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Stiffness loss of laminates with aligned intralaminar cracks
Part II. Comparisons

T. LEWINSKI and J.J. TELEGA (WARSZAWA)

THE EFFECTIVE MODELS (hg, lp) and (hg, 1) [7] describing reduction of the in-plane effective mod-
uli of the [02, /902 ] cross-ply composites cracked in the internal layer and subjected to in-plane
boundary forces are applied to the description of the degradation of the effective Young, Kirch-
hoff and Poisson moduli of the [0°/90°]. and [0°/903]. glass/epoxy and [0°/90;]s graphite/epoxy
laminates. It is shown that the graphs of F(cq) (ca represents crack density) lie slightly above the
Hashin’s curves, while G3(cq) predictions coincide with the curves of Hashin. Evaluation of the
off-diagonal terms, i.e. v13(cq), v21(cq) are incorporated in the algorithm. In all comparisons with
the experimental results of Groves, Ogin, Highsmith and Reifsnider the predictions of Ey(cy) ac-
cording to the model (hy, () provide lower bounds, slightly better than the bounds of Hashin. Some
predictions of the model (h, !) are proved to be similar to McCartney’s “gencralized-plane-strain”
results.

1. Introduction

THE FIRST DAMAGE mode observed in the in-plane loaded, three-layer, balanced
cross-ply laminates is usually transverse cracking along the fibres of the outer or
inner layers. When stretched along the fibres of the outer layers or sheared in its
plane, samples of the balanced [0, /907 ], laminates undergo transverse cracking
in the 90° layer, with values of crack density ¢; determined by magnitude of
the in-plane loads applied. Such cracks lead to degradation of effective elastic
characteristics of the laminate. A unified model of such degradation has recently
been proposed in Refs. [[.9, 1.10] (Roman numeral I refers to bibliography of
the first part of this paper, [7]) and in Ref. [7], where the case of aligned cracks
is dealt with in detail. The aim of this paper is twofold. First we show that the
(ho, lg) model (Ref. [1.10], Sec. 4) concerns the case of infinitely dense distribution
of cracks. Consequently, this model provides the asymptotes for the curves of
decay of the effective moduli with respect to the crack density. Then we check
the accuracy of the (hg,!) model proposed in Ref. [I.10]. To assess its accuracy
with respect to the experimental results published in the available literature, we
analyze the decay of:

e the effective Young modulus £ of laminates of the [05, /907 ], type. Accuracy
of the (hg, 1) predictions is examined for the laminates tested by GRoVES [1.4] (cf.
LEE et al. [6]), HiGHSMITH and REIFSNIDER [1.6] and by OGIN et al. [9];

o the effective moduli of Kirchhoff (G:{,), Young (£5) and Poisson (v5) for
the [0°/903], laminate tested by HiGHsMmITH and REIFSNIDER [L.6].

The results concerning £ show that the (%, /) method leads to lower estimates
of the experimental data, providing the curves lying closer to the test data than the
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curves produced by the method of HasHiN [I.5] and almost coinciding with recent
McCARTNEY’s [1.12, 1.13] GPS (generalized plane strain model) - predictions.

The formula for (7§, coincides with that found by HasHin [I.5] and rederived
later by TAN and NuisMeR [I.14] and Tsar and DaNIEL [1.16]. According to the
experimental results published in the last paper, concerning the graphite/epoxy
[0°/905], and [0°/903]; laminates, the accuracy of this formula is satisfactory.
On the other hand, the experiments concerning graphite/epoxy AS/3502 (05/905)
laminates performed by HAN and HauN [4] do not confirm its utility, cf. their
paper and the discussion by Motocr and Fukupa [8].

Our analysis shows that predictions of the (hg,ly) model proposed in Ref.
[I.10] are comparable with the ply-discount method.

The (ho,!) method predicts a small decay of the £5 modulus of the [0°/905],
glass/epoxy laminates, very similar to that predicted by the GPS model of
Mc CartnEY [I.13]. Other methods known to the present authors do not describe
the decay of £5 or keep an open mind on the subject.

