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Stokes flow past a composite porous spherical shell
with a solid core

B.S. PADMAVATHI and T. AMARANATH (HYDERABAD)

A GENERAL SOLUTION of the Brinkman equations in the form of an infinite series is presented. A
representation for the solution of Brinkman’s equations is also proposed and its equivalence to the
infinite series is established. The usefulness of the representation is demonstrated by applying it to
design a general method of solving an arbitrary Stokes flow past a composite porous spherical shell
with a rigid core. Some physical properties, such as the drag and torque exerted on the composite
sphere are calculated. Several iilustrative examples are discussed.

1. Introduction

In THE sTUDY of flow and heat transfer problems in porous media, two models
which have been extensively used are those due to DArcYy [1] and BRINKMAN
[2]. However, the Brinkman model seems to be favoured in some problems in
porous media, owing to the limitations of Darcy’s law. The inadequacy of Darcy’s
law in the formulation of problems in bounded porous media is primarily due to
the order of Darcy’s equations being lower than the second order Navier - Stokes
equations. A variety of flow and heat transfer problems in porous media were
solved using the Brinkman’s equations. In this paper, we give a general solution
of the Brinkman equations in the form of an infinite series by using a procedure
followed by Lams [3] in the case of Stokes equations. We also propose a represen-
tation for the solution of Brinkman equations in terms of two scalar functions and
establish its equivalence to the series solution. We shall use this representation to
study the problem of an arbitrary Stokes flow of an incompressible, viscous fluid
past a composite porous sphere with a rigid core, using the Brinkman model in
the porous region. The results obtained by MAsLIYAH er al. [4] who considered a
uniform flow past a composite porous sphere with a rigid core can be recovered
as a special case. Some illustrative examples are discussed.

2. Structure of the general solution of Brinkman’s equations

We consider Brinkman’s equations

(2.1) ~Vp+uViV= %V.

and the equation of continuity

(2.2) V.V =0,
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where V is the velocity, p is the pressure, y is the coefficient of dynamic viscosity,
and k > 0 is the permeability coefficient of the porous medium. Equation (2.1)
can be rewritten as

(2.3) (V2 = A3V = Vp,

where A% = 1/k.
The general solution of the equation

(2.4) (V- 2w =0,

is as follows:
(25) U= Z(‘\"l Fy, (/\7) + ¥y ”71(’\7'))\‘11 5

where X,, Y, are arbitrary constants, y,, = 7"5,(#,¢) is a solid harmonic of
degree n, and

5.00,9) = Z P (O(Anm cosme + By, sin me), ¢ = cosé.
l’”.:O

The functions F,(z) and H,,(z) (z = Ar) are defined as follows,

n o, m n m .
2 (2) = ,f?[’l+%(:). 2", (z) = ,/Z[\M_%(:).

where \/21‘717”%(:) and \/zlil"m%(:) are the modified spherical Bessel functions
which are finite at the origin and infinity, respectively. The functions F,(Ar) or
H,(Ar) are retained in the solution depending on whether the motion is finite
at the origin or at infinity, respectively. Suppose we assume the condition of
finiteness of the motion at the origin » = 0, then the general solution of Eqgs. (2.2)
and (2.3) is

o0
P= 2 Pnsy
=55
oo

(2.6) V= Z([(n + DF,_ (A1) + n}v,m(m),\?-ﬂ] Vo,

1
—72(271 ¥ ])I‘ﬂn+1(/\7‘)/\2r(1)n - rn(’\’)v X (l'\ u) a /\Tvpn) .
/l
where y,, ¢, and p,, are solid harmonics of positive degree n. When the condition

of finiteness at the origin is not imposed, we have an additional system of solutions
in which the functions F,,(Ar) are replaced by 17, (Ar).
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3. A representation for the solution of Brinkman’s equations

We now propose a representation for the velocity and pressure in Brinkman’s
equations (2.2) and (2.3) in terms of two scalar functions A and B and establish
its equivalence to the series solution given in (2.6). We assume the following form
for the velocity V,

V = curl curl(rA4) + curl(rB),

grad div(rd) — V(rA) + curl(rB).

(3.1)

Equation (2.2) is satisfied identically and substitution of (3.1); in Eq. (2.3) results
in

(3.2) grad (p - [L% [T‘(Vz - /\Z)A])

d . d
= = 4 22 ~ RN Av R Y 2 Vo2 42
I ( e r(V AVYA + egcscé'ad)(v A°)B e¢(,)0(T A )B) s

where €,, €g and €4 are the unit vectors along the radial, transverse and azimuthal
directions, respectively. Equations (2.2) and (2.3) are satisfied if

p=p+ ;L%[!‘(Vz .- /\2):1],
Jar

(3.3) ViVE =284 =10,
(VI=)2HB =0.

