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Two-dimensional Hooke’s tensors — isotropic decomposition,
effective symmetry criteria

A. BLINOWSKI, J. OSTROWSKA - MACIEJEWSKA
and J. RYCHLEWSKI (WARSZAWA)

ANY FOURTH RANK plane tensor H obeying the “Hooke’s” symmetries (H,,x; = H,;50 = Hyyyy)
can be split into three parts, behaving differently under the two-dimensional space rotation and
belonging to the three different, mutually orthogonal, two-dimensional subspaces remaining stable
under the rotation. Such representation leads to a convenient set of functionally independent
invariants, vanishing of some of these invariants demarcating the transitions of the tensor to the
higher symmetry class. A non-trivial effective condition of orthotropy has been obtained. Some
problems concerning the necessary and complete set of measurements of the elastic propertics are
also encountered.

1. Introduction

LARGE VARIETY of engineering problems of structural mechanics concerning the
applications of natural or man-made anisotropic composite materials can be effec-
tively analyzed with the use of the plane stress and/or strain state concepts. Thus
the convenient description of the plane elasticity and limit criteria is not only of
theoretical, but also of practical interest. In some recent papers [8, 9], it was shown
that some problems, which, due to their discouraging complexity, look rather bor-
ing and demanding time-consuming analysis in general (three-dimensional) case
(cf. [5]), can be, with moderate efforts, effectively solved in the plane case.

In the present paper the authors will demonstrate an effective description of
the properties of Hooke’s tensor making easier both the better comprehension of
the matter and the practical applications of the results. Almost all the considera-
tions can be applied without change to elastic stiffness and/or compliance tensors
as well as to the quadratic limit condition tensor. The results, together with the
earlier obtained results presented in [8, 9] exhaust most of the practical aspects
of the description of anisotropy of the plane, linearly elastic and quadratic limit
properties (1).

2. Hooke’s tensors

Our subject are plane tensors of the fourth rank H @ 74, having the following
internal symmetries:
(2.1) Hiji = Hiig = Hijue = Hyij

(') Some interesting but purely theoretical problems, like the polynomial integrity basis, remain out of the
sphere of our interest in the present paper.



326 A. BLiNowskl, J. OSTROWSKA-MACIEJEWSKA AND J. RYCHLEWSKI

The most important tensors of this kind are the stiffness tensors and the com-
pliance tensors of the theory of plane elasticity, thus in [3] it was proposed to call
them Hooke’s tensors. Among the applications of Hooke’s tensors one can men-
tion their role as linear operators o — H-a, bilinear forms (a,3) — a-H-B or
as quadratic functionals a — a-H-a, e.g. functionals of energy or the limit stress
intensity [1]. A Hooke’s tensor H can play a role of the stiffness or compliance
tensor only if ac-H-ax > 0 for every ot.

In the present section we shall present the important decompositions of the
Hooke’s tensors, useful for the analysis of the symmetries and the invariance. It
would be convenient to begin with recalling the notions and the notation for the
second rank tensors.

2.1. Second rank plane tensors

All the isotropic orthogonal decompositions of the plane second rank tensors
are included in the following formula:

(2.2) h=8S+A=P+D+A, 22=3+1=1+2+1,

where S is the three-dimensional space of plane symmetric tensors a’ = a, A is
the one-dimensional space of skew-symmetric tensors a' = —a, P is one-dimen-
sional space of isotropic tensors ul and D is the plane of the two-dimensional
deviators: a” = at, tra = 0. These decompositions are orthogonal, § 1L A, P L
D. To these decompositions correspond the following orthogonal decompositions
of unity T of E® E (see (A.S5))

(2.3) I=Is+Ts=Ip+1Ip+1,4,
where
1 )
(Zs)ijm = > (Gindji + 6abji) ,
1
Ip)ijr = i%f”u-

The unity Zs of the space & (see (A.5)) acting on the second rank tensors,
o — Is-a, performs an orthogonal projection of the space 7; onto the S space,
hence Zs-a = o iff a € §. The other unities Zp , Zp, Z4 act in a similar way.

In the forthcoming considerations the one-dimensional space A and its unity
7 4 will remain out of the scope of our interest.

Taking an arbitrary Cartesian basis wi, w;, w3 in & and an arbitrary Cartesian
basis T, T, in D, one can write

Is = W QW + Wy ®w + w3 ws,

(2.4) Ip=T1®T1+T20 T3,

Ip

I

1
=1® 1.
7 ®
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For every tensor w € S takes place the well-known spectral decomposition
(2.5) W= wWW] @ W + wHwy ® Wy,

where wy, w, is the Cartesian basis in the physical plane ww, = wiw;, wWww; =
wyowy. Thus every deviator has the following canonical form:

(2.6) T=d@d-d* @d* =2d@d - |d*1,

where d-d* = 0, |d| = |d*|. It can be also represented as T = m® n + n® m,
n-m = 0. The interpretation of the deviators as stresses is shown in Fig. 1; thus
we shall further call them pure shears.

v

Vo
/

Fia. 1.

