpart of the set Dy for the strain
tensors, while the sets

(5.65) {Tewy / m >0}
and -
(5.66) {Fewy | m 20},
are the counterparts of the sets Dy g and Dyp, respectively. Moreover, to the
generalized strain tensors Hﬁ)} and w::’;)) the symmetric generalized stress tensors
W) _ T — UT T
(5.67) E(m) = M@)[T(m)]l = YT ¥
and - ; 1
- ~ o =
(5:68) Oy = L Tem] =" T ¥,
can be assigned, respectively, so that
( Fa A
= »¥) @) _ @) (¥)
(5‘69) W= E(m) * H(m)_ O'(m) 1‘(‘”1)’

for each m > 0 and ¥ € Lin*. ~
Notice that (E(,.y, T(;n)), as well as (€,,), Tn)), are pairs of variables which
are conjugate in the sense of Hill. However, this is in general not true for the
pairs of variables
() $(¥)
(5.70) (THG Bl
For arbitrary m > 0 and ¥ € Lin™, the pairs of variables (5.70) are called pairs of

generalized dual variables, or simply dual variables. Equivalently, the generalized

stress tensors Egl)) and 05:1)) are said to be dual to the generalized strain tensors

wd (it} ol).

H%f}) and ‘Kfi)), respectively, and vice versa ().

(*') This notation of generalized dual variables is just a generalization of the duality notation introduced in
HaurT and TSAKMAKIS [3].
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If we write S for the set of all stress tensors E:f,)) and 0'?,[:1)),

(5.71) i={B{ a0} / m>0, ¥elLin®}

then S can be partitioned into the equivalent classes

(5.72) 0= {Z4) | welin*}
and
(5.73) op) = {ol) | welint},

which for m > 0 cover S. Note that the counterpart of the sets D, G)EZ)) and

9%”) for the strain tensors are the sets S, ()(m) and ()z;;)) for the stress tensors,

respectively.
To determine the time derivatives which are associated with the generalized

stress tensors 3! n)) and a "), we next consider the quantity W, which like 1 is

required to be form invariant with respect to the chosen configuration. On taking
the material time derivative of (5.63), we obtain

.

W =Ty E@m) + Tim)* Em)

(5.74) .

=T (m)* €(m) % T(m) * €(m) .
Using the stress and strain tensors included in the equivalence classes ()Ef:)), ():m;
and O(”) ol respectively, as well as the associated strain rates defined by

(m)* 7 (m)
(5.48) and (5.49), the terms T(m) E(m) and T(m) ,,,) can be rewritten in the
form

~ . 1V '4

(575) T(m) * E(‘m) = EEm)) Hfm)) L
= o v v

(576) T(m) . g(m) = Ugm)) . ﬂfm)) e

Thus, the quantities T(m) . E(m) and T(m) m) represent, for arbitrary but fixed
m > 0, scalars which are form-invariant with respect to the chosen configuration.
Consequently, the terms

(5.77) WS 1= Ty o Emy

and
(578) w}':,f; = '? (m)* € (m) »
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which are called the incremental stress powers W] ‘""“ and “’E?rf;v respectively, must
also be scalars which are form-invariant with respect to the chosen configuration.

Indeed, we have

incr (d’) )
(5.79) wie =x) . n(m)
and
v A
"2 4
(5.80) it —agﬂj) -wgm’),

where use is made of the definitions (12)

V
(5.81) zgj‘j}) zg‘f}) \I:(\Ir—‘z‘f’qr”"—')'\p""
- z m) A T 'n@) - zgfg(\inr‘)’f,
v
@)._ D o™ = ¢! (YTe@ g ¢!
(582) (m) — D{ (m,) L (\I, (m) ‘I,) R
= G+ (T o) 4 G-t