A general solution of (3.3), is given by A = A; + Ay, where A; and A; are,
respectively, the solutions of

54 vi4, =0,
) (V2= 24, =
Equation (3.1); can also be written as
(3.5) V=~2grad A + 15()’— grad A — rV2 4 + curl (rB).
From the above equation, we recover the solution given in Egs. (2.6) by assuming
B == Fu(Ar)xn,
(3.6) Ay = — i 1 P
' : A (n+1)’
o0
Ay = Z(Zn + D)F, (A1), .
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It is observed that such B, A and A, satisfy Eqs. (3.3)3 and (3.4), respectively. It
may be noted that when the condition of finiteness at the origin is not imposed,
the functions #,(Ar) also have to be considered along with the functions £, (Ar).
Thus (3.1); and (3.3), give a general solution of the Brinkman'’s equations. Similar
representations have been considered earlier in the literature and, more recently,
in connection with the solution of Stokes equations by PALANIAPPAN er al. [5].
However, the application of the representation proposed here to the Brinkman’s
equations is new and this representation lends itself to useful applications in
problems of flows through porous media; in particular, in problems involving
spherical boundaries, owing to the simplicity of its form. This fact is exemplified
in the next section in the discussion of a general, non-axisymmetric Stokes flow
past a composite porous spherical shell with a rigid core, using the Brinkman
model in the porous region.

4. Stokes flow over a composite sphere: Solid core with a porous shell

Consider a stationary, solid, impermeable sphere of radius b surrounded by
a porous shell of permeability & and thickness (a — b). We shall consider a
non-axisymmetric, Stokes flow of an incompressible, viscous fluid over the com-
posite sphere. The Stokes equations are
;JVZV = Vp,

V-V = 0.

We find it advantageous to use the representation, proposed by PALANIAPPAN

et al. [5] for the solution of the Stokes equations (4.1), given below in the form

(.1)

V = curl curl(rA) + curl(rB),

(4.2) ,
p = py+ ,u(—) ['r'\_f’zzl]
dar ’
where
43) V44 =0,
' V2B = 0.

Suppose now that the basic, unperturbed velocity is given by
4.4 Vo = curl curl(rAg) + curl(rBy).
where

Ag = Z ((11,1‘" + o, 7‘”+2) 5,00, ¢),
(45) n=1

BO = Z&”,nr[j”(()’gb),

n=1
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where

Sa(8,0) = > Pl Anm cOSM + By sinme), (= cosb,
(46) m=0

n

T.(0,8) = > PI(C(Crim cOsme + Dy, sin ma),

m=0

oy Apmy Bum, Com and D, are known constants and P (() is the Leg-
endre polynomial. For the flow quantities in the region a < r < oo we shall use
the superscript e. Therefore in the presence of the sphere, we shall assume the
modified flow in this region to be given by (V¢, p°) in terms of two scalar functions
A¢ and B¢, where

viae =0,

4.
&) YoB =0

The equations which describe the flow field in the porous region b < r < «
are assumed to be the Brinkman equations (2.1) and (2.2). We make use of the
representation (3.1); and (3.3); proposed for the Brinkman’s equations, to find
the modified flow (V*,p') in this region in terms of two scalar functions A* and
BY, where

VE(V? - AHAt = 0,

(4.8) (V2= )H)B = 0.

We assume the following forms for these scalar functions as

= s B
A%(r.0,0) = 3 (a kmr b s o ool ) Su(8, ¢),

n=1
00

BE(T',quS) = Z (‘En"n -+ .r::l) Tn(f).,é).

(49) A 7t=.1 , .
A(r,0,6) = AL(r.0,0) + Ab(r, 60, 6),

Bi(r,0,6) = 3 (1 fu(Ar) + 1hga(A7)) T0(8, 9),
n=1

where
. = ! . ,
Ai(r,0,0) =3 (smw" + TT) Su(6. 8),
(4.9") 7

AY(r,0,0) = > (6nfu(AT) + 8,,9,(A7)) Sn(0. 9),

n=1
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where f,(z) = ,/é—r—!m%(:) and g,.(z) = ,/21 K, , 1(z). The boundary conditions
z 4 2
to be satisfied at » = ¢ and r = b are
1) continuity of velocity components on the surface r = a

q:(aa 0, (b) = (I;(“’ 07 ¢)s
(4.10) 45(,0,6) = 4j(a.0,6),
05(a,0,6) = qi(a,0.0);

