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Differential manifolds of the optimal solutions
of a system of three ordinary equations

J. SZADKOWSKI (WARSZAWA)

OrmiMAL sYNTHESES of an ordinary differential equation with control consists in ascribing the motion
laws determined by control values to the domains of a decomposition of the state space, that is in
establishment of a space of optimal solutions, or in rendering a definite structure to this space. In
the paper are presented the considerations relating to the properties of the optimal structure of a
three-dimensional space. Necessary conditions of optimality have been given, in geometrical form,
of a three-dimensional differential equation.

1. Introduction
THE CONSIDERATIONS concern the differential equation of the following form
(1.1) $=Az+Bu, =zeR\K, puK=0, uelUCHR,

where U is a compact set. The aim of these considerations is the optimal synthesis
of Eq.(1.1), that is determination of the function: u* : B>\ K — U such, that every
solution z(x9,1), 20 € k3, t € (tg, to), of Eq.(1.1) attains the origin O with u = u*
at the shortest time fp — fy.

The solution of the problem of synthesis consists in a decomposition of the
state space into some geometrical manifolds of various dimensions with the as-
signed constant value controls, correspoding to apexes of rectangle controls (/.
Such decomposition of the space, together with assignation of the controls is
connected with a problem of the optimal structure of the differential equation,
which has been defined in Sec.4, and which is considered as a correlate of the
notion of entirety, built in some way from elements being manifolds of optimal
solutions of Eq.(1.1).

The notion of a structure is generally valid for differential equations of the
form

(1.2) i=f(z)), ze€D\KCR'., uk=0

and it is connected with a decomposition D of set D into some n-dimensional
domains D; (i = 1,2,...), to which some forms f; (i = 1,2,...) of the function
f are referred, where f;: D; — R™ are continuous and Lipschitz functions. Def-
inition of structure and optimal structure, as referred to Eq.(1.1), will be given
below.
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For the equation (1.1) the following assumptions have been made: A is a
constant matrix 3 x 3 with negative real eigenvalues, B is a constant matrix 3 x 2,
u = (u,u2), U= {u: e}gmgr:?},c,l<0,qz>0,t'= 1, 2.

The optimal structure of Eq.(1.1) for the assumptions given above will be
based upon a fact well known from the control theory [1]:

STATEMENT 1. The number of switchings on the optimal solution of Eq.(1.1)
attains its minimum value.

Let z(z°, u, ) be the solution of Eq.(1.1), corresponding to control u with the
initial condition z(z°, u,0) = z¥, when it should be emphasized, that control on
the solution is u, and let z(z’,¢) be the solution of the equation (1.1) if such
emphasizing is not necessary; let 7, (z"; (¢;,,)) be a segment of a trajectory of
the equation (1.1), corresponding to control u and interval (¢,¢2) of parameter
t; let T, (2%, ™) be a negative semi-trajectory of the equation (1.1): {z : z €
T(z% (0, —00))}, and let, finally, 7,,(z°) be a segment of trajectory corresponding
to the interval (0, #p).

It is known, [2], that Eq.(1.1) has the following properties: (1) — the domain
of controllability coincides with &3, (2) - the optimal control «* is a piece-wise
constant function with values col(c], ), 7,k € {1,2}, such that each of its coor-
dinates has in the interval ({y,¢) not more than 2 switchings.

We are interested in the optimal solutions only and for this reason it will be
convenient, because of property (2), to use the form of Eq. (1.1) adequate to this

property:
(1.3) t =Az+ Bu (= f(a, w)), r € RM\N, Il =0,

u € A, where A = (a,b, c,d) and where q, . .., d are control values u, correspond-
ing to apexes of rectangle of controls {/, that is two-element columns col(c], c}),
J,k € {1,2}. We will speak about the motion laws (a), ..., (d), having in mind
Eq.(1.3) with u = col(c}, ¢§), where (j, k) are the respective sequences. A will
mean everywhere a sequence of controls corresponding to a sequence of sucessive
apexes of rectangle U in some ordering.

Concept of the optimal structure of a differential equation contains the notion
of a set of semi-slides of solutions of this equation, [3].