This way, by considering form invarian[ scalar quantities, we can associate with
each stress tensor E( ) and c ) a time derivative of the form (5.81) and (5.82),
respectively. SImllariy by consldermg higher time derivatives d"IV/dt", associ-
ated time derivatives of higher order ;)“ ngl))/l)r” and lv)” o{i’i))/l)l” can be
introduced in a natural way. In particular, we have

v

D" ~
(583) Dir T(m)
and
(584) WT(W) =

as well as

N
D™ W) _
(5.85) B0 =
and
'BTI {71
Wil = p L
(586) Dfnc(m) . L‘(‘[j) [(“n

dn T—1 dn
M('/’ [ {{n (m):l ‘II ((“_”

2 ar <
T =v
("L)J ((li”

dm ~
din T('m)

L

WT(m) )

T(m)) w -

i
(m)) v

(*?) Similar to the notation of the symbol © for the strain tensors (see footnote 11), symbol ¥ denotes the
associated time derivative for the stress tensor considered.
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5.4. Properties of dual variables

Using the bases {Gy}, {g"’} and their reciprocal bases {G*}, {g®)*}, as well
as the representations

(5.87) Temy = T(4)Gk ® Gi,
W) _ (®)kl (U’)
(588) E;(m) - r1(m) k ®g[
and
(589) ;i-(m) = ~m)lek ® Gl )
v ¥
(5.90) oly) = ol gk @ g,
we readily obtain
Fkl (@)K
(5.91) I(m) = E(m) ;
7
(592) T(m)k[ = O-((m))kl
and
b :
sy _ (4 g@r ) W)
(593) D[”E(m) - ((“nE(m) )g g‘!l ?
D d
oWy _ (4 w) N\ ok o )
(594) Din o.(m) - ((“n (rn)“) g L k

The relations (5.93), (5.94) together with (5.85) and (5.86) indicate that, similarly

to the case of the generalized strain tensors, the operators Iv” (+)/Dt* induce
generalized Oldroyd time derivatives.

We now compare the relations (5.56), (5.57), which concern the generalized
strain tensors, and the relations (5.93), (5.94), which concern the generalized

stress tensors. It turns out that l'I( ) and L(fl)) or ‘K?[l;)) and cg’;)), as well as the

associated time derivatives, d:spldy thelr physical and geometrical properties in
the context of a representation relative to a basis and the corresponding reciprocal
(dual) basis, respectively. Moreover, the duality concept can also be verified by
means of the following scalar products, which are form-invariant with respect to
the chosen configuration:

v YA
; DN pM
NM .- (¥) ()
(595) ](m) = D{N 2("1) . Df“” (m)
v Vi
. UN DM
iNM . ) (¥)
(5.96) (m) = DN 0-(m) ' DM 1‘(”1)



STRESS TENSORS ASSOCIATED WITH DEFORMATION TENSORS VIA DUALITY 373

where m > 0, and N, M € N with N, M > 0. Some particular cases of (5.95) and
(5.96) are:

1
0 _ & _ @) )
(5.97) Iimy = Timy * Egmy = 2(m) 'H(m)’
00 _ ('1‘) (¥)
(5.98) itmy = Tm) " €m) = Ty * Ty

(Scalar product of dual stress and strain tensors).

2
1] E— () (d’)
(5.99) Iimy = W = Timy  Egmy = Bgy,) H(m)’
01 _ o) ("’)
(5.100) im) = W = T(m) -E(m) Tim)* ®(m) -

(Stress power per unit volume of the reference configuration).

3

- B () (¥)

(5.101) Iy = Ty By = E(m) I,
10 _ A~ . (w) (¥)

(5.102) 1(,,, = T(m)’ (m) G(IT[) “(m)'

(Complementary stress powers).

4
A
1 _ = (4') (V)
(5.103) ](1") = l‘ (l’r:::)r T(Hl) L E(m) E(m) . n(”L) N
4 '3
(5]04) I(TIH) =W ;’::; T("”) E("') :m)) “zm)) )

(Incremental stress powers).