2) continuity of stresses on the surface r = a

17 (a,0,0) = T},(a,6,9),
(4.11) ro(a,0,6) = Tiy(a.,9),
Ty 4(a,0,0) = T, (a,0, )

3) no-slip conditions on the surface r = b

(/i(l),(?,(b) = i),
(412) Gi(6.6,9) = 0,
q,(b.8,0) = 0,

where ¢., q; and ¢}, are the radial, transverse and azimuthal velocities, 77, is the
normal stress and 77, and I;f, are the tangential stresses in the region b < r < a.
The corresponding velocities and stresses in the region a < r < ~ are defined
in a similar manner using the superscript ¢.

In terms of the scalar functions which appear in (4.8)-(4.9"), the boundary
conditions (4.10)-(4.12) can be restated as follows

A%(a,0,¢) = A'(a.6,0),

A(a,8,¢) = Al(a,8,d),

Al (a,8,¢) = A (a,0.0),
a(A, (a,0,¢) — AL, (a,0,0)) = —/\2;—)(1‘1—1‘.)((1.9.4’)),
ar
(4.13) B(a,8,0) = B'(a.8, ),
Bf(a,0,¢) = B'(a,0,0),

A'(b,8,¢) = 0,

AL(b.8,9) = 0,

Bi(b,8,¢) = 0.

The functions A%, B¢, A" and B’ which correspond to the modified flow can be
determined by determining the nine unknown constants f3,,, 3/, 0., &, 6%, 6., 6!

n?
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“n, and 4. from the nine equations (4.13) in terms of «a,,, !, &, Ay Brum s Cam
and D,,,,. The nine unknown constants are determined to be as follows:

) numb
P = deno ’
numb’
3l =
P deno '’
_— nume
"7 deno’
. nume’
" deno ’
numd
414 0, = s
( ) deno
§ = numd’
& deno ’
sn(1+2
oy = — |a+ c(Tnn) ’lznfn,
14 2n)a™ g, (b
o = (20000
, (14 2n)a™ 1 f,(\b)
Tn =il = Y’ £r1 ’

where

deno = 2a™ "V IN3[(1+2)a® 2022+ nad?? A2 — (1 —4n2)a T b]a,
+(1 = 20)A[(1 + n)a**2"b + nab** 2",

+n(1 — 4n2)a"b** e, + n(1 — 4nH)a" 20",

—n(l + 211)/\(121;”2"3,, —-n(l - 4112)ubl+2"!n},

numb = «* %" IN32n — 1){[® 30221 + ) + 2a* b1 + n)(1 + 2n)
+a20¥ 2\, + 2abA [T + ) + 0¥ b,

—2a™0" (1 + n)(1 + 2n)e, + 2a2 0 (1 + 2n)r,

—nszz"‘/\u(] + 2n)s, — 2(1.[)”2"11(] + 2n)t, }a,

+a" I+ 2n) {ab[a® TN + n)

+a20 a4 & 4(12"+2)\2(2u +5)

—4a® (1 — 4n*)(2n + 3) + 422?20 + 3)]a,

+abA[4a* N1 + n) + 4a** N

—4a" (1 = 20)(2n + 3) + 4671 = 20)(2n + 3)]b,

+2a"0" (1 + 20)[2(1 - 20)(2n + 3) — 3A2a%]ey,

http://rcin.org.pl
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[cont.] — 2a™ 2" (1 + 20)[3¢%A% - 2(1 — 2n)(2n + 3)]r,
—a® b IN(1 + 20)[a®A%n + 4(2n + 3)]sn
—4ab® (1 + 20)[a® X0 + (1 = 2n)(2n + 3)]t, }a',,

numb’ = —a®" 0" 2(1 + 20)A [aZ" (1 + n) + b7 1) Ny,
—b*"n(1 + 2n)s, Yo,
—a®™ (3 4 20)A3 {[a®H20A2(1 + n) + o26¥ 202
+2a¥ (1 + 2)(1 + 2n)]a, + 2A[¢** T2 + n) + ab® 2],
+2a"b" (1 + 2n)e, — 24" + n)(1 + 2n)r,
—a2b¥*  An(1 + 2n)s, — 2ab**n(1 + 2n)t, }o,,

numd = 225" A1 — 4n?){a" 1" n(1 + 2n)g,(Aa)
AP0 4 (1 + 0)]ga_1(AB) — b2l + 2n)g, (AD)} e,
+2a® O IN(L + 20)(3 + 20){[¢*"T2bA(1 + n)
+A2ab¥ 2 — 2a70(1 — 4n?)]g,_1(Ab)
—a™ 2" A(n — 2)(1 + 2n)g, (Aa) + 2" (1 — 4n?)g,_1(\a)
+ab® A0l + 2n)g, (Ab)} o,

numd’ = —2)\2(1 - 4112)r1.2"+51)"+l{H"Hb”n(l + 2n) f,.(\a)
+A0P 20+ a® T+ ) fm1 (AD)