The (hg,!) method provides a unified algorithm for predicting decay of all
components of the stiffness matrix. In particular, the method makes it possible to
evaluate the decay of Poisson ratios. In the present paper the curves of the decay
of these ratios for the glass/epoxy [0°/905] laminate are given and compared with
GPS-predictions of MCCARTNEY [I.13]. A very close juxtaposition of these predic-
tions are noted. For the laminate analyzed no relevant experimental results were
available to us. The only experimental results available to the present authors,
concerning reduction of Poisson ratios of other types of laminates, are given in
SmiTH and Woob [10]. A comparison of these results with (hg,!) predictions will
be published separately. The present paper concerns only the case of cracking
in the internal layer. A generalization to the case of the simultaneous cracking
in external and internal layers requires a reformulation of the original model of
Sec. 2 proposed by LEwiNskI and TELEGA [1.9], which could probably be done by
adopting the assumptions put forward by HasHIn [5] and Tsar and DANIEL [1.16].

The system of notations is compatible with that employed in Part T of the
present paper, namely in Ref. [7]. For the sake of brevity, Roman numeral 1
refers also to equations or sections of Part I.

2. Parallel cracks. Comparison of (hg,[y) and (hg,[) predictions

The subject of consideration will be the same as in Ref. [7], Secs.3, 4. We
examine a three-layer laminate of thickness 24 weakened by regularly distributed
transverse cracks in the internal layer, and subject to in-plane loading; the crack
spacing equals [, cf. Fig.1.2. These cracks result in the degradation of effective
moduli. The aim of this section is to prove that decaying curves of moduli degra-
dation predicted by the (hg,{) model presented in Ref. [7], Sec. 4, tend to crack
density-independent values of the effective moduli, predicted by the (/g, /) model
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proposed in Sec.3 of [7], if the number of cracks tends to infinity.
2.1. Stiffnesses A2*77 versus A2}

Let us compare formulae (1.3.9) with (1.4.26) and (1.3.13) with (1.4.27). Note
that the line of non-smoothness of the constitutive relations: £, = 0 is com-
mon for both approaches which makes the results of both approaches similar.
However, Eq. (1.3.10) is independent of p = {/2h. Let us examine the A7*%(p)
curves.

If o tends to infinity, Fy,(e) tends to zero. Hence

2.1) lim Az = A7,
Thus if the crack spacing is much greater than h, the loss of stiffness will not
be observed. This effect is also observed in experiments, which will be discussed
in Sec.3. According to the (hg,lp) model, the loss of stiflness is p-independent
provided that o is small, cf. comments in Ref. [[.10].

Consider the case when the number of cracks increases to infinity; then o — 0.
Orne can prove that

1
lim Fo(o;w,0) = —5—,
—0 (69}
(2.2) ‘ 7 ]
lim Folesw,0) = oy

Since o?w? = (p* + ¢%)?, we see that both limits coincide, irrespective of whether
the roots of polynomial (1.4.13) are real or complex. Hence we have

(23) lim (£7,/ 1) = Fu 0)

for the case £j > 0, where F11(0) = lin}} I'11(0) is given by
e

@4)  Fu0) = a3fml(Bum +120a = (Bumis + 23)a2 + Guyz + 722)a3]
On the other hand, according to the (hg,ly) approach, for the case £, > 0 one
finds

(2.5) efi/En = Fy

FJ) being defined by Eq.(1.3.8);. By using the relations between constants sum-
marized in the Appendix of [7], after lengthy algebraic calculations one can prove
that /1;(0) = F]“], which confirms the thesis of Sec.5.6 of Ref. [I.10]: the (hq, ()
model provides asymptotes for the curves predicted by the (/g./) model, namely

(26) lim ;l“c'ﬁﬂ o {rvn,’fﬁ
p—0

http://rcin.org.pl
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2.2. Stiffness A" versus A"

One can prove that
s R i . R
(2.7) lim Fo(Ae) = 5, lim Fp(he) =0,

and hence, cf. Eq.(1.3.21)

(2.8) lim &, = ¢f,  lim A2 o gz
o— 2=
(2.9) lim Al212 o pl212

Thus, if the crack density o~! tends to zero, the stiffness A'2!2 tends to the
stiffness A!212 of the uncracked laminate. If the crack density tends to infinity,
the (hg, [) predictions tend to (ho, lo) predictions (1.3.21) - (I.3.23). In particular,
a constant line G5, = A!212/2} is an asymptote for the 5, curve describing the
decays of the effectlve Kirchhoff modulus.

We observe that (2.6) and (2.9) imply the relation between hyperelastic po-
tentials

(2.10) Vi, = I|m Wi (o).