2. Sets of semi-slides of solutions

Let V be a domain of 3 and let almost everywhere on V' vector field [ :
V\S — R3,uS =0, continuous and satisfying the Lipschitz conditions in domains
Wi i =1,...,m JW; =V be determined. Let I" (dimI" > 1) be a smooth

1
boundary set in V such that I" C § (Fig. 1). I" will be then a set belonging to the
boundaries of m (m > 2) domains W; C V' (i = 1,...,m).
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If 20 € I', then there are m boundaries f;(z°) of the function f at point z:

Tix) = lim f(u).

YEW,

Let x(x) denote an arbitrary vector tangent to " at point z°.

DeFINITION 1, Ifforz € T
(2.1) Jie(l,....,m) I ke R (k+#0), kT (") = k(z),

wherein [,(z°) is the edge of rhe smallest convex pyramid built on vectors [,(x"),
i = 1,...,m, then we say that x° is a point of semi-slide of vector field [ on set I.

http://rcin.org.pl
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If the statement (2.1) is true for any point z € I' NV, that is if
(2.2) Jie(,..,m) YzelI'nV 3JLkeR (k#0), kT (2%) = r(a),
then we say that I' is a set of semi-slides of vector field f in set V.

Let W = V\S. In conformity with the assumption, W = |JW;. Consider the

differential equation
(2.3) & = f(z), z €W,

where f is a function defined, continuous and satisfying the Lipschitz condition

in each of domains W; (i = 1,...,m). Let z° € I  S. It is known, [4], that there

exists a solution z: O(lg) — R* of the equation (2.3) at point z°; O(tg) is the
neighbourhood of t.

DEFINITION 2. If for z° the sraremem (2. 13 is true, then we say that the solution
z is semi-sliding on I' at point z° or that ¥ is a point of semi-slide of solutions
of Eq.(2.3) on I'. If the staremenr (2.2) is true, then solutions of Eq.(2.3) are
semi-sliding on I, or I' is a set of semi-slides of solutions of Eq. (2.3) in set V.

The point z0 € I" such that
JyeR® Vie(,..m) IkeR (k#0), (i) =y, ky=r())

is, according to the definition 1, the point of a semi-slide of vector field f.

Point 2, which is not a semi-slide point of vector field f, is either a semi-slide
point, [4], or a point of a strict passage of the solution = of the equation (2.3)
through I'.
3. Basic decomposition, basic frame

Consider Eq.(1.3). Let (:) (i € A) be a motion law, and 7; be a negative
half-trajectory of Eq.(1.3), 7; = T:{O, I7), corresponding to that motion law. 7;
is the unique sub-set /2* having the property:

Y 20 eT; 315> 0, :.'.'(.'r.o._f.,f.g) = (.
STaTEMENT 2. If 2(29,7), 2% € B3\ O is the optimal solution of Eq.(1.3), then

JieA 3T1>0 Vie(lty), =z@E")eT;.

From the Statement 1 there follows

StatemenT 3. Every solution z(z9,1,1), 20 € T}, is optimal.
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Let (2), (7) be two motion laws, 7,7 € A, i # j, with 7, j being the neighbouring
elements of the sequence ¥ (cf. Sec.1). Let 5(; ;) be a two-dimensional set:

S6g) = Ti(TnI7) = {z: = € {T(x°,T"), 2’ € T}}

having a bundle structure and generated by semi-trajectory 7;. It may be noted
that each half-trajectory 73, ¢ € %, generates two sets S(; ;, j being the element
of the sequence A neighbouring i (Fig.2). Each of the sets 5 ;) = :g(,-‘j)\’ i\
is by definition a differential manifold, on which the motion law (7) is valid. We
will use the notation S;;, if we don’t indicate which of the half-trajectories 7T}, T}
generates the set S;;, that is the set S(;;) or S(;;). We will use the notation .Sf;-),
if the motion law (i) will be valid on set 5;;, that is

At )
.Sfj} = S(J'.,') N SQ = S(,‘_J'} d

1

S;; are manifolds on half-trajectories 7}, 7;, 4,5 € %, ¢ # 7.

L]
x €T,

Jik
fa, b, c,d ab,..)

FiG. 2.

It may be easily noticed that no manifold 5;; contains singular points of the
equation (1.3).

From definition of the sets S;; it follows that, if -r.(a:“,j, t) is the solution of
Eq.(1.3), and if 20 e Si;, then

(3.1) I >0, (Vte(tot), z(zo,st)€ Sy,  =z(2°5,t) €T

Let z(z°, 1) be the optimal solution of the equation (1.3). In this case the
following statements hold.