—>* a1 + 2n) f.(Ab)} oy,

F20(1 4 20)(3 + 2n)a® O 2NN + n) S, 1 (AD)

+a" 2" A = 2)(1 + 2n) [, (Aa)

+2a™(1 = 4n®) f_1(Aa) + ab* A2, (Ab)

—ab® (1 + 20)A [, (AD) — 2a26(1 — 4n?) f,_ 1 (AD)}o!

bt 5

nume = —2/\3a2”+5b”+271(1 - 41:2)[(1”+lan - I)T'J’lcn]nn
+222a2 " 2(1 4 20)(3 + 2n){a"(n — 2)Aa,
-2a"(1 - 2n)b, — b”+11’11\(‘"}ﬂ‘:1.

nume’ = 222> 02" *2(1 — 4n®){\0" na,, — b u(1 + 2n)s,
+Xa"b(1 + n)e, }ay,

+ A O2 (T + 20)(3 + 20){-202a%0" T (n — 2)a,,

+4Xab™ (1 = 20)b, + (4a"b(1 — 4n%) = 222" T20(1 + n))ey,

+2Xa%0"(n = 2)(1 + 2n)s, + 4ab™(4n? — D, }o!

n?

http://rcin.org.pl
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and

= ga(Aa) fr-1(AL) + fr(Aa)gn_1(AD),

b = gn-1(Aa) fu-1(A0) = fro1(Aa)gn_1(AD),
¢n = gn(A0) fuo1(AD) + [r(Ab)gn—1(AD),

Tn = gn(Aa)f_1(Aa) + fu(Aa)g,_1(Aa),

Sp = .(]n(/\“)fn(’\b) - fn(’\a)gn(’\b)v

th = gn(Ab)fuo1(Aa) + fu(Ab)gn—1(Aa).

5. Drag and torque

The force exerted by the fluid on the composite sphere is given by
(5.1) D =X/Y,
where

(5.2) X = {12%;1)\&2{(2&3 + b¥)Aay — 30%s1 } oy
+20m pa{(2a* A + ab®A? + 12d%)a; + 220Q2a® + V)b
+6b%c; — 12a%r; — 3ab*rs; — 6b2z1}n’,} (A1 + Buij + Agok),

= 6rpra?{(2d® + b*)Aay — 36%s1}[Volo
+7r;1u.3{(2u4/\2 + ab®A? + 12a%)ay + 2)02a* + b¥)by
+6b%c; — 12a%r; — 3ab®As; — 6b%11}[VVp]o.

(see Appendix)

(53) Y = {(2a*\? + ab®)? + 3a¥)a; — A3 + )b,
—3b%c; — 3a%ry — 3ab*As; + 3()21'.1},
and where Vj is the velocity corresponding to the basic flow, and [ ]y denotes

the evaluation at the origin r = 0.
Similarly, the torque T is given by

3a%s,
Aty

2 o
= 4rp {a3 + &} [V x Vglo,
Aty

(5.4) T = 8mp {(ﬂ + } E1(C11i + Dyyj + Croh),

(see Appendix).
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It is found that when a = b, in the limit £ — 0, i.e., A\ — oo, we recover the
well known Faxen’s laws [6] for drag and torque acting on a rigid sphere of radius

a, i.e.,
55) D = 6rpa[Volo + W[L(L3[V2V()]0,
' T = drpua®[V x Volo.