The following expression, uniquely representing a tensor w € & as the orthog-
onal sum of the isotropic tensor and the pure shear:

(2.7) w=rl+T=7r1+dod-dtodt

we shall call the isotropic decomposition of a second rank tensor.
The rotations R (and the mirror reflection M) of the physical plane act in 7
according to the rule: o« — R * o, where

(2.8) R+o = RaR'.

One-dimensional subspaces P, A are the axes of every rotation R«. In the plane
of deviators D, a rotation R(p) of the physical plane by the angle ¢ acts as a
rotation R(y)* by the double angle 2¢ (Fig. 2). Indeed, since

(29)  R(p) = cosed +singdt,  R(p)dt = —singd + cos pd*
thus
(2.10) T(R+T) = |T|> cos 2.

The action of the mirror reflections is similar.
If a Cartesian basis (n;,ny) in the physical plane is chosen, then the vec-
tors x are represented by the pairs of numbers (z;,z;) and the tensors by the
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FiG. 2.

number-valued matrices 2 x 2 (a;;). Then

cosp —sing
sing  cosg |’

10
1~[0 ]], R(») ~

cosp —sing
sinp  cose

(2.11)

R*xo ~ .
—sing cosg

cosy sing
21 72 )

[011 12

| MO

2.2, Decompositions of Hooke’s tensors

During the last decade the spectral decomposition of the elasticity tensors
(which can be traced back to Lord Kelvin and has been recalled by J. RYCHLEWSKI
in early eighties [2]), is becoming almost canonical and even finds its way to
textbooks [10]. In the plane case, such a decomposition of the two-dimensional
Hooke’s tensor has the form

(2.12) H = yjw; ® wp + ypwi ® wi + xmwim © wir,

where the tensors w,. (K = 1, II, III), called the proper states — the eigenelements
of the symmetric linear operator o« — H-cx constitute an orthonormal basis

(2.13) Wew, =4y,

X, being the corresponding eigenvalues (?).
It is not difficult to observe that, if one of the proper states is a pure shear,
then the other two should be mutually coaxial. Indeed, if, say, wyy; is a deviator,

(?) For the case of the elastic stiffness tensor S J. RYCHIEWSKI proposed [2] to call these eigenvalues denoted
by A the Kelvin moduli, their reciprocals 1/ . are the eigenvalues of the elastic compliance tensor C, which
has the same elastic proper states as S, while the independent parameters, defining the elastic proper states K
he proposed to call the stiffness distributors.
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then there exists such a basis in the two-dimensional space that

g

(214) Wiy ~ 1 \/i
— 0
V2

Thus, due to the orthogonality condition, the other two proper states should have
in the same basis the following diagonal representations:

cos 0 — sin « 0
= . Fs
(2.15) - l 0 sin a] ’ wy [ 0 cosa]

(we recall here that o has nothing in common with any rotation, it is merely a
convenient parameter).

Obviously, such a set of proper states describes the orthotropic material —
the reflections with respect to any of the two common proper axes of w and wy;
merely changes the sign of wyy leaving C unchanged. Moreover — vanishing of the
trace of at least one proper state is the necessary condition of orthotropy. If the
pure shear T along the orthotropy axis were not a proper state, then it would give
rise to non-vanishing diagonal terms in H-7 tensor. The reflection would change
the sign of T while H-7T would change according to a different rule (diagonal
terms are insensitive to such a transformation) i.e., against the assumption, the
reflection would not preserve the shape of H.

According to (2.6), the rotation by 7 /2 interchanging the vectors d, d* (the
change of sign is insignificant) transforms arbitrary traceless tensor T into —T,
hence if in (2.15) a« = w /4, then we are dealing with the tetragonal symmetry
(the symmetry of the square). Observe that in such a case the hydrostatic state,
(proportional to the unit tensor) must be a proper elastic state.

At last, if the two Kelvin moduli, corresponding to the two pure shear proper
states, are equal — one obtains the case of isotropic material. We shall prove in
the forthcoming consideration, that no other symmetries of the plane Hooke’s
tensors are possible.

The spectral decomposition (2.12) is an exact counterpart of the spectral de-
composition (2.5). Let us find a counterpart of the isotropic decomposition (2.7).

The rotations of the physical plane R act on the fourth-order tensors according
to the rule A — R « A (see (A.2)). It is evident that every Hooke’s tensor H,
being rotated preserves its “Hookean nature”, any linear combination of Hooke’s
tensors produces again a Hooke’s tensor. Thus the set of all Hooke’s tensors is
the tensorial space (see (A.2)) H C 74. For further considerations only this space
will be of our interest; it is evident that dim H = 6. We have to find an isotropic
decomposition of the space H.

