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1\vo-dimensional Hooke's tensors - isotropic decomposition, 
effective symmetry criteria 

A. BLINOWSKI, J. OSTROWSKA- MACIEJEWSKA 
and J. RYCHLEWSKJ (WARSZAWA) 

MY FOUR'rn RANK plane tensor H obeying the "Hooke's" symmetries (H,1 kt = H 1,kt = l-fkto1 ) 

can be split into three parts, behaving differently under the two-dimensional space rotation and 
belonging to the three different, mutually orthogonal, two-dimensional subspaces remaining stable 
under the rotation. Such representation leads to a convenient set of functionall y independent 
invariants, vanishing of some of these invariants demarcating the transiti ons of the tensor to the 
highe r symmetry class. A non-trivial effective condition of orthotropy has been obtained. Some 
problems concerning the necessary and complete set of measurements of the elastic properties are 
also encountered. 

1. In troducti on 

LARGE VARIETY of engineering problems of structural mechanics concerning the 
applications of natural or man-made anisotropic composite materials can be effec-
tively analyzed with the use of the plane stress and/or strain state concepts. Thus 
the convenient description o f the plane elasticity and limit criteri a is not only of 
theoretical, but also of practical interest. In some recent papers [8, 9], it was shown 
that some problems, which, due to their discouraging complexity, look rather bor-
ing and demanding time-consuming analysis in general (three-dimensional) case 
(cf. [5]) , can be, with moderate efforts, effectively solved in the plane case. 

In the present paper the authors will demonstrate an effective description of 
the properti es of Hooke's tensor making easier both the better comprehensio n of 
the matter and the practica l applications of the results. Almost all the considera-
tions can be applied without change to elastic stiffness and/or compliance tensors 
as well as to the quadratic limit condition tensor. The results, together with the 
earlier obtained results presented in [8, 9] exhaust most of the practical aspects 
of the description of anisotropy of the plane, linearly elastic and quadratic limit 
properties e). 

2. Hooke's tensors 

Our subject are plane tensors of the fourth rank H 6 Tt., having the following 
internal symmetries: 
(2.1) ff ;j kl = ll jikl = ll ;jtk = lhtij . 

( ') Some interesting but purely theoretical problems, lik e the polynomial integrity basis, remain out of the 
sphere of our interest in the present paper. 
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The most important tensors of this kind are the stiffness tensors and the com-
pliance tensors of the theory of plane elasticity, thus in [3] it was proposed to call 
them Hooke's tensors. Among the appli cations of Hooke's tensors one can men-
tion their role as linear operators a. ---+ H·a., bilinear fo rms (a.,f3) ___... a·H·f3 or 
as quadratic functionals a. ---+ <:x.·H·a., e.g. functionals of energy or the limit stress 
intensity [1] . A Hooke's tensor H can play a role of the stifTness or compliance 
tensor only if a.·H·a. ;:::: 0 for every a.. 

In the present section we shall present the important decompositions of the 
Hooke's tensors, useful for the analysis of the symmetries and the invariance. It 
would be convenient to begin with recalling the notions and the notation for the 
second rank tensors. 

2.1. Second rank plane tensors 

All the isotropic orthogonal decompositions of the plane second rank ｴ･｟ｾ［ｾ ｳ ｯｲ ｳ＠

are included in the following formula: 

(2.2) 72 = S + A = P + V + A , 22 = 3 + 1 = 1 + 2 + 1, 

where S is the three-dimensional space of plane symmetri c tensors a. T = a., A is 
the one-dimensional space of skew-symmettic tensors a. T = - a., P is one-dimen-
sional space of isotropic tensors 'U 1 and V is the plane of the two-dimensional 
deviators: a. T =a., tra. = 0. These decompositions are orthogonal, S .l A , P 1. 

V . To these decompositi ons correspond the foll owing orthogonal decompositions 
of unity I of E 0 E (see (A.S)) 

(2.3) 

where 

(I s )ijkt 

('I p )i j k/ 

= ｾ＠ (8ikOjt + 8it8Jk) , 

1 
= 20jj0kt . 

The unity Is of the space S (see (A.5)) acting on the second rank tensors, 
a. ---+ Is ·<:x., performs an orthogonal projection of the space 72 onto the S space, 
hence Is·a. =a. iff a. E S. The other unities I v, 'Ip , TA act in a similar way. 

In the forthcoming consideratio ns the one-dimensional space A and its unity 
TA will remain out of the scope of our interest. 

Taking an arbitrary Cartesian basis w 1, w 2, w3 inS and an arbitrary Cartesian 
basis T 1, T 2 in V, one can write 

(2.4) 

Is = w 1 0 w 1 + w 2 0 w 2 + w 3 0 w3 , 
Iv = T 1 0 T 1 + T 2 0 T 2 , 

1 
'Ip = 2 10 1. 
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For every tensor w E S takes place the well-known spectral decomposition 

(2.5) 

where w1, w2 is the Cartesian basis in the physical plane ww1 = w1 w1, ww2 = 
w2w1. Thus every deviator has the following canonical form: 

(2.6) 

where d·d.L = 0, ldl = ld .L I. It can be also represented as T = m Q9 n + n Q9 m, 
n•m = 0. The interpretation of the deviators as stresses is shown in Fig. 1; thus 
we shall further call them pure shears. 