L)““

The line of non-smoothness of both potentials £ = 0 remains p-independent.

3. Degradation of effective stiffnesses of laminates [0} /905 ],. Comparison with
experimental results and with other analytical predictions

In this section we shall verify the (hg, ly) and (hg.!) models predictions for:

i) [05,/902 15 glass/epoxy laminates tested by HiGHsmiTH and REIFSNIDER [1.6]
and by OGIN et al. [9].

ii) [0°/905], graphite/epoxy laminates tested by Groves [I.4] (this paper was
not available for the present authors; Groves’ results are reported here after LEE
et al. [6]).

The results of Sec. I.4 will be compared with theoretical predictions of ABoupr
[1], HAsHiN [L.5] and LEE er al. [6].

3.1. [0°/903]. glass/epoxy laminate

We start with the laminate first examined by HiGHsmITH and REIFSNIDER [1.6]
and then often referred to in the relevant literature. The complete characteristics
of this laminate have been recorded by HasHIN ([1.5], Sec.4). We repeat them to
make our paper self-contained. The external plies are 0°-plies, their thickness d
being equal to 0.203 mm; the internal layer composed of 90°-plies has thickness
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2¢, ¢ = 3d, cf. Fig.1.2. The compliances ng, (n = m, f) cf. Eq.(2.3) of Ref.[1.9]
are defined by

1 1
Diy = DBy = —, iy & Doy = D= Dl = —,
1111 2222 LA 1111 2222 3333 3333 ET
v
Dii = Diiny = D{j33 = Dz = _—E; ;
UV,
31)  Dpigy = Dy = —Z,
(3.1 1133 2233 Er
I - Wi s AR s 1
Dig, = D1z = Dz = G,
1 1

m =

== i =
D5 = T D3z = Dagp3 = Gy’

where, according to Table 1 of HasHiN [1.5],

F, = 41.7GPa, Er = 13.0GPa, (G4 = 3.4GPa,

<)
Gt = 4.58 GPa, v, = 0.30, v, = 0.42.

The index A labels the fibre direction, while 7" indicates the direction transverse

to the fibres.

Now we can determine the generalized compliances DV, D, DVE, D9, DFE,
DAY, DR by Egs. (2.17) of Ref. [1.9]. Then we invert the constitutive matrices of
Egs. (2.19) and (2.20) of Ref. [1.9] and find the stiffness matrices of the primal
constitutive relationships (2.24) and (2.25) of [1.9]. We can calculate the stiff-
nesses (4.9) of Ref. [I1.10] and then the effective moduli (I.3.16) of the uncracked
laminate. We obtain

Iy = 20.30 GPa, E, = 34.75 GPa, (/12 = 3.40 GPa,

(33)
Vig. = 0193. Vop = Q113

The first three results coincide with the data reported by HasHin [1.5], while re-
sults concerning I, and v, 3 coincide with those obtained by McCartnEY ([1.12],
Appendix A).

According to the in-plane scaling ((hg,ly) approach), the reduced moduli are
crack density independent. Using formulae (I.3.13) and (I1.3.16) for the case of
v ES. and (1.3.23),, (1.3.22), we find

‘a0

E7 = 10.70 GPa, ES = 34.53 GPa, G5, = 0.85GPa,
vi; = 0.0943, v5, = 0.0292.

(3.4)

According to the experimental data of HigHsMITH and REIFSNIDER [1.6], the min-
imum value of £ achieved for 0.75 cracks/mm equals 11.0 GPa while F, =
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21.0 GPa. However, it is not sure whether the values measured in the paper cited
above are viewed as the effective Young moduli or have been defined by means
of the longitudinal stiffnesses

E, = APM2n,  Ej = AN 2.

It is worth noting that the results £, = 20.76 GPa, E] = 10.73 GPa lie closer
to the values found experimentally than the quantities F;, Ef which are Young
moduli by the definition.

The experiments show that the reduction of the effective characteristics de-
pends upon the crack density. The space-scaling (/ip.!) approach accounts for
such a dependence. Having found the matrices involved in Eqs. (3.16) of [1.10]
one can calculate the parameters defined by Egs. (I.A.1)-(I.A.4) and then the
coefficients of Eq. (I.4.13). The roots of this characteristic equation turn out to be
complex (p, £¢), where p = 1.98025 and ¢ = 0.8934, hence the function Fj;(p) is
defined by means of F' = [y, cf. Egs. (1.4.23) and (1.4.24). The decay of stiffnesses
is defined by (1.4.27) and (1.4.43),. The effective Young, Poisson and Kirchhoff
moduli are given by Eqgs. (1.4.29) and (1.4.44).