STATEMENT 4, [5]. The sequence of controls on the optimal solution is a se-
quence with elements of 2, neighbouring in .

http://rcin.org.pl
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From definition of sets 5;; and from Statement 4 we will obtain the following

StateMenT 5. If z(2¥, t) is the optimal solution reaching the set T (i € ) for
t =1ty > 0, then

3jed (j#i, i j-neighbouring in A)

Je>0 Vie(ti—ety), z("1) €S-

Lemma 1. All manifolds S;;, 7,7 € A, ¢ # j, where ¢, j are neighbouring
elements of the sequence A, are the sets of optimal solutions of Eq. (1.3).

Proof. Letz?€ S;; €%, i # j, 1,5 being neighbours in ¥ and let z(z°, 1)
be the optimal solution of Eq.(1.3). Then

(2 3u>0, (Vte(tot), z(z°1) € Su;
and Vi€ (t,to), 2@%1)eT),

that is there exists only one switching for ¢ = ¢; and the sequence of controls on
the solution is (j,1). Indeed, let us assume, to the contrary, that the sequence of
controls on the optimal solution is different from (j, 1), e.g. (k,...), k # j. The
solution z(z% k,t), 2° € S(; ;, in order to reach the origin O, must previously
reach some of the sets 7}, p € A (see Statement 2). Let us assume that it has
reached this set for ¢ = t; > 0. In order to reach 7} it must earlier reach
some manifold S, .y, r € A, r # p, r # j, where p, r are neighbouring in the
sequence %; z° belonging to manifold S; ;) cannot belong to manifold S(o.r) (case
r # 7). Let us assume that z(z%¢) has reached S, ) for t = t;, 0 < ¢; < t,.
In such a case, on solution z(z', t) there are two switchings: ¢; and 5, and the
sequence of controls will be (k,r, p). Hence a contradiction with the assumption
on the optimality of the solutions follows: at the sequence of controls (j,) on
the solution z(z¥,t) there is one switching only, cf. Statement 1.

Similarly it can be shown that the solution z(z°, t) with sequence of controls
(j,ry...), v € A, r # i is not optimal with regard to the number of switchings.

The sequence of controls (j, i) on the solution z(z°, t) with the switching time
different from ¢}, causes that the point O is not being reached.

Satisfaction of (3.2) proves the Lemma.

2

Let K* be a geometrical figure of zero measure in /3
(3.3) K*=0u U T; U U Sij, 1,j— neighbouring in .
.‘eﬁ 1',an
From the definition it follows that K'* has the properties given below:

i. K* divides the space R? into six discontinuous three-dimensional domains
2; ( = 1,...6). The elements of the figure A", together with the domains 2;,
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are elements of decomposition D* of the space &*. Such decomposition will be
called the basic one, its elements being respectively: edges (7;), walls (5(; ;) and
cells (§2;), Fig.3. Figure K" is called the basic frame of decomposition D*. D* is
determined uniquely by Eq. (1.3).

Fic. 3.

ii. To each element of the basic frame A", except the point O, one of the
motion laws: (a), (b), (¢), (d) is uniquely ascribed, that is the following surjection
is determined:

(3.4) v: K" =¥,

iii. All elements K", except the point (), are sets of optimal solutions of
Eq.(1.3), cf. Statement 3 and Lemma 1,

Lemma 2. If (20, 1), 20 # O is the optimal solution of the equation (1.3),
then
(3.5) 3t>0 Vite (i), r(2%t) e K*.

P r oo f. The sequence of controls on the optimal solution of Eq.(1.3) is
composed of elements 2A.

If 20 € K, then in conformity with the property iii, (3.5) is true for 7 = 0.
If z° ¢ K, then in order for the solution z(z",t) to reach the point @ for
t = lp it is necessary:

Jied I1>0 Vte(lto), z(%t)eT;.

Having assumed 7 = T we will have (3.5),
[

On the basis of Lemma 2 and Statement 5, the following statement is true.
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STaTEMENT 6. If 2(20, 1), 20 ¢ K™ is the optimal solution of the equation (1.3),
then

3(,7) (i,j€¥%, i,j — neighbouring in X)
3 F >0 3 ? > t Vi (= (F,?)_ .I‘(;I.'O, f) € '("I.J.

that is the optimal solution beginning in a cell of decomposition D* reaches the
wall of that decomposition.