F I G. 1. 

The following expression, uniquely representing a tensor w E S as the orthog-
onal sum of the isotropic tensor and the pure shear: 

(2.7) 

we shall call the isotropic decomposition of a second rank tensor. 
The rotations R (and the min·or reflection M) of the physical plane act in Ti 

according to the rule: o. -> R * o., where 

(2.8) 

One-dimensional subspaces P , A are the axes of every rotation R*. In the plane 
of deviators V, a rotation R( <p) of the physical plane by the angle <p acts as a 
rotation R( <p )* by the double angle 2<p (Fig. 2). Indeed, since 

(2.9) 

thus 
(2.10) 

R( <p )d = cos <pd + sin <pd.L , R( <p )d.L = - sin <pd + cos <pd.L 

The action of the mirror reflections is similar. 
If a Cartesian basis ( n 1, n2) in the physical plane is chosen, then the vec-

tors x are represented by the pairs of numbers (x1,x2) and the tensors by the 
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p 

0 

F IG. 2. 

number-valued matrices 2 x 2 ( aij ). Then 

R( c.p) ,..., [ ｾｳ＠ <p 
Stn <p 

- sin c.p l , 
COS<p 

(2.11) 
- sin c.p l [ a 11 a 12 ] [ COS<p 

cos <p a21 a22 - sm <p 

2.2. Decompositions of Hooke's tensors 

sin c.p l · 
COS<p 

During the last decade the spectral decomposition of the elasti city tensors 
(which can be traced back to Lord Kelvin and has been recalled by J. R YCHLEWSKJ 

in early eighties [2]), is becoming almost canonical and even finds its way to 
textbooks [10] . In the plane case, such a decomposit ion o f the two-dimensional 
Hooke's tensor has the form 

(2.12) 

where the tensors w K (A' = I, IT, ITI ), call ed the proper states- the e igenelements 
of the symmetric linear operator a -+ H·a constit ute an orthonormal basis 

(2.13) 

XI\ being the corresponding eigenvalues e). 
It is not difficult to observe that, if one of the proper states is a pure shear, 

then the other two should be mutually coaxial. Indeed, if, say, wm is a deviator, 

(') For the case of the elastic stiffness tensorS J. R YCHLEWSKI proposed [2( to call these eigenvalues denoted 
by >. K the Kelvin moduli, their reciprocals I />. K are the e igenvalucs of the clastic compliance tensor C, which 
has the same elastic proper states as S, while the independent parameters, defi ning the elast ic p roper states r;.

1 
he proposed to call the .l·tif!ness di.1·tributurs. 
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then there exists such a basis in the two-dimensional space that 

(2.14) 

Thus, due to the orthogonality condition, the other two proper states should have 
in the same basis the foll owing diagonal representations: 

(2.15) WJ rv [
cos a 0 l 

0 sin a ' 
Wn rv [

- sin a 0 l 
0 cosa 

(we recall here that a has nothing in common with any rotation, it is merely a 
convenient parameter). 

Obviously, such a set of proper states describes the orthotropic material -
the reflections with respect to any o f the two common proper axes of Wt and w 11 

merely changes the sign of wm leaving C unchanged. Moreover-vanishing of the 
trace of at least one proper state is the necessary condition of orthotropy. If the 
pure shear T along the orthotropy axis were not a proper state, then it would give 
rise to non-vanishing diagonal terms in H·T tensor. The reflection would change 
the sign of T while H·T would change according to a different rule (diagonal 
terms are insensitiv e to such a transformation) i.e., against the assumption, the 
reflection would not preserve the shape of H. 

According to (2.6), the rotation by 1r / 2 interchanging the vectors d, dl. (the 
change of sign is insignificant) transforms arbitrary traceless tensor T into - T, 
hence if in (2.15) a = 1r / 4, then we are dealing with the tetragonal symmetry 
(the symmetry of the square). Observe that in such a case the hydrostatic state, 
(proportional to the unit tensor) must be a proper elastic state. 

At last, if the two Kelvin moduli, corresponding to the two pure shear proper 
states, are equal - one obtains the case of isotropic material. We shall prove in 
the forthcoming consideration, that no other symmetries of the plane Hooke's 
tensors are possible. 

The spectral decomposition (2.12) is an exact counterpart of the spectral de-
composition (2.5). Let us find a counterpart of the isotropic decomposition (2.7). 

The rotations of the physical plane R act on the fourth-order tensors according 
to the rule A --+ R * A (see (A.2)). It is evident that every Hooke's tensor H, 
being rotated preserves its "Hookean nature", any lin ear combination of Hooke's 
tensors produces again a Hooke's tensor. Thus the set of all Hooke's tensors is 
the tenson"al space (see (A.2)) 1t c ｾ Ｎ＠ For further considerations only this space 
will be of our interest; it is evident that dim 1t = 6. We have to find an isotropic 
decomposition of the space H. 