6. Some examples

In most applications, m is chosen equal to 2. In such a case, the equivalence
classes O{z)) and ()Ez)) (Og; and O:g)) are denoted as family 1 of strain tensors
and family 1 of stress tensors (family 2 of strain tensors and family 2 of stress

tensors), respectively. Some examples for particular choices of ¥ are given (13)
in Tables 1 and 2 (the orthogonal second-order tensor P is given by P = WP).
Possible physical interpretations for the stress tensors Eff)) and crg)) are given in

Appendix B.

(*?) For more details see HaurT and TSAKMAKIS [3].

http://rcin.org.pl
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Table 1. Dual variables and associated derivatives: family 1.

a v .
(¥) _ T-1 -1 W) _ o1 pg—! %) _ aruT W_ wrw?
¥ I, =¥ "E¥YT |II,'=¥% " E¥ Io =¥T¥ | Z,)'=¥TY¥
1 o - ~ e T—1 ~
" 1 ~q 2 1 T - \ T
F A=-2—(l——B ) A=A+L A+AL=D |S=(detF)T S=8-LS-SL
= il T e v . .
R K=§(B—l) K= K — RR"K + KRR" | § = RTR” S=S— RRTS - SRR?
1 - a . T — 2 ¥ & -
U5=-2-(1—C ) K=K +(UUT)'K S =UTU S=S-UuUu’'s
+KUU™! = R7SR -S(uuYyr
A 3 S v .
P |Iw = PEPT Ow= ITw - WIlw Bw = PTP? Tw=Zw-—WEw
+ITwW +XwW
Table 2. Dual variables and associated derivatives: family 2.
a
) T ) o ) _ wT-1xg— V) _ g7T-! -
¥ ®a) = Ye¥ ®oy = YeW Oy = gr-17g-! O = L ZEEl
1le= %(c—‘ -1)|e=¢ T =FcF =
Floa=5(1-B) a=6& —La—aL” = -D g = —(det F)T S=4¢ +L7g +L
= _1 s = R Sl A AT v T 7
R|k=5B"-1)|k=k - RR'K+KRR ¢ = R7R s=¢—- RR"g +gRR
o= 1 £ =1 = — 11—iz-! 2= ==
UE—E(I—C) k=k - UUT'k s=U""1U s=3+(UU7)'g
—k(uuh’ = R'sR +3UU!
P|x, =PP’ |x, =%, Wx, +x,W|a, =PTP" g,.= 6, —Wa,
+o,,W

Next, we give the equivalent representations of hyperelastic constitutive equa-
tions using generalized dual variables. By definition, an elastic material is hyper-
elastic if and only if the work done by the the actual surface tractions in every
closed homogeneous deformation process is non-negative (see e.g. TRUESDELL
and NoLL [16, Sect. 82 & 83]). This is equivalent to the existence of scalar-valued

http://rcin.org.pl
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functions H,,, and h,,),

(61) ][(m) = ﬁ(m)(E(‘m))a
(6.2) himy = him)(E€emy) s
satisfying the relations
(6.3) W= H@my= hm
and therefore - B

- OH (n) = Ohgm)
(6.4) Tm) = -

3 Tm - b}
OE () ) = B€(m)

respectively. Taking into account the relations (5.44)-(5.45), H,,) and h(,,) can
also be written in the form

(65) ]I(m) = 7Iﬁ_(m)(E(m)) = F(m)(‘I’TH(w)‘II) =3 ﬁ(m)(n(w) \I,),

(m) (m)’
e - — 14 — n '4
(6:6)  higmy = Trgmy(€my) = Figrmy( @ (AW T =2 by (w0 W),

respectively. From these equations, the stress relations (6.4),, as well as the
transformation formulas (5.67) and (5.68), we conclude that

(6 7) 2(‘1’) = 011(7")
. (m) 8]:[(01) 4
(m)
@) _ 9
(6.8) 0-("1) - 01‘?1’)) b}

which are the spatial counterparts of (6.4), and (6.4),, respectively. In view of
(5.50)—(5.57), also the representations