As it has been emphasized by LEE er al. [6], the decay of the stiffnesses should
rather be displayed versus the crack density defined by 2¢/! (crack depth/crack
spacing). However, to compare our results with the theoretical predictions of
HasHiN [I.5] and with experimental data of HiGusmiTH and REIFSNIDER [1.6], we
quote them in some of our figures also as functions of the crack density ¢, defined
as 1 mm/l.

[u)1 /hEn
L. 7.556
.\_\‘
\'\.
150 "*-\___
i g
crack density per mm, 1mm/l

0 05 10 100.0

Fig. 1. [0°/903]. glass/epoxy laminate tested by Hicusmrrn and Rewsniper [1.6]. The crack
opening [[uf/h.] = [uj/h] (normalized with respect to E}) versus crack density.

The crack opening [u5/h.] = [ul/h] + 0(c) decays to zero if ¢; tends to
infinity, cf. Fig. 1. The longitudinal crack deformation £}, behaves quite differ-
ently. The curve £{;(cy) starts from zero and tends asymptotically to the =1, value
predicted by the in-plane scaling method (hg, ly), cf. Fig.2. The shear crack de-
formation 5{2 behaves similarly, cf. Fig.3. For sufficiently large values of ¢; the
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crack deformations £}, £{; become practically independent of the crack density.
This insensibility to large values of ¢, corresponds to the saturation of cracks
observed in experiments, cf. GARRETT and BAILEY [I.2].

in-plane scaling: EZ/Eh 2.326

-

| 20 /_/
,/’/ Q’;/ E,
V4

crack density per mm, 1 mm/l

0.5 1.0 . 10.0

Fic. 2. The same laminate. Longitudinal crack deformation versus crack density. The in-plane
scaling prediction: ef} & e}} + 0.299%, is an asymptote for the space scale prediction £%;.
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FiG. 3. The same laminate. Shear crack deformation versus crack density. The in-plane scaling
prediction 5, = €1 is an asymptote for the space scaling prediction €.

The decay of the effective Young modulus £{ observed in experiments by
HigusmITH and REIFSNIDER [1.6] and predicted by the method of HasHIN [L5],
the GPS method of McCarTNEY [1.12], the method of LEE et al. [6], cf. ALLEN
et al. [2], and by the space-scaling based (hg,/) method is presented in Fig.4.
The Hashin’s curve has not been repeated after Fig.3 in HasHIN [L.5] but has
been independently plotted by the present authors. The experimental data are
placed according to Fig. 14 in HigusmiTH and REIFSNIDER [1.6] and Fig. 1a in LEE
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et al. [6]. The Hashin’s curve lies slightly below the curves predicted by the GPS
model and by the (hg,!) space-scaling method, the juxtaposition of the last two
curves being too close to be noticeable in Fig.4. The curves mentioned above
provide lower bounds for the experimental results. Small differences in these
results can be read off from Table 1a. On the other hand, the predictions of LEE
et al. [6] are upper bounds for the experimental data. The in-plane scaling method
((ho,lp) approach) determines a horizontal asymptote for the E{/FE; curve; the
conventional ply-discount assessment lies a little below and is an asymptote for
the Hashin’s curve.

Table 1. Decay of E/E,, v;; as function of crack density 2c/l for the (0°/903). glass/epoxy
laminate tested by HIGHSMITH and REIFSNIDER (1982). Comparison of predictions by (hg, /)
model proposed with results due to HasHIN (1985) (case FE7/E,) and model (GPS) of
McCARTNEY (1992, 1993).

