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Stiffness loss of laminates with aligned intralaminar cracks
Part 1. Macroscopic constitutive relations

T. LEWINSKI and J.J. TELEGA (WARSZAWA)

THE pAPER deals with analysis of reduction of the in-plane effective elastic moduli of the [05, /902 ]s
laminates weakened by aligned cross-cracks in the 90°-layer. A regular crack pattern is assumed.
The case of dense crack distribution is modelled by (hy, ly) approach, while the case of arbitrary
crack density ¢4 is described by a more accurate model (hg, ). Both models have been derived in
our paper [10]. Closed-form formulae describing decaying curves Ey(cq), Ez(cq), viz2(ca), vai(ca),
(712(cq) are found by solution of the local problems for both models.

1. Introduction

CRross-pLY LAMINATES of the [02, /90¢ ], type incur matrix cracking, interlaminar de-
lamination and fibre breakage. The matrix cracks observed are straight or curved,
cf. GROVES et al. [3]. The aim of the present paper is to assess the loss of effec-
tive elastic characteristics of the laminates with the straight matrix cracks going
transversely through the whole thickness of the 90°-plies. The influence of crack
curving as well as the onset of delamination is neglected. The cracks are assumed
to be aligned. The present paper is mainly concerned with the case when these
cracks are equally spaced. The assumption seems to be non-restrictive, since ma-
trix cracks form usually regular patterns, cf. GARRETT and BAILEY [2], HIGHSMITH
and REIFSNIDER [6], GROVES [4] and GROVES et al. [3]. The method (hg,!) to be
used has been proposed by us in [9, 10] and mathematically justified in TELEGA
and Lewinskl [15]. This method makes it possible to evaluate reduction of all
components of the stiffness matrix of the three-layer balanced (transversely sym-
metric) laminates with transverse cracks in the internal layer.

The aim of this part of the paper is to find closed-form formulae interrelat-
ing effective Young’s moduli ¢, E°, effective KirchhofP’s modulus ¢y and
Poisson’s ratios v°,5 with crack density ¢;. The second part of the paper [11] is
devoted to placing these results into the available literature of the subject as well
as to compare the theoretical predictions of the (hg,/) model with experimental
data.

The following conventions are employed: small Greek indices (except for <)
run over 1, 2, while Latin ones (except for &) take values 1, 2, 3; h labels quan-
tities of the homogenized description. Summation convention concerns repeated
indices at different levels. Sometimes the same letter denotes an index and a par-
ameter (e.g. o, /3, 7, 6, etc. defined in the Appendix), which should not lead to am-
biguities. The system of notations is compatible with that employed in LEWINSKI
and TELEGA [9, 10]. Some auxiliary quantities are defined in the Appendix.
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2. A laminate composed of orthotropic plies. The case of short cracks parallel
to the axis z,

The aim of this section is to exhibit simplifications in the homogenized de-
scription of in-plane deformations of the cracked laminate considered in [10]
which take place when:

i) the plies are orthotropic, and

it) the cracks weakening the internal layer are aligned.

Assume that the axes z;, z; are axes of orthotropy. Cracks are parallel to
the axis zj, cf. Fig. 1. In view of the orthotropy assumption, the only non-zero
components of the stiffness are
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FiG. 1. Laminate with short aligned cracks.

Consequently, the only non-vanishing components of the tensors A% cf ([10],
Eqgs. (4.9)), are

3' 35 ¥ [3 3 v (3o (}}Lj x{3o
(22) A?GJ ;37 Agﬂ/f-"’ Atlhfﬂ;d - /l:;lh'd, Azr B ,\"” 3

vu

Note that 41122 = A1 put A2 % APV,

The components of the vectors N, T are (0.1) and (1,0), respectively, (cf.
[10], Fig. 1). According to the definition (4.7) given in [10] of the tensor of crack
deformation measures €+, one finds:

52
S ,
(2.3) ef, = m/[[zt,ﬂriyz. £ =0, A=1,2.
s1



STIFFNESS LOSS OF LAMINATES WITH ALIGNED INTRALAMINAR CRACKS. PART | 247

Thus, regardless of the type of the scaling, the homogenized constitutive relations
have the form (cf. [10], Egs. (4.5), (5.36))

11 _ 41111 h h =
Ny = A, ("11511 +f’12€£2—ﬁ|1~f1)-
20 . 4liil K h -
(2.4) Nh = AU (0125_‘{] + ey — ,[32]6{1) "

NiE = 2412 (5?2 - &5{2) )

where ¢f; = ¢ (), by, €1,); the coefficients involved in (2.4) are defined by
Egs.(A.1). We cannot expect that in general Efa = eb (eh,€hy) and €f, =
ef,(eh,), since the cracks considered are of a unilateral type.