CoroLLAry 1. The optimal solution of the equation (1.3), beginning in the
cell of the decomposition D*, cannot reach its edge without having previously
reached its wall.

K™ is an orientable figure. The cells of the decomposition D* (see Fig. 3) are
of two kinds: two-wall ones, bounded by walls S; ;), S (G, €A, 1 #5,14,5
neighbouring in A), designated as §2;;, and four-wall ones, designated as 2_, 2,
bounded by four walls Sif, s 59 and .S'r(]‘(} of the basic frame. Let us recall

be? “ed
that each element of decomposition P*, and hence also each cell, contains only

its own elements: the elements of D* are disjoint sets.

4, Structure of equation (1.3)

Let us assume that in Eq. (1.3) in which the set A has the following form:
(4.1) K=R"UL.

K is a frame of a new decomposition D of the space R* which has been built on
the basic frame K™ by joining to it some new zero measure elements in such a
way that these new elements do not intersect the basic frame:

LNnKk*=10.

The assumption of a non-empty set L means a division of the cells of the basic
decomposition D* into the domains of definition (and continuity) of function f.
Let {12} denote a set of all cells of decomposition, and let ¢ be an injection

4.2) §: {N}— 9.

DerFINITION 3. Couple (K, 6) is called the structure of Eq. (3.1), if all elements
of the basic frame K* are sets of semi-slides of solutions of Eq. (1.3). The structure
(I, 8) is called optimal, if all solutions x(«",1), 20 € R? of this structure are optimal
ones.

DEFINITION 4. We can say that two structures (K1, 6,), (K1.8,) are equal, that
is (K1,dy) = (K2,8), if:
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i) their frames are isomorphic, that is if there exists isomorphism g : R* — R?
such that

(4.3) KNy = p(hy),

i) 6; = ;.

If {K'} denotes a set of all frames of Eq.(1.3), then (4.3) is a relation of
equivalence in set { A" }. For a given number [ of elements of frame I, the relation
(4.3) divides the set { '} into a finite number of equivalence classes {A'}; (j =

1,...,J, J < o). We will indentify in the next part of the paper the frame A,
that is the representation of some equivalence class { A'}; with that class. Indeed

VKe{K} 3ie(l,..,J), K € {K};,

that means that each frame is a representation of some class.
It is obvious that

44) V(@G,J) Gge(,..Jd), i#j) VK €{K});
VK" e {K}; ~3p, K"=p(K').
DEFINITION 5. Decomposition D of space R* is called possible, if it generates
structure (I, 6) of Eq. (1.3).
Let {D} be a set of all possible decompositions in space i*, defined by (4.1).
From Statement 1 we obtain:

STATEMENT 7. In the optimal structure (I, §) of Eq.(1.3) the numbers of cells
and elements of the set L reach their minima on set {D}.

LemMA 3. Couple (A", 8), where K™ is a basic frame of Eq.(1.3), is not the
optimal structure of this equation, irrespective of the map 4.

P roof. Let there exist such mapping ¢ that (A'",4) is the optimal structure
of Eq.(1.3). To fix the attention, let the control a be referred to the four-walled
cell 2_: ). Three different cases can be considered, concrening systems of
elements of boundaries of the cell 2'*), on which the motion law (a) is valid
and beyond which it is not valid (cf. Fig.3): (1) — edge T,, (2) — edge 7, and
one of the walls h(" or Si’}’, (3) — edge T, and two walls S, and S,4. These
cases correspond to three different basic frames (as equivalence classes) A’} Ly !\2
and I3, respectively. Since, by the contrary assumption, every solution (0,

1’?(_"), is the optimal one of Eq.(1.3), then, in conformity with the Lemma
2 and Corollary 1, it will reach the respective basic frame K7 (: = 1,2,3) for
t =1 < oo in the subset (see Fig.3):

Sﬂ,} U 5-(') U 9(&) U g('” fori=1 case 1;

(5.(b) 5(:)) U 5 Qin? fori =2 case 2;
5( )

be Ld

fori =3 case 3.
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Since in both these sums a term 5§3u SQ appears that is the sum of two walls

adjacent to edge 7., then from the continuous dependence of initial conditions
we have

Vite (0,0, z@t)en™
vi 3:22¢0® 37>0 and
(20,0 e T,

which contradicts: (1) with Corollary 1, and (2) Statement 4 — switching a — c.
Hence, the thesis of the lemma is true.
&

CoROLLARY 2. The basic frame K™ is a subset of the frame K of the optimal
structure of Eq.(1.3), that is L # 0.