The earlier introduced unities Is, Ip, Iv are Hooke's tensors. Moreover, every 
isotropic Hooke's tensor is a linear combination of the two arbitrarily chosen 
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tensors out of this threesome. In such a way we obtain the tensorial plane J c 1t 
consisting of the isotropic Hooke's tensors. The pair 'Ip, Iv is an orthonormal basis 
in J, thus every isotropic Hooke's tensor has a unique orthogonal decomposition 

(2.16) 'Ip ·'Iv = 0. 

The orthogonal complement of this plane J .L is a four-dimensional tensorial 
space. Its possible isotropic decomposition can be only of the fo llowing form: 
J .L = A + B, 4 = 2 + 2. Indeed, all one-dimensional tensorial subspaces in 1t 
belong to J. The conditions of orthogonality of the tensor H to J, Ip · H = 0, 
Iv · H = 0 are of the following form 

(2.17) 1·H·1 = H i ijj = 0, Tr H :::::: ll ij i j = 0. 

These conditions meet e.g. all the tensors from the set A of the following form: 

(2.18) 1 0 T + T 0 1, T E V. 

Since for every rotation R* the tensor R* (1 ® T + T ® 1) = 1 ® (R * -r) + (R * -r) @ 1 
remains in A and every lin ear combination of the tensors from A belongs to A, 
thus A is one of the two tensorial planes in J .L, dim A = dim V = 2. 

The last component of the isotropic decomposition of the space 1t is the 
orthogonal complement B of the space A in J .L. Let us find the general form of 
the tensors D E B. From the orthogonality condition D .lA we have (l ·D)·T = 0 
for every T E V. Combining this with the condition 1·D·1 = 0 one can see that 
(l·D)·o. = 0 for every o. E S , therefore 1·D = 0 E S . Making use of the spectral 
decomposition 

(2.19) 

from the conditi ons 1· D = 0, TrD = 0, one obtains readily 

A1trw1 = Autrwu = AIIItrwiii = 0, 

AI + Au + AIII = 0. 
(2.20) 

The only solution, other than D = 0, is the following one 

(2.21) Am= - .A.I , Au = 0, trw1 = trwm = 0. 

Thus every tensor D E B can be uniquely expressed in the fo ll owing form 

(2.22) 

where T·T.L = 0, 1-r l = 1-r.LI. It is not difficult to check that the tensor D is 
totally symmetric and traceless, i.e. 

(2.23) D ;;kt = 0, 
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where a is an arbitrary permutation. Thus the plane B consists of the plane fourth 
rank deviators [3] e). Thus, concluding: 

Isotropic complete decomposition of the space of plane Hooke's tensors has the 
following form 
(2.24) 'H = J +A+ B, 6 = (1 + 1) + 2 + 2, 

where J is the plane of space of isotropic Hooke's tensors, A is the plane of the 
tensors: l 0 T + T 0 l, T denoting pure shear, B is the plane of the fourth-rank plane 
deviators. In other words: the isotropic decomposition of every plane Hooke's tensor 
has the following fom1: 

(2.25) H = >..pi p + >..viv + (1 0 T + T 0 1) + D, 

the four components defined above being mutually orthogonal; invariants A.p and 
>..v and the deviators T , D are the linear isotropic functions of Hooke's tensor. (4) 

The rotation R( <.p )* is a rotation of the six-dimensional space 'H around the 
fixed plane J. It is evident that the tensorial plane A rotates by the double angle 
2<.p. The deviatoric plane B rotates by the quadruple angle 4<.p, because, according 
to the formulae 

(2.26) 
R( <p) * T = COS 2<p T + sin 2<p T \ 

R(<p) * T l. = - sin 2<p T + COS 2<p T l. , 

taking D = T 0 T - T l. 0 T l., one obtains 

(2.27) 

3. Hooke's tensors as the second rank tensors 

The intriguing similarity between the canonical fo rms of the pure shears T 

(2.6) and the Hooke's deviators D (2.22) can be noticed. The explanation of 
this fact is simple and leading to the well known techniques of handling stiffness 
tensors, commonly used in the engineering applications. 

The space Tt can be considered, if it is convenient, as any tensorial product 
T; 0 Tj , i + j = 4. The representation Tt = 7i 0 7i turns out to be especially 
useful; it means that the tensors of the fourth rank are considered as the "second" 
rank tensors from the sequence Q9P 7i , p = 1, 2, . . . . This is particularly useful 
in the case of the Hooke's tensors. 

(') The last expression wl l be call ed the canonical fonn of the deviator D; (in 131 the canonical form of the 
plane deviato r of arbitrary rank has been shown). 

(•) 2.\ p = 1•11•1, 2.\ p =Trll - >.p , 2T = II• 1 ->.7>1, 

I 
D = H+ >.pTp-.\ v Tv - 21(11•1)0 1+1® (11•1)] . 
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The space o f the plane symmetric second-rank tensors is the symmetrised 
tensorial square of the physical plane E, 

(3.1) S = sym E ® E, dimS= 3. 

Quite simil arly, it is convenient to consider the space of the Hooke's tensors as 
the symmetrised tensoria l square of the S space, 

(3.2) 1{ = symS ® S , dim 1{ = 6. 