3. Parallel cracks: effective characteristics according to the (hg,/y) approach

From now onward we shall deal with a laminate composed of orthotropic plies
and weakened by straight-line cracks in the internal layer, lying at equal distances
l. The crack lines coincide with z; = n/ lines (n = 1,2,...), cf. Fig.2. The aim
of this section is to find effective stiffnesses of the laminate considered resulting
from the (hg, ly) method discussed in ref. [10], Sec. 4. This method follows from
the in-plane scaling: h — h, l, — ¢l,, and hence it will also be called the in-plane
scaling approach. Results of this model apply for laminates with cracks of high
density. Predictions of the model will be independent of the value of the [/h
ratio.
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FiG. 2. Laminate with infinite aligned cracks.

The key to homogenization is to find solutions to the local problem (P2,
formulated in Ref. [10], Sec.4. Geometry of the periodicity cell is here simple,
cf. Fig.3. For the sake of simplicity, the crack /' is located so that it divides the
cell into two equal parts.



248 T. LEwINsKI AND J.J. TELEGA

y A

. 8b , Gh

L
* +

. l=2gh %

1

Fi1G. 3. Basic cell of periodicity.

Since the crack F' lies along the axis y;, one can guess that the solution to
the basic cell problem (F?.) of Sec.4 in [10] does not depend on y;. Similar
problem has been solved by LEwiNski and TELEGA [8], hence only the outline of
the derivation will be given here.

The unknown fields of (Pg.) are v} (y1), ](y1) and v}(y1), ub(y1). It turns out
that these two pairs of functions are solutions of the independent (decoupled)
stretching and shearing problems.

3.1. Solution of the local stretching problem. Stiffnesses A2*"7

The unknown fields are v](y;) and u}(y;). Let € = y;/h be a non-dimensional
variable; £ € (0,2p); 20 = [/h. Analysis of the local equations of (/7%,.) shows
that both unknown fields are piece-wise linear in &, i.e.

i+, E\& + E5, € (0, 0),
a1 s .1E 2 g [ B 2 £€(0,0)
D&+ Dy, e+ I, £ € (o,20).

The stress resultants (cf. [10], Eqs. (4.11)) are given by

1 dov! du!
N&l = A{m 1y it +n[1)1.

h de 7 de

(3.2) ’ ol "
# o T |LadlinsY 411118% 11
LO h [.12 ({‘E + ."14 (IE :| + [(] s

where n}!, I[}! are defined by Egs. (4.14) in Ref. [10].
The constants ¢, D,, F,, F, are interrelated according to:
¢ periodicity conditions

01 (0) = v} (20), ul (0) = ul(20),

) Ng'(0) = Ng'(20),  Lg'(0) = Lg'(e);

http://rcin.org.pl
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¢ switching and contact conditions

vi(e—0) = vi(e+0),  Ng'(o—0)= Ng'(o+0),

(3.4)
L'(e—0) = Li'(e+0) <0,  L§'(e - O)[ui] =0,

(3.5) [u1] = ui(e +0) - uj(e - 0) > 0.

Analysis of the above conditions leads to

0 for 1,’(1)1 <0,
i) =0, ()= o' 11
~ I for [ > 0.
4
B l
Here () = — [ (+)dy,. Since u! is periodic, cf. Eq.(3.3);, one can make use of
=1 P
0

the relation: (y},(u')) = —[u{]/L.
Hence we find a non-zero component of the crack deformation tensor (2.3)

(3.6) er

=5

[[“H] { if £j <0 (the crack is closed),
F“ rhv

[ if £, >0 (the crack is open),

where, cf. Eq. (4.14), in Ref. [10]

Flol - Alll]/,lllll E), = 1(1)1//1:’]11’

(37) [(])1 = 11111 h g 41122

€22
or, using relations (Ref. [10], Eq.(4.12),, (4.12),), (A.1) we can write
(3.8) =y =)™,  En=Buch + fueh.