(a) (©)
E{/E) vay
2¢/1 | Hashin | McCartney | Lewinski and 2¢/l | McCartney | Lewinski and Telega
(1985) | (1992) GPS | Telega (ho. 1) (1992) GPS (ho, 1)
0.1 | 0.9069 0.90918 0.90914 0.1 0.09684 0.09688
0.5 | 0.6609 0.66638 0.66628 0.5 0.05375 0.05390
1.0 | 0.54782 | 0.55347 0.55341 1.0 0.03371 0.03393
100. | 0.52127 | 0.52683 0.52681 100. 0.0290 0.02922
(b) (d)
vi E3/Es
2c/l | McCartney | Lewinski and Telega 2c¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ho, 1)
0.1 0.18215 0.18223 0.1 0.99929 0.99930
0.5 0.13753 0.1380 0.5 0.99644 0.99650
1.0 0.10362 0.10432 1.0 0.99428 0.99437
100. 0.09353 0.09432 100. 0.99364 0.99374

The decaying character of the graphs v{,, 5, is reported in Fig. 5. The in-plane
scaling predictions are constants lines — the asymptotes of more realistic space-
scaling results. The GPS and (hg,!) predictions turn out to be very similar, see
Tables 1b, 1c.

A very slight decay of F3 is predicted by GPS as well as by the (hg. /) method,
cf. Fig. 6. Both models mentioned lead to very similar results, see Table 1d. The
decay of £S5 as well as of v]; cannot be described within the framework of
HasHins [1.5] approach, hence the lack of comparisons.

http://rcin.org.pl
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FiG. 6. The same laminate. Decay of the effective Young modulus E.

The method of HasHiN [I.5] and the (h(./) method lead to the same for-
mula describing the decay of the Kirchhoff modulus, cf. Fig. 7. Recently Tsar and
DANIEL [1.16] have confirmed that this formula predicts values of (;{, comparing
favourably with experimental data concerning graphite/epoxy laminates, cf. Fig.5
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FiG. 7. The same laminate. Decay of the effective Kirchhoff modulus, The Hasin’s [1.5] and
(hq, I) predictions coincide. Predictions based on the in-plane scaling coincide with
ply-discount result.
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in the cited paper. On the other hand, the experimental results due to HAN and
HanN [4] concerning the GFRP [0, 905], laminates lie far away from the Hashin’s
curve. Experimental data concerning G, for the laminate considered here were
not available to the present authors.

3.2. [0°/90°]. glass/epoxy laminate
Consider the [0°/90°], glass/epoxy laminate tested by OGIN et al, [9] for which
(3.5) ¢ =d = 0.125 mm, E4 = 40 GPa, Er = 11GPa,
(4 = 5GPa, Gt = 3.87GPa, v, =03, v, = 042.

These data, except for the last two which are assumed here, are taken from
Asoupi [1].

ul
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ga ————— Hashin (1985)
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P crack density: 2c/l
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FiG. 8. The [0°/90°]. glass/epoxy laminate tested by Ocin ef al. [9] (circles). Assessing the loss
of the effective Young modulus £}.

The Hashin’s curve as well as the almost coinciding curves provided by the
GPS model of McCartNEY [I.12] and by the space-scaling (/g,!) method yield
lower bounds for the experimental results of OGIN et al. [9], cf. Fig.8. The ac-
curacy, however, is not so satisfactory as for the laminate considered previously.
Better results are provided by the displacement-based method of Asoupi [1]. His
method, however, similarly to that of Hashin is based on comparing energies and
hence is uncapable of assessing off-diagonal terms of the effective stiffness matrix.
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The precise values of £/, and v§; predicted by the GPS model of McCAR-
TNEY [1.12, 13] and by the (hg, /) model proposed in the present paper are set up
in Tables 2a-2d. It is seen that both models produce almost identical results. In
particular, these differences could not be displayed in Fig. 8 concerning E{/E,.

Table 2. Decay of £ /FE., v,; as function of crack density 2¢/! for the (0°/90°). glass/epoxy
laminate tested by OGIN ef al. (1985). Comparison of predictions by (hg,[) model proposed and
GPS approach of McCARTNEY (1992, 1993).

() (©)
Ef/E Vi
2¢/l | McCartney | Lewinski and Telega 2¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ho. 1)
0.1 0.96195 0.96194 0.1 0.11773 0.11789
0.5 0.83782 0.83780 0.5 0.07964 0.08030
1.0 0.79856 0.79846 1.0 0.06759 0.06839
100. 0.79333 0.79322 100. 0.06599 0.06680
(b) (d)
vy ES/Ex
2¢/l | McCartney | Lewinski and Telega 2¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ho, 1)
0.1 0.12224 0.12241 0.1 0.99876 0.99881
0.5 0.09448 0.09529 0.5 0.99394 0.99421
1.0 0.08397 0.08501 1.0 0.99212 0.99247
100. 0.08250 0.08356 100. 0.99186 0.99223

3.3. [0°/903]. graphite/epoxy laminate

Let us consider the loss of Young modulus of the [0°,905]; graphite/epoxy
laminate with the following characteristics

d = 0.127 mm, ¢ = 2d, F4 = 1448 GPa, Er = 9.6 GPa,

3.6
(3.6) Ga=48GPa, Gy =329GPa. v, =031, v, =0.46.