In other words: Hooke's tensors can be considered as the symmetric " second 
rank" tensors, generated by the tensors a E S , exactly in the same manner as the 
tensors a E S are generated by the vectors x E E. Such a viewpoint is correct and 
useful , under the following important condition, however: the o rthogonal group 
O(S) of the transformatio ns of the Euclidean three-dimensional spaceS contains 
such rotation and mirror refl ectio ns, which are no t generated by the rotations and 
the reflections of the physical plane E, for example, the rotation transforming the 
isotropic tensor 1 E P into the pure shear T E V, ITI = Il l = v'3. Such rotations 
and reflecti ons remain out o f the scope of our interests. 

If { v r:} , A" = I , IT , III is a Cartesian basis in S, then { v r,· 0 v L} is a Cartesian 
basis in S® S, thus we can writ e 

(3.3) 

Symmetri sing dyads v 1,· ® v L one obtains a basis in the space o f the Hooke's 
tensors. 

The usefulness of the descri pti on of the Hooke's tensors as the "second rank" 
tensors can be demonstrated using the three foll owing examples: 

1. Taking in the last re lation the proper states w 
1
, o f the tensor H as the base 

elements v K, one obtains the spectral decomposit ion of the tensor H (2.12). 

2. According to the new view on 1{, we shall express the ro tati ons a --+ R * a 
and H ___, R * H in the foll owing form 

(3.4) R * a = R·a, 

where R E S Q9 S, R T o R = I s . 
Since a ---.. R * a is the rotation of the three-dimensional space S around the 

unit base vecto r 1/ .Ji by the double angle (Fig. 3), therefore C) 

(3.5) n = I p + cos2cpi v + sin 2<p Ev, 

(" )This is a gcncrali 7.ation of the rotat ion in the three-dimensio na l Euclidcan vecto r space aro und the unit 
vecto r n by the angle <p, R = n 0 n + cos <p (I - 11 0 11) + sin <p E, where E = n 1 1\ n2 := n, 0 112 - 112 0 n, and 
{ nt , 02 , n} is an orthonormal basis. 
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p 

FIG. 3. 

where Ev is the tensor o f orientation of the deviatoric plane V , i.e. 

(3.6) Ev = o. ® 13 - 13 ® o. , 

where {o.,l3} is an arbitrary basis in V left-oriented in the orientation of Ev. 

3. Let us adopt in S an orthogonal basis, generated by the isotropic state 
1 E P and the pure shears o., 13 E V, o.·l3 = 0, lo.l = 1131 = Ji. Symmetrised 
and normalised tensor products o f these tensors generate the foll owing Cartesian 
basis in 7-i: 

1 
82 = VZiv, 

1 
84 = M" {l ® l3 +13® 1), 

2v 2 
(3.7) 

1 
8 3 = M" {l @ o. +o. @l ), 

2v 2 
1 

86 = M" (o. ® l3 + 13 ® o.). 
2v 2 

1 
8 s = M" (o. @o. - 13 ®13), 

2v 2 

Clearly the pairs (81, 82) , (83, 84) , (85, 86) are the bases in the correspond-
ing tensorial spaces J, A, B. Hence the matrix of rotatio n R* has in the basis 
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B1, •• • , B6 the following fo rm: 

1 

(3.8) 

The decomposition 
(3.9) 

1 
cos 2<p - sin 2<p 
sin 2<p cos 2<p 

can be reduced by denoting 

1 
(3.10) T = r-> (H3o. + H4r3) , 

2v2 

to the isotropic decompositi o n (2.25). 

cos 4<p - sin 4<p 
sin 4<p cos 4<p 

The last example leads to some interesting relations, which will turn out to be 
useful in the forthcoming considerations. Introducing the fo llowing notation: 

R1 := j Jiff + !!J , 

(3.11) 

one can write 

(3.12) 

The angles (3 and 1 are not merely the handy parameters, they change under the 
rotation of the physical plane. Using the representation (3.8), one can write 

(3.13) R * H = I/ 1B1 + II2B2 + R1 [cos((J + 2<p)B3 + sin((J + 2<p)B4] 

+ R2 [cos(/ + 4<p )B5 + sin (J + 4<p )B6] . 

This relation clearly discloses the geometric interpretation of the angles (3 and 1 
(see e.g. Fig. 4). 

Let us establi sh the way of choice of bases inS and inS® S. Let { n1, n2 } be 
a Cartesian basis in the physical plane E; we shall adopt the foll owing Cartesian 
basis in S (6) 

(3.14) 

Note that v 1 + vn = I E P, v 1 - v 11 E V, v 111 E V . 

( 6) TI1e coefficient I / v'2 in the expression fo r v111 is essenl ial. Taking instead the symmetr ic part (I / 2)(n1 0 
n2 + n2 0 DJ), we would not obtain the Cartesian basis, compare [1 2). 
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F IG . 4. 