O (1

6.9  Hu e’
(6.9) (m) ()E(m)k!gk g

v f)? m 3
(6.10) alr) = 05;’1 ))g(W)A@g(W)!,

apply, where the functions ﬁ(m) and f(m) are given by

(611) F(m)(E(m)) = ﬁ(:n)(E(nl)kJGk ® G[) =: ﬁ(m)(E(m)kl)a
(6.12) Bmy(€m)) = Tamy(efmy G @ G1) = Ry (£ (),

respectively.
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For m = 2 we write Egyy = Fj and sf‘z’) = ¢¥_ Then, for ¥ = F,

(6.13) Ho)(E) = Hpy(AF) = Hy(Ew),
(6.14) hy(€) = haya,F) = h(eH).

In this case, (6.7)-(6.10) reduce to

_0Hpy _ 9y 1y (R
El T k ®gg 3
JA Iy

0}2(2) N a—ﬁ(z)g(l,)k
Ja UEH

(6.15)

(F)I

(6.16) S = Qg

respectively. Furthermore, setting Gy; = G;Gj, 7i; = ng)-g

G = GG,y = glF)ig(F)i | we arrive at the identities

(F)

i 'y @S well as

1
(6.17) k= E(w - G),
1, . oy
(6.18) Ekl = 5(’7“ — (1'“).
Hence,
ey ), ()
(6.19) Dyt :
and
Oh@y (py Py
(6.20) &= ZWg ©g

where the functions 17(2)( +) and ﬂ(z,( +) are defined by

(6.21) Hp

= — 1 ~
Hoy(Ew) = H (i(m - Gk—!)) =: Higy(Ywr),

= I o
(6:22) hay = k(™) = he (5(7” - ('“)) =: hy (7).

Equation (6.19) corresponds to the well-known Doyle - Ericksen formula (see
DovyLe and ERICKSEN [13]).

Further examples for the application of dual variables and their associated
rates in Continuum Mechanics are provided in HAaurT and TsAKMAKIs [3].
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7. Duality for two-point tensors

The concept of dual variables developed can be extended to two-point tensors
as well. For example, formula (3.41) shows that F is conjugate in Hill’s sense to

Tr. However, F does not indicate the same properties as F under an observer

A
transformation. Proceeding to define an associated rate F for F which behaves
like F under the observer transformations, we consider a skew-symmetric tensor
2, so that (3.41) is rewritten as

(7.1) W = Tg-(F — QF).

This is possible, since TRF' is symmetric. Note that by the polar decomposition
F is related to the Lagrangean tensor U by means of (3.5),. Therefore, it appears

A A L
natural to define F in such a way, that F is related to U in the same manner as
Fto U:

(7.2) L F=F=RU.

(7.3) Q = RR?,

and therefore

(7.4) F= F - RRF.

It is not difficult now to show that F and ?‘ behave similarly if the observer
transformations are regarded.

Foliowing steps similar as in the case of symmetric tensors, we define higher
associated derivatives of F by

A = =
Dr D= s oo | DB i
7 F=|——F| - r = R
(75) Di»~ | Din-1 RE Dtr—1 ¥ R(H"U
Next, we note that
(7.6) TR'F= T(])'U,
where
~ 1 . ;
(77) T(]) = T(BS) = 5 (T{;R + RFT}?)
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was referred to in (4.2) as the symmetrized Biot stress tensor (1*). This motivates
us to define the associated time derivatives for Ty in the form

\vg
])vz—l

v v i
Dr pn-
DT IR

T = | ——
Din 1t D1

o\ I
Te| R+RY T
(Dzn R) (1)17! R)

As a result, we have then (’;R:=1V) Tr/Dt):

(7.8) Ti| — RR

having the property

(7.9) :

am '

7 A
(7.10) (TrF) =Tg ‘F+Tg-F .

The results derived above, concerning the pair (F, Tr), can be extended, in exactly
the same way, to the pair (F' !, Ty), where

(7.11) Tr = SQF = —(det F)TF.
We recall, from the polar decomposition (3.5);, that
(7.12) FF-l = U,