The earlier introduced unities Zs, Zp, Zp are Hooke’s tensors. Moreover, every
isotropic Hooke’s tensor is a linear combination of the two arbitrarily chosen
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tensors out of this threesome. In such a way we obtain the tensorial plane 7 C 'H
consisting of the isotropic Hooke’s tensors. The pair Zp, Ip is an orthonormal basis
in .7, thus every isotropic Hooke’s tensor has a unique orthogonal decomposition

(2.16) I = ApIp + ApIp, IpIp = 0.

The orthogonal complement of this plane 7+ is a four-dimensional tensorial
space. Its possible isotropic decomposition can be only of the following form:
Jt = A+ B,4 =2+ 2. Indeed, all one-dimensional tensorial subspaces in H
belong to 7. The conditions of orthogonality of the tensor H to .7, Ip-H = 0,
Ip-H = 0 are of the following form

(2.17) 1-H-1 = H;;;; =0, TtH=H;; =0.
These conditions meet e.g. all the tensors from the set .A of the following form:
(2.18) 1T+ T®1, T€D.

Since for every rotation R« the tensor R+(10T+7®1) = 1@ (R+T)+(R+T)D 1
remains in .4 and every linear combination of the tensors from A belongs to A,
thus A is one of the two tensorial planes in 7+, dimA = dimD = 2.

The last component of the isotropic decomposition of the space M is the
orthogonal complement B of the space A in 7+. Let us find the general form of
the tensors D € B. From the orthogonality condition D 1 .4 we have (1:D)-T = 0
for every T € D. Combining this with the condition 1-D+1 = 0 one can see that
(1-D):a = 0 for every o € S, therefore 1:D = 0 € S. Making use of the spectral
decomposition

(2.19) D = \w ® Wi + Apwir @ wip + A © win
from the conditions 1-D = 0, TrD = 0, one obtains readily

Artrwp = Atrwyp = Aptrwyp = 0,

(2.20)
A+ A+ A = 0.

The only solution, other than D = 0, is the following one

(2.21) Al = —Ap, A =0, trwp = trwy = 0.

Thus every tensor D € B can be uniquely expressed in the following form

(2.22) D=T1t@Tr-1T'0ti=2101- |7 Ip,

where 7.7+ = 0, |7| = |v]. Tt is not difficult to check that the tensor D is

totally symmetric and traceless, i.e.

(2.23) Do iyoGYok)otty = Dijki s Diit = 0,
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where o is an arbitrary permutation. Thus the plane B consists of the plane fourth
rank deviators [3] (%). Thus, concluding:

Isotropic complete decomposition of the space of plane Hooke’s tensors has the
following form
(2.24) H=J+A+B, 6=(1+1)+2+2,

where T is the plane of space of isotropic Hooke’s tensors, A is the plane of the
tensors: 10T + T® 1, T denoting pure shear, B is the plane of the fourth-rank plane
deviators. In other words: the isotropic decomposition of every plane Hooke’s tensor
has the following form:

(2.25) H=APIP+ADID+(1®T+T®1)+D,

the four components defined above being mutually orthogonal; invariants Ap and
Ap and the deviators T, D are the linear isotropic functions of Hooke’s tensor.(*)

The rotation R(y)+ is a rotation of the six-dimensional space H around the
fixed plane 7. It is evident that the tensorial plane A rotates by the double angle
2. The deviatoric plane B rotates by the quadruple angle 4, because, according
to the formulae

(2.26) R(p) * T = cos2p T +sin2p T+,
- R(e) * T+ = —sin2p T + cos 2 T+,

taking D=T® T - T+ ® T+, one obtains

(2.27) D-[R(¢) + D] = |[D|*cos4¢.

3. Hooke’s tensors as the second rank tensors

The intriguing similarity between the canonical forms of the pure shears T
(2.6) and the Hooke’s deviators D (2.22) can be noticed. The explanation of
this fact is simple and leading to the well known techniques of handling stiffness
tensors, commonly used in the engineering applications.

The space 74 can be considered, if it is convenient, as any tensorial product
7, ® T;, t + j = 4. The representation 74 = 7, ® 7, turns out to be especially
useful; it means that the tensors of the fourth rank are considered as the “second”
rank tensors from the sequence ®* 75, p = 1,2,... . This is particularly useful
in the case of the Hooke’s tensors.

(*) The last expression wil be called the canonical forn of the deviator D; (in [3] the canonical form of the
plane deviator of arbitrary rank has been shown).
*) 20p = L*Hel, 20p=TH-\p, 27=H1-)\pl,

1
D=H+ ,\‘pI'p - 4\1)1—1) — E[("'l) R1+1® ("‘I)I
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The space of the plane symmetric second-rank tensors is the symmetrised
tensorial square of the physical plane E,

(3.1) S =symE @ E, dimS = 3.