In S Q9S we shall take the Cartesian basis v1,· 0 V £, 1\·, L = I , IT , liT. The 
expressions fo r the tensors a. E S and A E S ® S, 

(3.15) 

in the fixed basis {n 1, n2} are determined by the mutuall y unique relations: 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

moreover: 

(3.20) 

(3.21) 

Ct ,...., [ Ｚ ｾ＠ l = [ Ｚｾ ｾ＠ l , 
l"l'3 J2a12 

A13 ] [ J\1111 
!123 = A2211 

J\33 J2;t 1211 

A 1122 

A2222 

J2Am2 

J2A1112] 
J2A2212 , 

2A 1212 
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The representations of some important tensors have the following form: 

[1 0 
ｾ｝＠ ' 

Ip ｾ ｱｾ＠
1 

ｾ｝＠ ' 
I rv 0 1 1 

0 0 0 0 
(3.22) 

Iv ｾ＠ H Ｍ ｾ＠
- 1 

ｾ｝＠ ' 
Ev "'-

1 ｛ｾ＠
0 -1] 1 0 1 , 

0 V21 -1 0 

while, for the base tensors Br;, one obtains 

[ 1 1 0] 
B2"' -

1
- [ Ｍ ｾ＠

- 1 

ｾ｝＠ ' 
B1,...., ｾ＠ 1 1 0 , 1 

0 0 0 2Vl 0 0 

[ 1 0 0] ｮ Ｌ ｾ＠ ｱｾ＠
0 J (3.23) B3 rv ｾ＠ 0 - 1 0 , 0 

2 
0 0 0 

Bs"' -
1
- [ _ ; 

- 1 

ｾ｝＠ ' ｮ Ｌｾ＠ ｱｾ＠
0 -J 1 0 

2Vl 0 0 - 2 - 1 

Under such a choice, the components If 1 of the Hooke's tensor H in the base 
BK and the components of the "second rank" representation of the same tensor 
Hi j are related by the following equali ties: 

TT = H11 + H22 + 2!/12 
. I 2 , 

(3.24) I! = H11 - H22 
3 V2 , 

H _ H11 +H22-2H,2- 2J/33 
5 - 2Vl , 

At last, the representation of the rotation tensor R given by (3.4), (3.5) has the 
following form: 

(3.25) 
[ 

1 + cos 2<p 

RI\L"' ｾ＠ ] - COS2<p 

V2sin 2<p 

1 - cos 2<p 

1 +cos 2<p 

- Vlsin 2t.p 

-V2sin 2<p l 
Vi sin 2<p . 

2cos 2<p 
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4. Invariants and symmetries - effective formulae 

4.1. Symmetries 

The problems of the symmetries of plane Hooke's tensor has already been 
discussed in the previous section in terms of proper elastic states and Kelvin 
moduli. In the case of the "second rank" representations, the matter is also not 
diffi cult if only an axis of the presumed symmetry is known. In such a case, 
taking one base vector, say n 1 along this axis, o ne can determine the convenient 
" second rank" representation If K L of the Hooke's tensor C). Inspecting the shape 
of this representatio n and recallin g some considerations from the Subsec. 2.2, 
particularly the expressions (2.15), (216) and the two subsequent paragraphs o f 
text, one can easil y tell , what ki nd of symmetry we really observe, depending o n 
the shape of the representation of the Hooke's tensor, namely: 

full symmetry (isotropy), 

lln - ｛ｾ＠ ｾ＠ 0 l 0 ' 
(a- b) 

symmetry of the square, (tetragonal), 

symmetry of rectangle ( o rthotropy) 

'''" - ｛ ｾ＠
b 0] 
c 0 . 
0 cl 

The problem ari ses if we find 1!13 and/or IJ23 difTerent from zero: it is diffi cul t 
to say, in this case, if there is no symmetry at all o r, maybe, we have chosen a 
wrong axis. We must check up in this case if there exists such a rotation by the 
angle cp which annihilates the terms containing 84 and 86 in the expression {3.13). 
To this end the foll owing two re lations must hold true: 

(4.1) 

or 
(4.2) 

sin(.B + 2cp) = sin J3 cos 2cp + cos J3 sin 2cp = 0, 

sin(/+ 4cp) = sin 1 cos4cp + cos A/ sin 4cp = 0, 

tan 2cp = - tan /3, tan 4cp = - tan / · 

(')The corresponding measurement rules will be discussed in the last subsection of this section. 
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These two equations can be fulfill ed simultaneously if the following relation holds 
true: 

2 tan {3 
tan 1 = 2 = tan 2{3 . 

1 - tan {3 
(4.3) 

Using (3.11) one can rewrite this condition in terms of the representation of 
the Hooke's tensor in the basis {BK} obtaining the following effective symmetry 
criterion for the Hooke's tensor H: 

Hooke's plane tensor H obeys at least orthotropic symmetry if and only if the 
components of its representation in the basis {BK} fulfil the following relation: 

(4.4) 

We shall prove in the next subsection that J5 is invariant under rotation (but not 
under reflections). The condition (4.4) is trivially fulfilled , if R1 and/or R2 vanish. 
Looking at the relation (3.13) one can readily observe that: 

R1 = 0 yields symmetry of the square, while simultaneous vanishing of R1 and 
R2 give rise to the isotropy of the Hooke's tensor. 