The experimental results of GROVES [1.4] lie between the curve of LEE ef al. [6]
and the curve of HasHIn [I.5]; the curves (almost coinciding) provided by the
GPS model and the space-scaling (hg. () approach lie slightly over the latter one,
but all three curves are so close to each other that practically they overlap, cf.
Fig.9 and Table 3a. As in other cases, the in-plane scaling method leads to a
line E{ = 0.8842 being an asymptote for the space — scaling curve. The Hashin’s
curve tends to the value 0.8840.

http://rcin.org.pl



F1G. 9. The [0°/907]. graphite/epoxy laminate tested by Groves [1.4] (circles). Assessing the loss

Table 3. Decay of I, /E., v, as function of crack density 2¢/l for the (0°/903). glass/epoxy
laminate tested by GROVES ef al. (1986). Comparison of predictions by (¢, [) model proposed and
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(a) (c)
E{/E, v
2¢/l | McCartney | Lewinski and Telega 2¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ho, 1)
0.1 0.98269 0.98270 0.1 |. 0.02688 0.02689
0.5 0.91971 0.91973 0.5 0.01609 0.01614
1.0 0.88964 0.88964 1.0 0.01094 0.01101
100. 0.88418 0.88418 100. 0.01001 0.01001
(b) (d)
Ui Ey /By
2¢/l | McCartney | Lewinski and Telega 2¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ha, 1)
0.1 0.04986 0.04988 0.1 0.99936 0.99936
0.5 0.03182 0.03192 0.5 0.99683 0.99685
1.0 0.02234 0.02248 1.0 0.99550 0.99553
100. 0.02055 0.02069 100. 0.99525 0.99528
[277]




278 T. LEWINSKI AND J.J. TELEGA

The precise values of £/ E, and v, ; predicted by the GPS model of McCaRr-
TNEY [1.12, 1.13] and by the (hg, /) one are given in Tables 3a-3d. The results are
almost identical.

4. Final remarks

The analysis of the response of the cracked [02,,90¢] laminates did not en-
compass a stress analysis. A detailed stress analysis will be published separately.
We put only some relevant remarks concerning relations between (hg,[) stress
predictions and those found in HASHIN [L.5].

Within the framework of the (g, () approach, the stresses in periodicity cells
are expressed in terms of macrodeformations ¢” ;, cf. Egs. (2.7)-(2.9) of [1.9] and
(5.19)=(5.21) of [L.10]. On the other hand, in HasHiN [L.5] the stresses are deter-
mined by the density of the boundary shearing 7 and tensile ¢ loading. To bridge
a gap between both approaches let us introduce the following interpretations of
7 and o in terms of macro-stress resultants of the (hg,!) model:

4.1) r=1,=N2/2h, o=a,=N}"/2h.

Let us focus our attention on the stresses arising at shear. According to (1.4.43)
one finds

4.2) T = 2G4 [1- Fa(o)| el

Note that within the interpretation suggested by (4.1), 7, becomes crack-density
dependent: 7, = 7, (o). A direct relation links 7, and ¢/,, owing to which one can
compare formulae for o)? = ¢'%(z,2), |2| < ¢, due to HasHiN [L.5] with those
resulting from the (hg,/) model.

Using Egs. (2.7) of [1.9] and (1.4.31) one finds

(4.3) /o = ST(Ae, X6),
where 1y = 26’,45?2 stands for the shear stress in the uncracked laminate and

. az(chz —chy
(4.9) Sz, y) = —c( ) .
_lSh r+ xcha
(

Note that ry does not explicitly depend upon the crack density.
HasHIN [1.5] obtained the following relation

ch :\f

4.5 12/ =1 =
5} s ch Ao

m
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Taking into account (1.4.42), and (4.1) one can readily prove that formulae (4.3)
and (4.5) coincide. Similarly, one can show that other components of the state
of stress appearing when the laminate is subjected to shearing are predicted in
the same manner by both models, inasmuch as a “bridging” relation (4.1) is
acceptable.