Quite similarly, it is convenient to consider the space of the Hooke’s tensors as
the symmetrised tensorial square of the S space,

3.2) H=symS @S, dimH = 6.

In other words: Hooke’s tensors can be considered as the symmetric “second
rank” tensors, generated by the tensors a € S, exactly in the same manner as the
tensors « € S are generated by the vectors x € E. Such a viewpoint is correct and
useful, under the following important condition, however: the orthogonal group
O(S) of the transformations of the Euclidean three-dimensional space S contains
such rotation and mirror reflections, which are not generated by the rotations and
the reflections of the physical plane E, for example, the rotation transforming the
isotropic tensor 1 € P into the pure shear T € D, |7| = |1| = v/3. Such rotations
and reflections remain out of the scope of our interests.

If {ux}, K = 111,111 is a Cartesian basis in S, then {v, v} is a Cartesian
basis in S @ S, thus we can write

(3.3) H= Hpp(v, ®v,).

Symmetrising dyads v, @ v;, one obtains a basis in the space of the Hooke’s
tensors.

The usefulness of the description of the Hooke’s tensors as the “second rank”
tensors can be demonstrated using the three following examples:

1. Taking in the last relation the proper states w,. of the tensor H as the base
elements v,., one obtains the spectral decomposition of the tensor H (2.12).

2. According to the new view on H, we shall express the rotations &« — R+ a
and H — R + H in the following form

(3.4) R+ta=Ra, R+H=RoHoRT,

where R S®S, RT o R = Is.
Since a0 — R+ is the rotation of the three-dimensional space S around the
unit base vector 1/v/2 by the double angle (Fig.3), therefore (*)

(3.5) R =Ip+cos2¢Ip+sin2¢0Ep,

(*) This is a generalization of the rotation in the three-dimensional Euclidean vector space around the unit
vector n by the angle ¢, R=n®n +cos¢ (1 —n®n) +sinp E, where E = nj Any = np @ ny — na @ ny and
{ny, ny, n} is an orthonormal basis.
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12

Fia. 3.
where Ep is the tensor of orientation of the deviatoric plane D, i.e.
(3.6) Ep=z=acpP-pPpoa,

where {o,[3} is an arbitrary basis in D left-oriented in the orientation of Ep.

3. Let us adopt in S an orthogonal basis, generated by the isotropic state
1 € P and the pure shears o, B € D, - = 0, || = |B| = V2. Symmetrised
and normalised tensor products of these tensors generate the following Cartesian
basis in H:

1
B, =1Ip, B, = —Ip,
1 P 2 \/izv
1 1
3.7 Bi=—(@a+axl), Bi=—(0B3+PB&1),
(3.7) 32\@( ) 1) 42\/§(Lﬁﬁ)

Bs = 2%/5((1 Qa-PBeA), Bs = 2]7(0 P +P e o).

Clearly the pairs (B, B;), (B3, B4), (Bs,Bg) are the bases in the correspond-
ing tensorial spaces .7, A, 5. Hence the matrix of rotation R+ has in the basis
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By, ..., Bg the following form:

1
1
cos2p —sin2y
sin2p cos2p
cosdyp —sin4yp
sindp cosdyp |

(3.8)

The decomposition
(3.9) H=1B;+...+ H¢Bg

can be reduced by denoting

1
3.10 T=—= (o0 + H4P), D = HsBs + H¢B
(3.10) 2\/2( 3 aB) sBs + 16Bg

to the isotropic decomposition (2.25).
The last example leads to some interesting relations, which will turn out to be
useful in the forthcoming considerations. Introducing the following notation:

Ry =\/H}+ 1], Ry = \/H2+ HZ,

. H, ‘ Hy
53 = — inf = —,
(3.11) cos / 7, sin i
cosy = —”5 siny = —”6
=% TS By

one can write
(3:12) H = B + H;B; + Ry(cos 3B3 + sin 5By) + R2(cos vBs + sin yBg).

The angles 3 and 4 are not merely the handy parameters, they change under the
rotation of the physical plane. Using the representation (3.8), one can write

(3.13) R+H = 1B + I[;B; + I [cos( + 2¢)B3 + sin(F + 2¢)By]
+ Ry [cos(y + 4¢)Bs + sin(y + 4¢)Bg] .
This relation clearly discloses the geometric interpretation of the angles 3 and 5
(see e.g. Fig.4).
Let us establish the way of choice of bases in § and in S® S. Let {n;,n,} be

a Cartesian basis in the physical plane E; we shall adopt the following Cartesian
basis in S (%)

1
(314) wvi=moen, vg=non, vp= ﬁ(nl ®@nz + Ny @ m).
Note thatv; +vy=1¢€ P,vy —v € D, vy € D.