According to the formula (4.5) in Ref. [10] and Egs. (2.4), we arrive at the ho-
mogenized constitutive relationships for axial stress resultants

Aryall h +Aaa22ch . for Ej < 0,
(39) NC?C! e 22

Amxll h + Aaa22622’ for E, > 0,
where
(3.10) GO0 = ATOPP _ agetl g IS (AT,

Relations (3.9) are continuous along the line £, = 0.
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By virtue of the symmetry relations (cf. [10], Egs. (4.9); and (4.12);)

VAN . g Apof o\ _ N3
(3.11) A‘l Hi= Al‘ , AT = AR
we have
(3.12) AZOPP = jlPac

hence the symmetry A2?!! = A!1?2 holds also when the crack is open.
It turns out to be helpful to write the components A2“?# in the form

(3.13) AP AT = o — BB FY

the non-dimensional coefficients «, and /3., being defined in the Appendix.
In the “technical” notation relationships (3.9) should be rewritten as follows:
e in the case of closed cracks (£, < 0)

614 M2 [ B wen]fel
: N7 1 = vigray v £ Er 5]’

e in the case of open cracks (), > 0)

e e e ~h
= 2h [ ES ulzL]J l:plll
€ 2al e e o h y
1= v, | v5 B3 L5 €22

The orthotropic constants for the case of closed cracks are given by

11
Ny

(3.15) Ve

4}122 ;‘}]22 Aoraan
o _ = - Al
(3.16) vy = A{“l ; 1 = W ” Eo = (1 - 1mavm) 2

The components vy 5 S, and F°¢ are deﬁned in terms of zliyamj in a similar
122 V21 £ :
manner.

3.2. Solution of the shearing local problem. Stiffness A*"?

It turns out that the unknown fields v], u} are piecewise linear functions:

1 {clfm., 1 {f'f:EJer» €€ (0.0).
= Uy =

(38 7). vy =
D&+ Dy, Fi§ + Fy, ¢ € (o, 20).

The stress resultants, cf. ([10], Egs. (4.11)-(4.14))

] dvl dul
A,gl = [[12121_2_’_/4%121 2

bode d¢

= =

(3.18)

| —

21 _ L 2121_‘[}& ,2121% 21
LO [f12 (1€ + A4 ([£ + ,0 N
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are piecewise constant. The periodicity conditions read:
03(0) = v3(20), u3(0) = u3(20),
§'(0) = N§'(20),  L§'(0) = L§' o),
while the switching conditions are
vi(e - 0) = v3(e +0),
Ng'(e-0) = N§'(e +0),  L§'(e—0) = Lf'(2 +0).
Using (3.17)—(3.20) one finds

(3.19)

(3.20)

, 121
e (v) =0, (721 (u )) 12121

Due to the orthotropy we have A3'?! = A3'2!, By virtue of the relation 3! =
24311k and Eq. (4.6) in [10], one finds

(3.21) A

Therefore the homogenized constitutive relation (2.4)3; assumes the form

(322) N}}2 - 2‘_,152]261112 ) A1212/41212 = =

where @ is defined by (A.1)s. According to (A.2) we have 1 — a = d/h. The
effective Kirchhoff moduli of the cracked and uncracked laminate are

(3.23) Gz = A212)2h G5y = AM2)2h,
3.3. The homogenized potential

Having found relationships (3.9) and (3.22), one can express the homogenized
constitutive relations in the hyperelastic form, cf. [10], Eq. (4.18)

aVy
Ty
deg g

(3.24) NEP =

the potential V;, being defined by
1% for Ej, <0,

(3.25) Vi =
Vi for FE, >0,

where, cf. [10], Eq. (4.22)
th = Z ‘Oaﬁﬁ"acrsﬂﬁ + 2/12‘212 [(5?2)2 + (E’ZLI)Z] ’
o,

zvg — Z loaﬁﬂ"ocyﬂ b + 2A1212 [( 12)2 + (&_ )2}
o,/

(3.26)
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The formula (3.26); can be rewritten as follows

(3.27) Vi =) - %A},‘“Fﬂ(ﬁh)z.