As it has already been shown, the presence of the plane of symmetry bears 
orthotropy. We shall prove now that 

The only possible non-tri vial (i .e. different from the total isotropy) rotational sym-
metry of the plane Hooke's tensor is the invariance under the rotation by 1r /2 - the 
tetragonal one. 

Indeed, in virtue of the uniqueness o f the tensor decompositi o n in given or-
thonormal basis and the functional independence of sin(·) and cos(·), to preserve 
the plane Hooke's tensor under the two-dimensional rotation by the angle 21r / n 
one has to fulfil the following two conditions: 

(4.5) 

(4.6) 

{3 47r {3 + - = + 21r1n 
n 

87r 
I + - = I + 27rk 

n 

o r R1 = 0, 

or n2 = 0, 

where n, m and k are arbitrary integers. The only (non-trivial) solution of (4.5) 
and ( 4.6) is: R1 = 0, n = 4, k = 1, what proves our assertion (8) . 

( 8 ) One may ask, why by cutting off a slice perpendicularly to the axis of the tr igonal symmetry of the 
three-dimensional body we are gaining additional rotational symmetry? A closer inspection of the case shows 
that the trigonal symmetry of the three-dimensional body is connected with shearing in the planes orthogonal 
to the axis of the trigonal symmetry. This shearing stiffness is immaterial in the case of a plane state. 
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4.2. Invariants 

Looking at the relation (3.13) one can tell at once that the following four 
quantities: 

(4.7) 

1 
J1 = H1 = 2(Hit+Hn + 2Ht2), 

1 
h = II2 = ;;:;U!ll + [[22 - 2[[12 + 2JI33), 

2v2 
1 h = RI = ITl + HJ = 2(fl11 - 1122)2 + (Jl13 + 1123)2 , 

1 
J4 = ｒｾ＠ = Hff + Hl = S(Jfu + Hn- 2HI2- 2JJ13)2 + (Il13- JJ23)2 

are invariants of the proper orthogonal group (the group of rotations). The plane 
Hooke's tensor, however, has in general six independent components, while the 
proper plane orthogonal group is one-parametric, thus one can expect five func-
tionally independent invariants. 

Let us denote: 
(4.8) {3 := {3 + 2cp, ::Y := 1 + 4cp. 

Certainly the quantity 
(4.9) 'lj; = ::Y - 2{3 = 1 - 2{3 

is invariant with respect to the proper orthogonal group, and, moreover, it is 
(modulo 211') uniquely determined by the components of Hooke's tensor in an 
arbitrary basis. On the other side, if the values of the previous four invariants 
as well as 'lj; are known, then the relation (3.13) determines the Hooke's tensor 
to within the accuracy of an arbitrary rotation. Thus these five invariants consti-
tute a complete functionally independent set of invariants with respect to the proper 
orthogonal group (complete irreducible hemitropic function basis). 

Tracing the derivation of the orthotropy condition ( 4.4) one can observe that its 
left-hand term can be expressed by 'ljJ e) and the condition ( 4.4) can be rewritten 
as follows: 
(4.10) Js= /lfl72sin 'lj; =O. 

Any reflection tensor in two-dimensional space can be represented as the 

superposition of the axes exchange (reflection) [ ｾ＠ ｾ＠ J and some rotation, the axes 

exchange merely changes the sign of the terms containing B3 and B6 changing {3 
into 11'-{3 and 1 into -1, i.e. V' (taken modulo 211') changes its sign; thus only cos'lj; 
but not 'lj; itself or sin 'lj; is invariant with respect to the complete orthogonal group 
(i.e. containing both the rotation and the mirror reflections), while the previous 

(
9

) The square, or absolute value of this term can be considered as an invariant measure of deviation from 
the orthotropy. 
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four rotationally-invariant terms are the invariants of the complete orthogonal 
group as well. 

These considerations lead to the following important conclusion: 

No rotation in the plane of the stress (strain) of the plane elastic state is able 
to change the sign of 'lj;, thus the class of the materials of the lowest ｾｹｭｭ･ ｴｲ ｹ＠ can 
be subdivided into two classes of "left" and "right " materials, depending on the sign 
of 'lj; . 

The "left" materials can be changed into "right" ones by the ofT-plane turning 
them upside-down. This means that the sheets of such a material have two distinct 
sides, which should be specially marked in order to make the information on the 
elastic properties meaningful. 

For completeness we shall express the obtained invariants in terms of the 
four-index representation of the Hooke's tensors. 

Using relation (3.17) to express the first two invariants ( 4.7) by the components 
H ij kl it is not difficult to observe that the following two identities hold true: 

( 4.11) 

(4.12) 

The expressions for the remaining invari ants are no t straightforward. Observe 
that they depend only on the traceless part H' of the Hooke's tensor H (3.12): 

(4.13) 

or 

(I! f;u = 0, ll ftil = 0). 