(%) The coefficient 1/+/2 in the expression for vy is essential, Taking instead the symmetric part (1/2)(n; @
ny + nz ® ny), we would not obtain the Cartesian basis, compare [12].

http://rcin.org.pl
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Q
B4 &5
7 0

Wy -

5

Fia. 4.

In § ® S we shall take the Cartesian basis v @ vy, K, L = I, II, III. The
expressions for the tensors o € S and A € S® S,

(3.15) a = vy, A= .«\[J(U] ® U_])

in the fived basis {n,n,} are determined by the mutually unique relations:

(43} a1
(316) o~ | = (250 .
g \/5012
A A Ag Anmn A V24Aun
(3.17) A~ | Ay An An|=| Apn Apxn  V2Ann |,
Ay Ap Axn V2411 V2Ann 240
(3]8) QP = “ijﬁij — (1'[3.
(3.19) A Bry = AijjuBiju = AB;
moreover:
(320) E; = C[J(.!J < & = Cijklﬂ‘kl =2 [3 = C‘(X,
(3.21) Arg = BigCrg & A,‘jk[ = B;qucquz S A=BoC.

http://rcin.org.pl
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The representations of some important tensors have the following form:

1 00 1 1 1 0
0 0 1 0 0 0
(3.22)
’ 1 -1 0 1 0 0 -1
ID ~ 5 -1 1 O ) Ep s, —2 0 O 1 N
0 0 2 1 -1 0
while, for the base tensors By, one obtains
1 110 ' 1 -1 0
Bi~5 (11 0], By~ == 1 10
0 0 0 0O 0 2
y 1 0 0 1 [0 0 1
(323) B3~— |0 -1 0], By ~ 3 Q@ 1f,
. 0 0 0 11 1 0
i 1 -1 0 1 (0 0 1
Bs~ — | -1 1 0], Bs~=-(0 0 -1
’ 2
2v2 0 0 -2 1 -1 0

Under such a choice, the components //; of the Hooke’s tensor H in the base
By and the components of the “second rank” representation of the same tensor
H;; are related by the following equalities:

Hy+ Hop+2H 5 Hy+ Hyp—2H\p+2H33
[]]= N I[2= 3
2 22
Hy - Hypy
3.24 Hy = ———==, Hy = (H3+ Hyy),
(3.24) M3 7 4= (H3+ 133)
Hyy+Hyp—-2H—-2H353
Hs = , He = (Hy3—I23).
5 Wil 6 = (Hh3—I23)

At last, the representation of the rotation tensor R given by (3.4), (3.5) has the
following form:

1 1+cos2¢ 1-cos2¢ —v2sin2yp
(3.25) RrrL ~ 2 1-cos2p 1+cos2¢ /2sin2p
V2sin2p —v/2sin2¢  2cos2p
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4. Invariants and symmetries — effective formulae
4.1. Symmeltries

The problems of the symmetries of plane Hooke’s tensor has already been
discussed in the previous section in terms of proper elastic states and Kelvin
moduli. In the case of the “second rank” representations, the matter is also not
difficult if only an axis of the presumed symmetry is known. In such a case,
taking one base vector, say n; along this axis, one can determine the convenient
“second rank” representation Iy, of the Hooke’s tensor (7). Inspecting the shape
of this representation and recalling some considerations from the Subsec.2.2,
particularly the expressions (2.15), (216) and the two subsequent paragraphs of
text, one can easily tell, what kind of symmetry we really observe, depending on
the shape of the representation of the Hooke’s tensor, namely:

full symmetry (isotropy),

a b 0
Hign~ 10 «a 0 .
0 0 (a-0)
symmetry of the square, (tetragonal),
a b 0
Hyp~ 10 a 0
0 0 ¢
symmetry of rectangle (orthotropy)
e b 0
Hip~ 10 ¢ 0
0 0 d

The problem arises if we find //13 and/or /153 different from zero: it is difficult
to say, in this case, if there is no symmetry at all or, maybe, we have chosen a
wrong axis. We must check up in this case if there exists such a rotation by the
angle ¢ which annihilates the terms containing B4 and By in the expression (3.13).
To this end the following two relations must hold true:

sin(3 + 2¢) = sin 3 cos2¢ + cosFsin2¢ = 0,

4.1

A sin(y + 4¢) = siny cos4dp + cosysindp = 0,
or

(4.2) tan2¢ = —tanj3, tan4e = —tan~.

(") The corresponding measurement rules will be discussed in the last subsection of this section.
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These two equations can be fulfilled simultaneously if the following relation holds
true:

(4.3) by e I

T
1 —tand g - o

Using (3.11) one can rewrite this condition in terms of the representation of
the Hooke’s tensor in the basis {By } obtaining the following effective symmetry
criterion for the Hooke’s tensor H:

Hooke's plane tensor H obeys at least orthotropic symmetry if and only if the
components of its representation in the basis {By } fulfil the following relation:

(4.4) Js = (H? — H})Hg — 2H3HyHs = 0.