By virtue of (3.27) one can readily prove that V}, is of class C'! (not C'?), the result
already known from Sec. 4 of Ref. [10]. We see that the line £;, = 0, cf. (3.8),,
(3.28) Bty + Bauesy =0

is a line of discontinuity of the second order derivatives of the potential V,, cf.
Fig.4a. This figure characterizes the [0°/903], glass/epoxy laminate examined in
detail in Sec.3.1 of the second part of the present paper [11].

h 22
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il ///
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FiG. 4. a. (¢}, €%)-plane; condition Ej > 0 for the crack opening in the glass/cpoxy [0°, 903 ].
laminate tested by Hicusmimn and Rewsnioer [6); £, = 0.4298¢7; + 0.12865,. b. (N}, N 7?)-plane.
Condition Ny, > 0 for the crack opening; the same laminate, Ny, = 0.632N,}! + 0.0408 V2,

3.4. Inverted form of the homogenized constitutive relations

The constitutive relations (3.24) can be inverted. We shall now find this inverse
form. The main problem reduces to inverting relations (3.9). For this purpose we
introduce here matrix notation.

Let us define the following vectors and matrices

k
k = [Bu1,821), ki =[-Hau.fu], C= [k ] .‘
A

A e
(3.29) A, = A}nm 2| m=1 or c,

m

T T
— |l B i r11 22
E = [511,522] 3 N = I:l\h -AMh ] .

http://rcin.org.pl
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The constitutive relations (3.9) can be written as follows

A€, for kee <0,
(3.30) N =

A€, for k.e > 0.
This relation is continuous because V, is of class C''; hence
(3.31) Akl =AKT.
Let us set e = Ce, e = (e1, e2). The inverse relation reads

1
32 = C! -1 = .

(3.32) e =C"e, C delCC

Hence (3.30) assumes the form

B]E, for €1 < 0,
(3.33) N =

B.e, for e; > 0,
where
(3.34) B, = A,C!, B. = A.C L.

Consequently

DlN, for €1 S
(3.35) e=

DL.N, for €1 2= 0.
where
(3.36) D; =CA{', D.=0CAl.

Our aim is to express conditions ¢y < 0 or ey > 0 in terms of N. To this end let
us define a new vector & = D|N. This definition does not depend on the sign of
e1. We express (3.35) in terms of &:

£, for e <0,
(3.37) e =
P&, for €1 > 0,
where
1
] P =D.D;! P=—CA A CT.
(3.38) Dj or detCCAC A C
One can prove that
detA,
.39 Py = Py = 0.
(3 3 ) 11 detA,~ and 12 0

http://rcin.org.pl
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The last equality is crucial here. It is a consequence of continuity requirements
(3.31). The relation (3.39); implies ’; > 0. Hence we conclude that

El, for e1 < 0,
(340) g€ =
PIlSla for e > 0, P]] > 0.

The relations given above show that sign e; = sign £;, which makes it possible to
rewrite (3.37) in the form

{DIN, for £ <0
Ce =

(3.41)
DN, for £ >0

and, finally, to find

IN

A7'N, for &
(3.42) g )
&1

0,
AN, for 0.

IV

The condition £; < 0 can be expressed as N, < 0, where
(343) JVh = (,[311(.}22 - /.321(121)1)\"}}] " & ((*'11/321 - /311(112)."\",‘?2,

and sign N, = sign F),.
The inverted form of the homogenized relations (3.9) is
1

(3.44) ch = 2hEq

(N = va Nﬂm)‘ for N, <0,

¢ xrBB -
(Ne® - u5, NPBY,  for N, >0,

2hE:

and 3 = 3 — a; do not sum over « and /3!
Recalling relations (4.22) of Ref. [10] and (3.22) one can easily express V}, in
terms of N:ﬁ. Its line of discontinuity of its second order derivatives is N, = 0,

cf. Fig.4b. The data for this figure were taken for the laminate considered in
Sec.3.1 of Ref. [11].

REMARK 3.1

The considerations of Section 3 may be viewed as a practical procedure for
finding the complementary or dual effective potential V. Detailed study of duality
is provided by our mathematical paper (TELEGA and LEwWINSKI [15]). Nevertheless
it is worth noting that V; may be determined as the Fenchel conjugate of Vy, i.e.

(3.45) VﬂE)=mm{EmW%ﬁ—VMm1EEEQ. E" e E2.

The complementary potential V; is strictly convex, of class C'! and

av;
o
(3.46) e H =k

e" e B2, NteE?.
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4. Parallel cracks: the space-scaling homogenization approach — model (hg, /)

The aim of this section is to find effective characteristics of the laminate of
Fig. 2 according to the (hg./) model of Sec.5, Ref. [10]. The predictions of the
loss of effective stiffnesses found in this section involve the //h ratio and apply
for arbitrary values of this ratio.