ConcrLusion 1. The optimal structure of the equation (1.3) does not contain
four-wall cells: 2_, 2.

5. Structure of four-wall cells

Let us make the simplest, in the sense of the number of elements, division of
the cells 2_, 2. Such a division of a four-wall cell consists in construction of
two three-wall cells of it by introduction of one “diagonal” wall stretched on the
edges corresponding to controls of diagonals of a rectangle of controls U/, and
which does not change the number of frame edges. Let us assume that the frame
K has the following form:

(5.1 K=K"US_US:,

where S_ and S, are the walls of division of the cells 2_, 24 accordingly.

Let us consider, to fix the attention, the cell 2_. On the grounds of the
assumption that the numbers of edges of frames A" and K™ are the same, we
may conclude that a closure of the wall 5_ contains the origin O and the pairs of
edges T, and T, or T, and Ty, see Fig. 3. Let, again for fixing attention, this be the
pair T, T.. Hence, decomposition D contains two three-walled cells, which will
be denoted by §2, and 2, from the edges 7} and T;, respectively, which belong
to their closures and do not belong to §_. Let us assume that in these cells the
motion laws (j), (7), 7,7 € A, i # j are valid, respectively. We will show later that
such decomposition is possible (see Definition 5).

Let us assume that the wall §_ is a set of points of a strict transition of the
solutions of Eq. (3.1). Let us assume further, for fixing attention, that the solutions
pass through S_ from the cell 2; to f2,: control on solutions of Eq. (1.3) changes
its value from i to j.
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Lemma 4. If the couple (12,4, (7)) is a cut-off (K, 6)’9 of the optimal structure
d
(i, ) to set §24, then
(i) i=d,
(i) 23 0 $9, 724> 59D

ad ? ed *

P ro o f. It may easily be noted that only in the case determined by the
conditions of the Lemma, the following relation will hold

Vte (0,7, z(z%1) € ﬂf{d)
vale 2l 31>0 and

z(z0,DeS_.

In all the remaining cases of combinations (i, (.S'(Ej, SEQ})) we will have for the cell

(4),
Q‘i .

Vie (0,9, z(01)en)
3k e{ae,d} (k#i) 3220 37>0 { and
I(IO,E) - Tk s
which is excluded, on the grounds of the assumption that z(z", () is the optimal

solution of Eq.(3.1), see Conclusion 1.
|

Figure 4 shows an example of the couple (', §) such that

“ed

(h‘.&)|nd=(94,(a))_ >89, Tio>s9.

{a)
Sr:n'

Fi1G. 4. Cell 2,4.

http://rcin.org.pl
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Lemma 5. If the couple (12, (7)) is a cut-off (A, §) & of the optimal structure
b
(K, ) to the set §2;, then one of the following two conditions is satisfied:

1) i=a, 2589, o5,
2) i=c¢, 2,059, ?>8Y9.

Proof (i)is the motion law in cell £2,, wherein i = a, or i = ¢. Indeed,
t # d, because (i) is, on the grounds of the assumption, different from the motion
law valid for the cell Qf;f} (see Lemma 4), and 7 # b, because switching d — b
(Statement 4) at a passage of the solution z(z°, 1) of the structure (', §) through
wall S_ is excluded.

To fix the attention, assume i = a. In such a case the following combinations
of the walls of cell 2, are excluded:

( 5'(!") S(b}), ( 9{5) g {5‘))

ab ?
Obviously, would it be true, then in the cell 2

Vite(0,7), z(@="%t)c 2
32%¢us. 3Ti>0 and
z(x0 N eT,.

In view of Statement 4, combination of the walls (5}, 5”) is also excluded

because, if this were true, switching of controls @ — ¢ on the wall .S'é;'} would take
place.
Hence a single possible wall combination is (Sr(;;), Sé)), for which (see Fig.5):

VfE(U,D, .1'(;)?0.,!)(:_06
3¢ us. 3T>0 and
(z0 -)6.5(!"