This motivates us to define the associated time derivatives of F7~! as follows:

P = . -
Dn ’ D'Il-‘ . ¥ p=_ DTI— il (lﬂ
1 D" prea -1 _ RR? r-1y ( _1) .
(713} Dt D1 — 1)f~—1F = dz”U

Thus, the stress power W becomes

(7.14) W="7Tp- (FT—l)' =Th. (FT—l)A ’
where

ay
(7.15) (FT~1)A - %FT—I _

(**) The analysis in the present paper is based on the relation between Tx and Tiys). However, the results
remain valid, if the analysis is referred to the relation between Ty and the Biot stress tensor Ty = RT Tg,
defined in (4.3).
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Furthermore, the identity

(7.16) T F' ' =7q.U"!

holds, where

(1.17) Foy = % (TER+RTTE).

The last relation motivates us to define the associated time derivatives of T by
o et Y . P

(7.18) pETR™ | 5T TR] - RR” T TA

satisfying the relation

; V(B N\ 5
. L SR T
(7.19) din (M7 2 (1)1" ”) = (IJI”T”)

Again, a relation of the form

(7.20) (TR ,FT—I)' ="vl'j{ FT-1 4 T (FT—I)A
holds, where
-
i D
o) i B
2D TR

Traditionally, in formulating constitutive equations, we assume m = 2. However,
if we deal e.g. with problems concerning uniqueness or constitutive inequalities,
further pairs of dual variables may be convenient in formulating the theory. As
an example, discussing intrinsic stability of the material, Hill (see HiLL [4-6])
proposed a class of constitutive inequalities, which must be satisfied for some
domain of deformation spaces. In the nomenclature of the present work, Hill’s
inequalities correspond either to

o
siner (‘1’) (¥)
(7.22) Vimy =2my * Hepy > 0,
or to
Jincr (‘1’) (‘1’)
(723) w (m) Z(m) (m) > 0.

As a consequence, for m = 1, Egs. (7.22) and (7.23) reduce to

2 . v A
(7.24) ”(]?;:r T(])'E([) =Tg 'F>O,

http://rcin.org.pl
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and . .

(7.25) wis = Ty €qy =Ta «(F )2 >0,

respectively. These relations demonstrate that dual variables, in combination with
associated time derivatives, are appropriate terms for formulating objective con-
stitutive inequalities, even in the case of two-point stress and strain tensors (in
this context see also OGDEN [8, p.407]).

Appendix A

Let
(A1) x* = ¢(t) + Q()x, t"=t—a
describe an observer transformation in E, where ¢(¢) denotes some vector-valued
function of time and a € R. For our purposes, it suffices to assume Q(?) to be a
proper orthogonal second-order tensor.

Assuming the reference configuration to be independent of the observer, the
observer transformation (A.1) implies for the motion (3.1)

(A.2) X(X, 1) = ¢(t) + Q(OX(X, 1), t*=t-a.
Well-known results obtainable from (A.2) are the transformation rules
(A3) F* = QF, R* = QR, U =10, V- =QvQ'.

An Eulerian second-order tensor A is said to be objective if it satisfies the trans-
formation rule .

(A.4) A" = QAQ’

under the observer transformation (A.1). Commonly, it is assumed that the stress
tensor S is objective, i.e.,

(A.5) $* =QsQ’.

Now, let S be represented by

(A.6) S = Sup, QW ,

so that |

(A7) Ty = ZAJ'(,\ )M ® M; +2§(r(q)”SUM @ M;,

by (4.16),, (4.18). On using the relations (A.3), it is a straightforward matter to
derive the transformation rules (7,7 = 1,2,3)

B = Qu,, M; = M;,
(A8) A=A g(\) =9\, () =g'(N).

i = Uayisr  Qoyij = Ygyis» S5 =5
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Hence,

(A9) T(g) = T(.‘I)’
from (A.7). Thus, we have

(A.10) (T) = T

and therefore (i,7 = 1,2,3)
(A.11) M; - (T7,)) M; = M;-T(,)M; .