Similarly, when b = 0, we recover the expressions for drag and torque obtained
by PADMAvVATHI and AMARANATH [7] for the Stokes flow past a porous sphere, i.e.,

12mpa® A2 fi(Aa)[Volo

= ((2a%)% + 3) fi(Aa) + 2a) fo(Aa))
(5.6) 2rpu[(a’ A% + 6a%) f1(Ma) — 2a* ) fo(Aa)][VZVolo
’ ((2a%2A2 + 3) f1(Aa) + 2a) fo(Aa))
T = ((L3)\f0(/\)(\l}0z/\::;2fl(’\a)) [V % VO]O-

6. Effective viscosity

The effective viscosity ;* of a dilute suspension of composite porous spheres
with rigid cores, each of outer radius « is found (as in [7]) to be

5R
(6.1) pt = p {1 + Ed)} ;

where
R = aX[(3a® + 2b%)Aaz — 10b%s,],
(6.2) 5 =2[(aA’Ba’® + 26°) + 30a*)ay — 3A(3a” + 20°)b,
~10ab(3b%cs + 3a’ry + Absy) + 30b%5],

where & denotes the concentration by volume of the fluid containing the spheres.
When a = b, in the limit & — 0, we obtain the well known formula due to
EinsTEIN [8] for the effective viscosity of a dilute suspension of rigid spheres

(6.3) w=p {1 + %dﬁ} :

When b — 0, we recover the formula obtained by PADMAVATHI and AMARANATH
[7] for a dilute suspension of porous spheres of radius a

i 5(a3X3 fo(Aa) — 3a*A2fi(Ma))
(&%) EE {1 ¥ 2[(a3X3 + 10a)) fo(Aa) — 30]’1(/\(1)]45 '
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7. Examples
7.1. Stokeslet

Consider a Stokeslet of strength Fy /87y located at (0,0, ¢), ¢ > a, its axis ex-
tending along the positive direction of the z-axis. The corresponding expressions
for Ag and By due to the Stokeslet are [5]

Ag(r,0,9) = f & (rcosG —c+ R)—— s
87y rsing’
(7.1) oin
Bo(r,0,¢) = i (r cosf — ¢ + R|)—— =
where
(7.2) R = 1% 4 ¢ — 2er cosh.
For r < ¢,
F 29 T.n+2
4 (2
10(7 (b) ST,IJ Z (H + ])(2]1 + 3)(-17+2
(n - 2)’.11 s
" n(n + 1)(2n — 1)c» P,(¢)cos ¢,
X _ Fl s P s 5 |
Bo(r.0,¢) = oo ; [”(” = ])Wl] PN¢)sin .
The drag D and torque T are given by
(74) %1 11

where

M = (3ra*c*{(2a® + b*)Aay — 3b%s))
+a>{(2a* A% + ab® X + 12a%)a; + 20Q2a® + b))y
+6b%c; — 12a%r) — 3abPAs; — 66%11}) ,
(7.5) N =4{(2a*)* + ab®\? + 3a%)a; — A\2a> + )b,

~3b%cqy — 3a’ry — 3ab®As; + 3b2t1},
3asy\ Fy-
T=|d+ .
((l ’\tl ) CZJ
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As before, the results for the rigid case [5] are recovered by putting £ — 0 i.e,
A — oo and a = b.

(7.6) s

Similarly when b — 0, we recover the results obtained for the case of a porous
sphere [7]

D= (3a3c2A? + &P A% + 6a°) fi(\a) — 2a* X fo(Na) P
- 23[(2a2N% + 3) fi(Ma) + 2a) fo(Aa)] B
a3 fo(Aa) = 3a® fi(Ma) . ~
f‘l_'].
e2) fo(Aa)

(1.7)

T =
7.2. Uniform flow

The basic, undisturbed flow is given by

Ao = Lrcost
0= 57 cosd,
By =0,

(7.8) D= 6rpura?{(2a® + b3)/\a1 — 30251} U .
' {Zay — M2a3 + b¥)by — 3b%¢y — 3a%ry — 3ab?Asy + 3[,2(1}
T=0,

where

Z = 2a*\? + ab®)\? + 34
This result agrees with that of MasLivaH et al. [4] who solved the uniform flow
past a composite porous sphere with a rigid core.

8. Conclusions

An infinite series solution and a representation for the solution of Brinkman’s
equations are presented. They are shown to be equivalent. It is found that this
representation is very useful for discussing an arbitrary Stokes flow past a com-
posite porous sphere with a rigid core, and a general method is suggested for
finding the solution. The formulae to calculate drag and torque are given. The
effective viscosity of a dilute suspension of composite porous spheres with rigid
cores is calculated. The previous results pertaining to Stokes flow past rigid and
porous spheres are recovered as special cases. It may be noted that the method
suggested in this paper can also be used effectively to discuss the problem of
Stokes flow past a porous spherical shell, where the rigid core in the present
problem is replaced by a region filled with a viscous fluid.
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Appendix
[Volo = [2grad Aglo = 204[Ani + By1j + Aok],
[V*Volo = 20ai[A1i + Buj + Ajok],
[V x Volo = 2&[Cnii + Dyij + Ciok].
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