Substituting relations (3.7), (3.11) and (3.23) into ( 4.13) one obtains the fol-
lowing representation of the plane second rank tensor H' ·1: 

(4.15) 

Thus 
(4.16) 

sin !3 l 
- cos/3 · 
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Due to the orthonormality of the base tensors {BK}, directly from ( 4.13) it follows 
that 
(4.17) H'·H ' = J/:j kl f/ :j kl = Ri + RL 
hence: 
(4.18) 

The most time-consuming is the derivation of the last relation - the one de-
scribing the "shape of deviatoric part", i.e. expressing the functions of 1/J in terms 
of polynomial invariants of the Hooke's tensor. Omitting the tedious calcula-
tions eo) we present the following result: 

( 4.19) 

It is not difficult (however it can be fairly boring) to show that our set of invariants: 
H 1, !12 , Ri, ｒ ｾ＠ and Tr(H'3) is equivalent to the set of invariants obtained by 
ZHENG [9], who proved that they constitute the complete irreducible isotropic 
function basis. 

One cannot expect to find an expression o f such a kind for sin 1/J. There is 
a simple reason for this: all the polynomial scalar expressions obtained by the 
contraction are invariant with respect to complete orthogonal group while sin 'lj; , as 
we have already shown, is the hemitropic function of the plane Hooke's tensor. 

The last questio n, concerning the invariants of the Hooke's tensors, which has 
to be discussed are the conditio ns of positiv e definiteness 

(4.20) 

for every o. E S , which are required for most applications of the Hooke's tensors. 
In the case of the spectral decomposition of the stiffness (compliance) tensor the 
problem reduces to the trivial conditions of non-negativeness of the three Kelvin 
moduli , which are equivalent to the conditions: 

(4.21) 

>-1 + >-2 + >.3 ｾ＠ 0, 

>-1 >-2 + >-2>.3 + >.3>.1 ｾ＠ 0, 

>-1>.2>.3 ｾ＠ 0. 

Recalling that in the basis of proper states the representation of the Hooke's 
tensor is diagonal, and taking into account that all three expressions ( 4.21) are 
invariant with respect to any orthogonaltransformation in S ® S (including those, 

( 
1 0

) The following interesting relations can m<Lke this boring procedure slightly simpler: ｂ ｾ＠ = i I Bt + \1'2(82 + 
Bs)J.Bi = HB1 + ｖｬ Ｈｾ Ｍ ｂ Ｕ Ｉ｝Ｌｂ ｾ＠ = ｂ Ｒ Ｌ ｂ ｾ＠ = B2, sym(B:;B4) = Ｒ ｾｂ ｲＬ Ｌ ｳ ｹｭＨｂ Ｓ ｂ ｳ Ｉ＠ = Ｒ ｾ ｂ ＳＬ ｳ ｹｲｮＨｂ Ｓ ｂ ｯ Ｉ＠ = 

Ｒ ｾ＠ 84, sym(B4B5) = - Ｒ ｾ＠ 84, sym(B4 Bt\) = Ｒ ｾ＠ 8 3, sym(Bs Br,) = 0. 
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which do not correspond to any rotation of the physical p lane), after some rear-
rangements one can express these conditions by the polynomial invariants of H 
as the fourth-rank tensor 

nH ｾ＠ o, 
(4.22) (TrH)2 - 1fH2 ｾ＠ 0, 

1 1 1 
3TrH3 - 2nHTrH 2 + 6(TrH)3 ｾ＠ 0. 

The same relations can be expressed in the language of the invariants gener-
ated by the isotropic decompositi on as follows: 

(4.23) 

!11 + hff2 ｾ＠ 0, 

!1} + 2J2H1H2- RI- ｒｾ＠ ｾ＠ 0, 

vf2H 1(H} - ｒｾＩＭ RI(H2 - R2cos1/;) ｾ＠ 0. 

It is not diffi cult to notice that no restriction on the sign of 7j1 has been imposed 
by the " thermodynamic" condition of the positive definiteness o f the Hooke's 
tensor. Thus both " left" and " right" materials are thermodynamicall y admissible. 

4.3. The rules of the measurements 

The procedures of measurements of the elastic properties in the case of ma-
terials supplied in the form o f sheets and foils very seldom include direct measure-
ments of the shear moduli e I); not only the standard, but even more sophisticated 
laboratory equipment is usually rather inappropriate for such measurements. Usu-
ally the Young moduli and Poisson ratio in the chosen directions are measured 
and then, if needed, the other elastic constants are calculated. 

Let us denote the direction of uniaxjal tension by 3·1 and let C denote the 
elastic compliance tensor, then the stress Cl and stra in €: have the following rep-
resentations: 

(4.24) 

Consequently, by the definitions of the Yo ung modulus E and the Poisson ratio 
v, one can write: 

(4.25) 
1 
E = e ll· 

V - = -C21· 
E 

In general we have to determine six unknown elasti c constants; to this end we 
should take at least three specimens oriented at three different angles <t?i ( i = 
1, 2, 3) with respect to some fix ed material basis. Performing measurements we 

(' 
1

) We shall leave aside in this paper the acoustic rncasurcrncnt techniques. 
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would obtain then six quantities: E;, v; (i = 1, 2, 3). Making use of the Eq. (3.13), 
and substituting expressions (3.23) for the base tensors 8 1-;, one can write relations 
( 4.25) in the fo ll owing form: 

(4.26) 

(4.27) 

Using (3.11) one can rewrite Eq. (4.26) and (4.27) in the following form: 

(4.28) 1 C 1 C cos 2c.p; C sin 2c.p; C 
2 1 + 2.;2 2 + .j2 3 - .j2 4 

cos 4c.p; C sin 4c.p; C _ 1 
+ 2 .j2 5 - 2 .j2 6 - E; ' 

(4.29) _ cos 49; C + sin 4c.p; C = _ v ; 

2.;2 5 2.;2 6 E; . 