For ¢ = ¢ the proof is identical as before: only one combination of walls of

the cell §2,. is possible: (Sfb}, S(C)) for which (see Fig.6)

Vte (0,9, z%t)c
3% ,us. 37>0 {and
:::(.:rn.f) = S[{l?’).
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I'16. 5. Cell 12,.

s{9

Fia. 6. Cell £2,.

Lemmas 4 and S can be generalized by formulation of the following

CorovrLary 3. If 2; (i € A) is a three-wall cell defined above, whose one wall
is S (k € {—,+}), then the necessary condition for ensuring that the couple
(2:,(7)) (j € A) is a cut-off of the optimal structure (K,§) to set £2;, is the
satisfaction of one of the following two conditions:

1) j = i, when two walls adjacent to 7; have the motion law (i),

2) j =1, 1 # i, when there are two walls .S'S) and S (1,m € %) adjacent to

edge T;, and the pairs (¢,1) and (¢, m) are sides of rectgggle of controls [7.

In the case 1) all solutions of the optimal structure (A, ¢), which begin in cell
2;, will reach in a finite time the wall S;; in the case 2) the cell §2; is a set of
segments of trajectories of that structure with starting points belonging to Sy and
end points belonging to 5",

Let us recall that K is a frame built on the basic frame A™ by joining it with
the walls S_, S4+. From Lemmas 4 and S there follows

http://rcin.org.pl
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CoroLLARrY 4. K allows for two optimal structures (Fig. 7): (K1, é;), (K3, 8,)
with the frames:

Ki: Fe_ > SQusQ@usBHu s,ffj’,
Ky: Fr2_ > SQus@us®u

e‘)t‘ ?
and functions é;, 63, respectively:
- (Ki 8|, = (@), (Ko, = (2 (@),
' (K|, = (20@),  (K26)|, = (2 ().

fa) fd}

Snd Sod'

(d)  alal
Su Sud’ X,

()
su‘

S;d

ed

b) )
Sie She Ly o
a) b)

F1G. 7. a) Structure (K, §;), b) Structure (173, 6;).

CoRrOLLARY 5. Determining the boundary of the set 2_, the optimal structures
(K1,61), (K2,67) lead to determination of the boundary of set 2, (see Fig.7):

Fr, D> S’(d) Sm .S'{MUS;? for struct. (K'y,4,),

(53)
Fr2,> Sfli? U .S'Ed) ‘?{E‘; Sﬁ;} for struct. (K7, é3).

We may note that for both structures, the system of the walls of set 2, is
analogous to the system of the walls of 2_: there are two walls with the same
motion law: 5'( and 55“) for the structure (A}, 4;) and 5{';) and 9‘“’ for (K3, 63).
This, in turn, in view of Lemma 4 (after renumeration of the cdges) leads to a
method of division of the set f2_ by wall S : similarly to the case of division of set
£2_, the wall S passes through the origin (@ and, in the case of both structures,
it passes also through the edges 7}, 7, — Fig. 8.
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a)

b)
FiG. 8. a) Structure (A, &), b) Structure (K7, §2).

Hence, after the same analysis as that applied to the set f2_, we can draw the
following conclusion.

CoroLLARY 5. If (K'y, éy), (K2, 6,) are the optimal structures of the equation
(1.3) then (see Fig.8):
(1) conditions (5.3) must be satisfied, and

@

(Kb, = (@), (Kud)|, = (2.0),
(K2.0)|, = (2,0).  (K2.6)|, = (2.(a)).

Here a question may be posed whether there exist two walls S_, S, which
would ensure the switchings d — a, d — ¢, ¢ — b and a — b, respectively.
A positive answer to this question can be given, if the following hypothesis is
assumed.

c

(5.4)

2

HypoTHEsis. If (K, d) is the optimal structure of Eq. (1.3), then all switchings
are effected on differential manifolds of that equation in the form 7., or 5¢).