Comparison of the formulae for stresses related to tension is less clear, since
in general N7? # 0 while in HasHiN [1.5] only the case N?? = 0 (according to our
interpretation) is considered. On imposing N2 = 0 one can derive a formula for
oll = oll(2,2), |2| < ¢

(4.6) o lon = f(0,6),

where o), = 0;,(0), cf. (4.1);. HasHIN [1.5] normalized the stress ¢! with respect
to the averaged stress in the middle layer. This formula does not coincide with
(4.6) even if the latter is appropriately rearranged. For the laminate considered
in Sec. 3.1, formula (4.6) produces results somewhat greater than its counterpart
found by HasHin [1.5], but the differences are measured in promilles.

The formulae found in the present paper for the decay of the effective stiff-
nesses and possible to find (but not displayed) formulae for stresses due to tension
are more complicated than those found by HasHiN [I.5] and McCarTNEY [1.12,
model GPS]. This is a consequence of treating the stress resultants N°7 as in-
dependent unknown variables and completion of the model with displacements
v, relevant to them. Note, however, that an independent treatment of N7 is
in general indispensable when the shapes of the laminate is arbitrary and N°7
cannot be determined directly by the boundary loading.

Thus the present paper does not present any set of formulae for the analy-
sis of cracked laminates, but forms a consistent and well-posed laminate model
(ho,!) from which such formulae can be inferred. This model makes it possible
to approximate boundary value problems for a relatively large class. Tt seems that
the model constitutes a reasonable starting point to the construction of a damage
model that would take into account:

i) damage induced anisotropy, and ii) unilateral effect of damage.

According to CHABOCHE [3], none of hitherto existing theories of damage of
laminates satisfies both the conditions simultaneously.

Acknowledgement

The authors were supported by the State Committee for Scientific Research
through the grant No 3 P404 013 06.



280 T. LEwiNskl aND J.J. TELEGA

References

1. J. Aoupt, Stiffness reduction of cracked solids, Engng. Fract. Mech., 26, 637-650, 1987.

2. D. ALLeN, C.E. HARRIS and S.E. GROVES, A thermomechanical constitutive theory for elastic composites
with distributed damage. Part I. Theoretical development. Pant I1. Application to matrix cracking in laminated
composites, Int. J. Solids Struct., 23, 1301-1318; 1319-1338, 1987.

3. J.-L. CHABOCHE, Damage induced anisotropy: on the difficulties associated with the active/passive unilateral
condition, Int. J. Damage Mech., 1, 148-171, 1992.

4. Y.M. Han and H.T. Hann, Ply cracking and property degradations of symmetric balanced laminates under
general in-plane loading, Compos. Sci. Technol., 35, 377-397, 1989.

5. Z. HASHIN, Analysis of orthogonally cracked laminates under tension, J. Appl. Mech. Trans. ASME, 54,
872-879, 1987.

6. J-W. Leg, D.H. ALLeN and C.E. HARRIS, Internal state variable approach for predicting stiffness reductions
in fibrous laminated composites with matrix cracks, J. Compos. Mater., 23, 1273-1291, 1989.

7. T. LewiNski and J.J. TELEGA, Stiffness loss of laminates with aligned intralaminar cracks. Part I. Macroscopic
constitutive relations, Arch. Mcch., 48, 2, 245-264, 1996.

8. S. Moroct and T. Fukupa, Shear modulus degradation in composite laminates with matrix cracks, [in:]
Proc. Mechanical Behaviour of Materials-VI, M. Jono and T. INOUE [Eds.], Pergamon Press, Oxford,
pp-357-362, 1991.

9. S.L. Ocin, P.A. SmiTH and P.W.R. BEAUMONT, Matrix cracking reduction during the fatigue of a (0°/90°).
GFRP laminate, Compos. Sci. Technol., 22, 23-31, 1985.

10. P.A. SMrtH and J.R. Woob, Poisson’s ratio as a damage parameter in the static tensile loading of simple

crossply laminates, Compos. Sci. Technol., 38, 85-93, 1990.

WARSAW UNIVERSITY OF TECHNOLOGY

CIVIL ENGINEERING FACULTY

INSTITUTE OF STRUCTURAL MECHANICS

and

POLISH ACADEMY OF SCIENCES

INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received June 21, 1995,

http://rcin.org.pl