Taking i = 1, 2, 3 we obtain the system of the three pairs of equations for six 
unknown constants C r-· . The determinant L\ of this system can be expressed as 
follows: 

(4.30) L\ = 2hsin\9 I - 9 2) sin2(c.p2 - 9 3) sin2(9 3 - 9I) 

x cos( <fJI - 9 2) cos( 9 2 - c.p3) cos( 9 3 - <fJI ). 

Hence the following rule of the measurements should be observed: 

For the detemzination of the plane Hooke's tensor for the matetial of no (or 
unknown) symmetry, using the uniaxial tension tests one should take at least three 
specimens whose axes are neither parallel nor Ot1hogona/ to each other. e2) 

It is not difficult to show that if the axes of orthotropy are known, only two 
specimens a re necessary (the one along an orthotropy axis and the other under the 
angle o f -rr / 4 being particularly convenient). In the case of the isotropy recognized 
in advance, only one specimen is necessary. 

Appendix 

A.l. Plane tensors 

TWo-dimensional Euclidean plane E consisting of the elements x, y, . . . with the 
scalar product x·y we shall call the physical plane (it can be e.g. the plane tangent 

( 12) This result is not quite unexpected: it is not difficu lt to observe (compare (4.27)) that for the orthogonal 
directions v, I E, = v1 I El' · 
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to the median surface of the shell at an arbitrary point). The plane E generates 
the plane Euclidean tensors as the elements of the tensorial powers Tp = Q9P E, 
p = 1, 2, .... Every tensor A E Tp is a finite linear combination of the simple 
tensors x1 ® ... ® xp. 

A.2. The rotations and mirror reflections of the tensors 

Every rotation x ---+ Rx of the physical plane, R E E ® E, rotates all the tensors, 
A ---+ R * A. The operators R* are linea r and defined on the simple tensors as 
follows: R*(x1 ® . . . ® xp) = Rx1 ® ... ® Rxp. Simjlarly act the mirror reflections 
x ---+ Mx , M E E Q9 E. 

A.3. Tensorial spaces 

Every linear subspace U c Tp invariant under the rotations and the mirror 
reflections of the physical plane, R*U = U, ｍｾ＠ = U, we call the tensorial space. 
The representation of the tensorial space U (as well as the whole space Tp) in 
the form of direct sum of the tensorial spaces U = U1 + ... + l-h· we call the 
isotropic decomposition of this space. The linear operato rs mapping U onto itself, 
particularly the rotations and the reflections, can be considered as the tensors 
from UQ9U. 

A.4. The tensors of the second and fourth rank 

In the present paper we use the second rank tensors denoted (except for 
I , R , M) as ｡ Ｌ ｾ＠ •... and the fourth rank tensors denoted as A, B , .... The 
tensorial operations which we use can be expressed in the well-known language 
o f the Cartesian representations as follows: 

(A.1) 

x·y ｾ＠ x;y;, 

tra = o;;, 

A·a ｾ＠ A;jpq<l'pq, 

A·B = Apqrsflpqrs, 

The following relations hold true 

a @ ｾ＠ ,__. O'i j/3pq' 

TrA = Apqpq, 

A o B - !lij pq fl pqkt. 

(x ® y)z = (y·z)x, (a® ｾＩﾷＧｔ＠ = @·T)a, 

(A.2) Ｈ｡ ﾮ ｾＩ＠ o (T ® v) = @·T)a ® v , 

ｒＪＨ｡ ﾮ ｾＩ＠ = ＨｈｈｸＩ ﾮ Ｈｒ Ｊ ｾ Ｉ Ｎ＠

A.S. The tensorial unities 

The tensorial unity of the plane E we shall denote by 1, while the unity of the 
space E ® E- by I, thus lx = x, I a = a for all x E E, a E (E ®E). In a similar 
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way one can introduce the tensorial unity Iu E U tg)U into every tensorial space 
U. In the language of Cartesian representations: 

(A.3) 

A.6. Euclidean tensor spaces 

In every tensor space Tp a scalar product A·B, defined for the simple ten-
sors: (x1 0 .. . 0 xp)•(y1 0 ... 0 Yp) = (x1y1) . . . (xpyp) can be introduced, yielding 
2P-dimensiona/ Euc/idean space. Every orthonormal basis in Tp we shall call Carte-
sian. Only such rotations of the Euclidean spaces Tp remain in the scope of our 
interest, which are generated by rotations of the physical space, as described 
in A.2. 
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