We shall prove in the next subsection that Js is invariant under rotation (but not
under reflections). The condition (4.4) is trivially fulfilled, if 2 and/or R, vanish.
Looking at the relation (3.13) one can readily observe that:

Ry = 0 yields symmetry of the square, while simultaneous vanishing of Ry and
Ry give rise to the isotropy of the Hooke’s tensor.

As it has already been shown, the presence of the plane of symmetry bears
orthotropy. We shall prove now that

The only possible non-trivial (i.e. different from the total isotropy) rotational sym-
metry of the plane Hooke's tensor is the invariance under the rotation by /2 — the
tetragonal one.

Indeed, in virtue of the uniqueness of the tensor decomposition in given or-
thonormal basis and the functional independence of sin(+) and cos(-), to preserve
the plane Hooke’s tensor under the two-dimensional rotation by the angle 2r /n
one has to fulfil the following two conditions:

4
(4.5) B+ T:r =f+2rm  or R =0,
8
(4.6) 5+ _n’i =y+42tk  or Ry=0,

where n, m and k are arbitrary integers. The only (non-trivial) solution of (4.5)
and (4.6) is: Ry = 0, n =4, k = 1, what proves our assertion (%).

(*) One may ask, why by cutting off a slice perpendicularly to the axis of the trigonal symmetry of the
three-dimensional body we are gaining additional rotational symmetry? A closer inspection of the case shows
that the trigonal symmetry of the threc-dimensional body is connected with shearing in the planes orthogonal
to the axis of the trigonal symmetry. This shearing stiffness is immaterial in the case of a planc state.
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4.2. Invariants

Looking at the relation (3.13) one can tell at once that the following four
quantities:

Ji

Hy = %(H11+1122 + 2H 1),

1
Jo = Hy= —=(H;1 + Hyy— 2Hyp + 2”33),
@7) 2V2
J3

1
R}=H}+ H} = 5 — Hpn)? + (Hyz + Ha)?,

Js = R3=H2+ H?

1
g(h'll + Hyy — 2H 1y — 2”]3)2 += (1113 — 1[23)2

are invariants of the proper orthogonal group (the group of rotations). The plane
Hooke’s tensor, however, has in general six independent components, while the
proper plane orthogonal group is one-parametric, thus one can expect five func-
tionally independent invariants.

Let us denote:

(4'8) B = ,H + 23‘9’ "5 = + 4‘7;1’
Certainly the quantity .
(4.9) YV=7-2=7-28

is invariant with respect to the proper orthogonal group, and, moreover, it is
(modulo 27) uniquely determined by the components of Hooke’s tensor in an
arbitrary basis. On the other side, if the values of the previous four invariants
as well as ¢ are known, then the relation (3.13) determines the Hooke’s tensor
to within the accuracy of an arbitrary rotation. Thus these five invariants consti-
tute a complete functionally independent set of invariants with respect to the proper
orthogonal group (complete irreducible hemitropic function basis).

Tracing the derivation of the orthotropy condition (4.4) one can observe that its
left-hand term can be expressed by ¢ (°) and the condition (4.4) can be rewritten
as follows:

(4.10) Js = R3R,siny = 0.

Any reflection tensor in two-dimensional space can be represented as the
i s : 01 ;
superposition of the axes exchange (reflection) { 1 O] and some rotation, the axes

exchange merely changes the sign of the terms containing B3 and B4 changing /3
into 7 — 3 and v into —7, i.e. ¥ (taken modulo 27) changes its sign; thus only cos ¢
but not + itself or sin ¢ is invariant with respect to the complete orthogonal group
(i.e. containing both the rotation and the mirror reflections), while the previous

(?) The square, or absolute value of this term can be considered as an invariant measure of deviation from
the orthotropy.
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four rotationally-invariant terms are the invariants of the complete orthogonal
group as well.
These considerations lead to the following important conclusion:

No rotation in the plane of the stress (strain) of the plane elastic state is able
to change the sign of 1, thus the class of the materials of the lowest symmetry can
be subdivided into two classes of “left” and “right” materials, depending on the sign

of .

The “left” materials can be changed into “right” ones by the off-plane turning
them upside-down. This means that the sheets of such a material have two distinct
sides, which should be specially marked in order to make the information on the
elastic properties meaningful.

For completeness we shall express the obtained invariants in terms of the
four-index representation of the Hooke’s tensors.

Using relation (3.17) to express the first two invariants (4.7) by the components
H ;i it is not difficult to observe that the following two identities hold true:

1 1
(4.11) I, = 5(”1111 + Hyoo + Hopn + Hax) = if/nj, = Ap,
1

(412 M=o

(Hin — Huga — Han + Happpo + 2Hy212 + 2H2121)
1
- z\—ﬁ(znw — Hiii) = V2)p.