Next, we discuss how DS/ Dt is affected under the observer transformation
(A.1). To this end, using (4.21), we rewrite (4.23), in the form

D ;
(A.12) —D(f—)s =Pl Twl

3 . 1 1 "
=2 (M T M) s @ + 53— (M- T M) o m, .
=1

¥ ni_j

From this result, as well as from (A.8) and (A.11), we conclude that

T ")(.'J) ~ T
S —Q(—D! b)Q ,

[)(.'J)
Dt*

which shows that 1)(,,S/ Dt represents an objective Eulerian second-order tensor.

Appendix B
In this Appendix we give possible physical interpretations for the stress tensors

Eg)) and UE;')), which confessedly are somewhat artificial.

By Cauchy’s theorem, we have
(B.1) t="Tn=S§[(detF)'n| = [(detF) 'm|,

where t represents the stress vector acting on a surface element in the current
configuration
(B.2) da=nda,

oriented by a unit normal n, and
(B.3) m:= —n.
Let now da be represented by

(B.4) da = ([x“] X ([X[z[ 5
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where dx;}, ¢ = 1,2, are non-collinear line elements in the current configuration.
For the corresponding surface element

(B.5) dAg = NodAp

(Np *No = 1) in the reference configuration, the well-known formula
(B.6) da = (det F)FT ~1dAg

holds, with

(B.7) (I'AO = (lx“] X dxm

and

(B.8) dXp;) = Fldxg,

by (5.16). Furthermore, assuming that the transformation rule (5.16) applies also
to the vector t da, we can introduce a transformed “force” dQ in the reference
configuration by

(B.9) tda = FdQ.
Analogously, further transformed “forces” dQ*) are given by
(B.10) dQ™) := ¥ dQ,
with dQU") = t da. In addition, we define the “stress vectors”
(¥)
W) . dQ
(B.11) = T

where dA") is given by the relation
(B.12) dAY) = N®) AW = (det W)W 1A,

(NW).NM¥) = 1), which is analogous to (B.6). Finally, on the basis of (B.1)y, it is
not difficult to derive the relation

(B.13) 1) = 53 [(det ¥)~'N)]

with (t(” E(F) N(F)) = (t,S.n). Thus, the stress tensor 2(2) acting on the
“weighted normal” (det ¥)~INW) glves the “stress vector” t(¥),

The physical interpretation ofc 2) is similar. We start by considering again the

surface element da (see Egs. (B.2) and (B.4)). Besides (B.6), the surface element
da can be mapped on the reference configuration as follows. Let dY|;) be vectors
in the reference configuration, which are related to dxj;) by means of (5.18),

(B.14) (I'YM = FT (/xl;] .

http://rcin.org.pl
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We define the transformed “surface element” in the reference configuration dag
by
(B]S) dag = ngd(lg = ([Y[ll X ([lel 3

with ng -ng = 1. It is readily shown that da is related to day through

(B.16) da = (detF)~'Fday.

Next, assuming the transformation formula (5.18) (or (B.14)) to apply also to the
vector t da, we can introduce a transformed “force” in the reference configuration

dq by
(B.17) tda = FI1dq.

Analogously, further transformed “forces” dq?) are defined through
(B.18) dq¥) = w145,
Finally, we introduce the “stress vectors”

1q(?)
@) .= &q

(B.19) =y
where da¥) is given by the relation
(B.20) da) = n) o) = (det W)~'W day,

(n® .n™¥) = 1), which is analogous to (B.16). Then, on the basis of (B.1)3, it can
be seen that

W) = g [(det¥) (m]
(B.21) t T [(det )2 Ll
where

and (t(‘t"),crgz‘v)),m“’)) = (t,s,m). That is, the stress tensor ag)) acting on the

“weighted normal” ((det‘I’)/(detF)z) m(¥) gives the “stress vector” t(¥),
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