This leads to the following conclusion.
CoroLLARY 6. Walls S_, 5, are differential manifolds of Eq.(1.3), that is of
the form S, .5';;}, respectively, where (see Figs. 7 and 8):

o 2 S for structure (K7, &),

54 for structure (K1, 82),

S_ = 5 for the both structures (K1, 8;), (Ka,62).
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These walls are sets of a strict passage of solutions of the optimal structure
(K, 6), cf. Definition 3.
Three-wall cells §2,, 2, are thus formed by a division of four-wall cell 2_ by

wall S_ of the form S (i € {a,c}); the cells £2,, 12, are formed by a division of
the cell 2, by wall S of the form ${¥.

6. Variants of the optimal structure

Let us have the basic decomposition D* of space R* defined by equation (1.3)
on the basic frame A™*. Let us have a definite ordering (one of two) of apexes
of rectangle of controls U without ascribing the definite apexes to controls a, b,
cand d of U.

Let us assume that:

1. Among the walls of each four-wall cell there are exactly two walls with a
common edge and with a common motion law for these walls.

2. Motion laws for the common edge of those walls correspond to controls
being apexes of controls rectangle U, the apexes being the ends of one of its
sides.

Let us distinguish (arbitrarily) one of the four-wall cells, and let us denote
the edge of two walls having the same motion law by T}, and the cell itself by
f2_ (the second four-wall cell will thus be denoted by £2). The ordering controls
have been determined and hence the sequence (a, b, ¢, d) is determined by control
values u corresponding to the apexes of [/. Let us note that, depending upon the
ordering in the cell {2, either T, or T, can then be the common edge of the wall
pair with a common motion law.

Hence, for the assumptions given above and taking into account the consid-
erations presented in Sec. S, the following theorem is true.

STATEMENT 8. A necessary condition of optimality of the structure (K, §), where
K is a frame defined in Sec. 5, is that the walls of the four-wall cell f2_ of basic
frame K™ must form one of two systems given below:

(S(’I) q(*"} S[ff} g-{'fl)[

ab *“he 'Y ed '~ ad
(6.1) or
(59, 50, 5@ sl

“ab **be ad

The resulting wall systems for the cell 2, are, respectively

('g’({’). IL}'{“) ‘S‘E‘:), b'{”))[

ab ?be 1 ad

(6.2) or
(5%, 5. 59 olahy,

ed **ad
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Let us assume, further, that there exists a division of the cells f2_, 2, by the
walls S_ and 5, of the following form:

¢ = {S’i‘? for system I, or

sl for system II,

54 = Sg) for both systems

into three-wall cells: Sy, Sy, 5., S,.

Let Ky and A, denote respectively the decomposition frames P, and D,
formed from D~ (Sec.5) and corresponding to the systems I and II of the walls
S_ and S4 (see (5.1)).

It may easily be noticed that by changing the order of notation of apexes of
the rectangle of controls U/, the frame K’; can be transformed into frame K. It
is sufficient to assume in 24 as 7. the edge of the wall pair with the common
motion law.

Let us assume that the frame K| has been determined by the differential
equation (1.3). Then the results of analysis given in Secs. S and 6 can be presented
in the form of the following lemma.

Lemma 6. If (17, 6) is the optimal structure of the equation (1.3), the following
conditions are satisfied:

1 K=Ky,

2 4 is any function of 4, defined by its free cuts to three-wall cells 2, 12,
2., 12, according to (5.2) and (5.4).

7. Two-wall cells
Let £2;; (1,7 € A, © # j, 1,7 neighbouring in the sequence A), be a cell of the
decomposition D,

Lemma 7. If (K, 6) is the optimal structure of Eq. (1.3), then
(K,8)], = (24, (),

where
k=ivVj.

Proof. Let(I,d)be the optimal structure of Eq. (1.3). The walls of the cell
2;; (Sec.3) have the form 5\ and 5. Let (k) (k € %) be the motion law valid
in {2;;. In conformity with the Statement 6, the control k transfers an arbitrary
solution z(2°, k1), z° € £2;;, on one of the walls of that cell, that is

Vie (0,7)C $24 4
z(z%, k,7) € 5O

5]

VJ:GGQ,'J' 3le{i,j} 31>0 {
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Let us assume that the thesis of the lemma is false, that is that
k#iAj.
On the grounds of the assumption on the optimality of the structure (A, ¢),
both walls S and SY are sets of semi-slides of solutions of Eq.(1.3), with the

motion laws () and (7) (i,7 # k), accordingly. Thus both the walls are the sets
of points such that

VvyesPus? 3z%¢n; 3i>0

i

VtE(O,DEQ;J',
I(Io‘ k,a = y,

and hence

. Vte(0,7)e 2,
Vie{i,j} 32¢n; 31>0 { {0,3) € 2

z2(z%k,DeT,

which contradicts the Statement 6 and Corollary 1 and proves the lemma.
]

Let 2 (i,j,k € A, i # j, k € {i,j},7,j - neighbouring in %) be a cell of the
structure (1, §).