The expressions for the remaining invariants are not straightforward. Observe
that they depend only on the traceless part H” of the Hooke’s tensor H (3.12):

(4.13) H' = R(cos B3 + sin 3B4) + Ry(cos7Bs + sin yBg),
or

1 ‘ :
Hijy = Hiju — E[Hp,m(ﬂijéu — bikbj1) + Hprpr(28i650 — 6:5611)],
4.14
i< (Hiw =0, iy = 0).

Substituting relations (3.7), (3.11) and (3.23) into (4.13) one obtains the fol-
lowing representation of the plane second rank tensor H'«1:

R 3 in 3
(4.15) (B ] = 1 [COS; sin / l

ﬁ sinf3 —cosf3

Thus
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Due to the orthonormality of the base tensors {By }, directly from (4.13) it follows
that

(4.17) H W = 0] Hy = R+ RS,
hence:
(4-18) 2 = Hu“”x"jkf II:JPPH"JW

The most time-consuming is the derivation of the last relation — the one de-
scribing the “shape of deviatoric part”, i.e. expressing the functions of  in terms
of polynomial invariants of the Hooke’s tensor. Omitting the tedious calcula-
tions (') we present the following result:

! ' - 2 y
(4.19) 11”;\[.[1‘,\.1"1“1["”“] = 2\/—R RZCOSU

It is not difficult (however it can be fairly boring) to show that our set of invariants:
Hy, Hy, R}, R% and Tr(H?) is equivalent to the set of invariants obtained by
ZHENG [9], who proved that they constitute the complete irreducibie isotropic
function basis.

One cannot expect to find an expression of such a kind for sin ). There is
a simple reason for this: all the polynomial scalar expressions obtained by the
contraction are invariant with respect to complete orthogonal group while sin ), as
we have already shown, is the hemitropic function of the plane Hooke'’s tensor.

The last question, concerning the invariants of the Hooke’s tensors, which has
to be discussed are the conditions of positive definiteness

(4.20) oa-H-o >0

for every o € &, which are required for most applications of the Hooke’s tensors.
In the case of the spectral decomposition of the stiffness (compliance) tensor the
problem reduces to the trivial conditions of non-negativeness of the three Kelvin
moduli, which are equivalent to the conditions:

M+ A+ A3 >0,
(4.21) AMAz+ A3+ A3A > 0,
MA2A; > 0.

Recalling that in the basis of proper states the representation of the Hooke’s

tensor is diagonal, and taking into account that all three expressions (4.21) are
invariant with respect to any orthogonal transformation in S © S (including those,

(*") The following interesting relations can make this boring procedure slightly simpler: B§ = }[Bl +V2(By +
Bl B; = }[By + V2(B, — Bs)|. B} = By, B} = By, sym(B;By) = \lfB(usym(B.%Bs) = 5./3B3 sym(B;Bg) =
2\/- By, sym(ByBs) = -734 sym(BsBg) = B'!>5ym(BSBh) -
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which do not correspond to any rotation of the physical plane), after some rear-
rangements one can express these conditions by the polynomial invariants of H
as the fourth-rank tensor

TrH > 0,
(4.22) (TrH)? — TrH? > 0,
1 1 1
“TrH? - ~TTHTrH? + —(TrH)? > 0.
3 2 6
The same relations can be expressed in the language of the invariants gener-
ated by the isotropic decomposition as follows:

Hy +V2H, > 0,
(4.23) H} +2V2HHy — R? — R} > 0,
V2H (H} - R3) — R}(H, — Rycose) > 0.

It is not difficult to notice that no restriction on the sign of ¢» has been imposed
by the “thermodynamic” condition of the positive definiteness of the Hooke’s
tensor. Thus both “left” and “right” materials are thermodynamically admissible.

4.3. The rules of the measurements

The procedures of measurements of the elastic properties in the case of ma-
terials supplied in the form of sheets and foils very seldom include direct measure-
ments of the shear moduli ('!); not only the standard, but even more sophisticated
laboratory equipment is usually rather inappropriate for such measurements. Usu-
ally the Young moduli and Poisson ratio in the chosen directions are measured
and then, if needed, the other elastic constants are calculated.

Let us denote the direction of uniaxial tension by »; and let C denote the
elastic compliance tensor, then the stress o and strain € have the following rep-
resentations:

a (T(-'“
(4.24) o~ 0], e~ |oCy
0 aC'y

Consequently, by the definitions of the Young modulus £ and the Poisson ratio

v, One can write:
1 . v
4.25 — =C1i, —=-Cy.
(4.25) £ 1 5 21
In general we have to determine six unknown elastic constants; to this end we
should take at least three specimens oriented at three different angles ¢; (i =

1,2,3) with respect to some fixed material basis. Performing measurements we

(*') We shall leave aside in this paper the acoustic measurement techniques.

http://rcin.org.pl
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would obtain then six quantities: F;, v; (i = 1,2, 3). Making use of the Eq. (3.13),
and substituting expressions (3.23) for the base tensors By, one can write relations
(4.25) in the following form:

1 1 1
4.26 —==-C + Rycos(B + 2¢;) + Ry cos(y + 4;),
(4.26) E =30 f ‘/—1( ®i) 2\/52(7 ®i)
V; 1 1
4.27 - 1=—C’——(7——R + 40;).
(4.27) 5 -39 35 34 2008(y + 4¢;)

Using (3.11) one can rewrite Eq. (4.26) and (4.27) in the following form:

€os 2¢; sin 2¢;

1
4.28 -C1 + Cy + C3 — &
28) G+ ROt G- G
cos4y; sin 4¢; 1
+ Cs— Ce= —,
W3 © W2 E;
1 cosde, sindyp; v;
4.29 =C — —C' - Cs + O = ——
SESIIE S aw 22 0 w2 b E

Taking : = 1,2,3 we obtain the system of the three pairs of equations for six
unknown constants ('i. The determinant A of this system can be expressed as
follows:

(4.30) A =2V2sin’(p1 — p2)sin’(p2 — p3)sin’(p3 — 1)
X cos(1 — ¥2) cos(p2 — p3) cos(3 — ¢1).
Hence the following rule of the measurements should be observed:

For the determination of the plane Hooke’s tensor for the material of no (or
unknown) symmetry, using the uniaxial tension tests one should take at least three
specimens whose axes are neither parallel nor orthogonal to each other.(1?)

It is not difficult to show that if the axes of orthotropy are known, only two
specimens are necessary (the one along an orthotropy axis and the other under the
angle of 7 /4 being particularly convenient). In the case of the isotropy recognized
in advance, only one specimen is necessary.

Appendix
A.l. Plane tensors

Two-dimensional Euclidean plane E consisting of the elements x, y, ... with the
scalar product x+y we shall call the physical plane (it can be e.g. the plane tangent

(*?) This result is not quite unexpected: it is not difficult to obscrve (compare (4.27)) that for the orthogonal
directions v,/ E, = v,/ E,.
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to the median surface of the shell at an arbitrary point). The plane E generates
the plane Euclidean tensors as the elements of the tensorial powers 7, = Q" E,
p = 1,2,... . Every tensor A € 7, is a finite linear combination of the simple
tensors X1 @ ... ® Xp.

A.2. The rotations and mirror reflections of the tensors

Every rotation x — Rx of the physical plane, R € E @ E, rotates all the tensors,
A — R+ A. The operators R+ are linear and defined on the simple tensors as
follows: R#(x; @ ...® x,) = Rx; @ ... ® Rx,. Similarly act the mirror reflections
x— Mx, Me EQE.

A.J3. Tensorial spaces

Every linear subspace & C 7, invariant under the rotations and the mirror
reflections of the physical plane, R+4 = U, M«{ = U, we call the tensorial space.
The representation of the tensorial space I/ (as well as the whole space 7,) in
the form of direct sum of the tensorial spaces U/ = U + ... + U we call the
isotropic decomposition of this space. The linear operators mapping /{ onto itself,
particularly the rotations and the reflections, can be considered as the tensors
from U @ U.

A.4. The tensors of the second and fourth rank

In the present paper we use the second rank tensors denoted (except for
1, R, M) as o, 3, ... and the fourth rank tensors denoted as A, B, ... . The
tensorial operations which we use can be expressed in the well-known language
of the Cartesian representations as follows:

Xy & Z;V; , QX < a;;r;,
troe = ay;, a@p < a;b
s iPpy s
(A1)
Aot — /h'qulilpq . TrA = Ai?qpq .

A-B = qurs [3;)1;1'5 ] AoB — -"iqu]}qu\'l .
The following relations hold true
(x@y)z = (yz)X, (x®P)T =B 1),
(A2) (x@B)o(TOV)=P-T)x@V,
R+(a@PB)=(R+a)® (R*P).
A.5. The tensorial unities

The tensorial unity of the plane E we shall denote by 1, while the unity of the
space EQ E—-by 7, thus1x = x, Zao = a forall x € E, o € (EQ E). In a similar
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way one can introduce the tensorial unity 7,y € U @ U into every tensorial space
U. In the language of Cartesian representations:

(A3) (1);; = bi5, (D)ijer = 6irbj1.
A.6. Euclidean tensor spaces

In every tensor space 7, a scalar product A-B, defined for the simple ten-
sors: (X1 @ ... @ %) (Y1 @...®Yy) = (X1y1) ... (%p¥,) can be introduced, yielding
2P-dimensional Euclidean space. Every orthonormal basis in 7, we shall call Carte-
sian. Only such rotations of the Euclidean spaces 7, remain in the scope of our
interest, which are generated by rotations of the physical space, as described
in A.2.
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