Lemma 8. If (K, 6) is the optimal structure of the equation (1.3) then at least
one of the walls Sf}} (1 € {7,7}) of the cell Qf;") belongs to the boundary of a
three-wall cell 2) (1 # k).

Proof If £2; is a two-wall cell of decomposition D, then, in conformity
with Sec. 5, its walls are also the walls of the respective three-wall cells 12 (Fig. 9).

Fia. 9.

Let us assume that the thesis of the lemma is not true, that is let the motion
laws in the three-wall cells adjacent to Qf;"} (k = 1iVvj—-see Lemma 7) be different
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from the motion laws valid for the walls S, 5 2, 2™ 1m e %, 1 # 4,

m # j. To fix the attention, assume k = i, that is ij}. Then the wall S,-(j') will
not be a set of semi-slides of solutions of Eq.(1.3). Indeed, in the cells with a

common wall §“) the motion laws are valid: () # (j) in the two-wall cell QU

and (m)(# (j)) in the three-wall cell 2™ the motion law will be valid (m) # (5),

whereas the motion law on the wall .S'f‘f) is (j) - Fig. 10. Hence the wall Sfj-) is not
a set of semi-slides of solutions of equation (1.3), what contradicts the assumption
of optimality of the structure (A, ).

6'0) »
J
)
R
. i
a?
Fig. 10.
"

Lemma 9. If 2;; and 2. (i,5,1 € A, i # j, i,j — neighbouring in A) are,
respectively, the two-walled and three-wall cells of the decomposition D adjacent
to the wall S, if | # i and if (K, ) is the optimal structure of Eq.(1.3), then

(K,8)], = (2. 0)-

Proof. Ifl #1and .5'3), on the grounds of the assumption on the optimality
of the structure (I, ¢), is a set of semi-slides of solutions of Eq.(1.3), then the
motion law in the cell (2;; is (i), see Lemma 7. Indeed, assumption of the motion
law (j) in £2;; according to Lemma 7 would be contradictory to the assumption
of optimality of (I, §) — see Definition 3.

=

Lemma 10. Let £2;; be a two-wall cell of the decomposition D, and !2(”(')

2U(5) (I, m € %) be three-wall cells, adjacent to the respective walls 5};’, Sm
of the cell £2;;. If (K, ¢) is the optimal structure of Eq.(1.3) and

(I =i)A (m =),

then (Fig. 11)

(K,8)|, = (2, @)V (25, ().
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o (i) .
S!fr' i)
a’lj)
Fic. 11.

8. Necessary condition of optimality

Let there be a differential equation (1.3). Let A" be the basic frame of this
equation and A" the frame of the form (5.1), where

8. =509

ac?

+(d
Sy = '554]

and where Ty, T, have been defined as the edges of the respective wall pairs with
a common motion law of three-wall cells of the decomposition D*. From the
analysis given in Sec.5 it follows that the frame A (= I';) exists — see Lemma 6.
Decomposition D contains 8 cells: 4 three-wall and 4 two-wall ones.

On the grounds of the Statement 8 and Lemmas 7-10, the following necessary
conditions of optimality of the structure (A", §) may be given.

THEOREM 8.1. The necessary conditions for (K, 6) to be the optimal structure of
Eq. (1.3) are as follows:

(K, 6) i (124, (d))
(K.8)[, = (@)
(K,8)[, = (2e.(c))

2.
(K,8)|, = (2,0
(8.1) a
(!\-',5)|nu& = (2w, () V (b)),
(K.0)], = (e ),
(K0, = (R, ()V ().

(1(,5)‘0“ = (R4, (a)).

in four-wall cell,

in four-wall cell,

It may be noted that in the case of two two-wall cells 2,,, 2., the motion law
valid for these cells has been formulated alternatively. Assuming this alternative
we would obtain from (8.1) the necessary and sufficient conditions of existence
of optimality of the structure (A’ 4).
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