Similarly as in the in-plane scaling method, the local problem (P2.) (formu-
lated in Sec.5.2 of Ref. [10]) splits up into two: stretching and shearing problems.
The unknown functions depend solely on y; = hé.

4.1. Solution of the stretching local problem
The unknown functions are v}, u} and w?. The non-vanishing stress resultants
are given by Egs. (5.20) of Ref. [10]; they assume the form

Ng' =AM + au’ + pu) + 1,

N(%?‘ = ,-lll“(ﬂl o' + Bau’ + Bow) + 11(2)2.

L' = Ao’ 4+ yu’ + Ajw) + i1,

L3 = AM(Ba0" + yau' + Baw) + 15
1

Ry = ,2 AN By + A’ + pw),

QL = l“”(u - w'), (:) = d(+)/dE,

(4.1)

where new unknowns have been introduced

(4.2) v =ol/h, w=ul/h,

(4.3) w = wz/h2 + 1w, wy = I]_t (/‘35'{1 + ,’32632) .

The quantities n§®, [§* are defined by Egs. (4.14) of Ref. [10]. The new coeffi-

cients involved in (4.1)-(4.3) are defined by (A.1).
The equilibrium equations reduce to the form

dNJ! dzy! : dQ}
dé ' d€ Qo dE€ Hiig

On expressing the equilibrium equations (4.4) in terms of the unknowns (v, u, w),
one arrives at the following system of differential equations

(4.4)

" + au” + pu’ =0,
(4.5) av” + (yu” - du) + A\’ = 0,
—Bv' = M’ + (bw" — pw) = 0.
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The strong formulation of the local problem amounts here to finding the fields
(v, u, w) defined on the interval [0, 2] such that:
o the equations (4.5) are satisfied for each £ € (0, 0) U (0, 20);
¢ the periodicity conditions
v(0) = »(2p), u(0) = u(20), w(0) = w(2p),

4.6
o) Ng'(0) = Ng'(20),  Lg'(0) = L§'2e).  Qp(0) = Q4(20)

are satisfied;
e the switching conditions are fulfilled at £ = p

v(o — 0) = v(e + 0), w(e —0) = w(e + 0),
Nil(e - 0) = Nl +0), Qo - 0) = Qh(o + 0);

L«] = 0, [u«] = u(e + 0) — u(e — 0) > 0.

4.7)

(4.8)

A detailed solution to the problem stated above will be given a little later. Suppose
now that this solution is known. Similarly as in Sec. 3, the problem can be reduced
to finding the field 1} given by (2.3),. In the case considered here s; = 0, s, = [,
Y| = il = ll5; hence

Ill u
(4.9) &= [[[']] = g

The tilde over ¢f; indicates that this quantity is evaluated by the (hg,!) approach.
Thus the only unknown which is really needed for assessing the loss of stiffnesses
is the jump [u].

Let us proceed now to the analysis of the local problem. One can note first
that the unknown w can be eliminated from Egs. (4.5). One finds

(4.10) p1v” + (uiau” + py3u) = 0,
y (;1,211;'1 4 11-22’1’) i (/t23uﬂ 4 “24”) = 1€ + 02,

where 1,4 are defined in the Appendix and ¢, are arbitrary constants; u” =
d*u/d€?. The fields v and v satisfy the following uncoupled equations

(4.11) Lu =0, Lv = pya(e1€ + ¢3),
where

d d®
(4.12) L= al(_lzz + azjg + as;
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the coefficients a;, a; and a3 are defined in the Appendix. Let +o, tw be the
roots of the characteristic equation

(4.13) ayz + a2’ + a3 = 0.

In general, ¢ and w can assume real or complex values. In the latter case o = T;
the bar denotes the complex conjugate.

Symmetries characterizing the problem imply that the fields (u,v) are anti-
symmetric with respect to the point £ = p. Thus we can write

(4.14) 8= { L = {""’ ¢e 0o
. uir , 1) f e (Q- 29)’

where

up = Bie ¢ + Bye~?(e=8) 4 Bye ¢ + Bye~(e=9)
(4.15) : - : By
uyp = —Bye~ 728 _ Boe=lt~0) _ pie~w(2e-0) _ p,o—wli-e),
v = D1E + Dy + Gre™ ™ + Gre™ 7078 4 Gye™F + Gyemw(e7)

(4.16) ] . !
= FE+ Py — (','16,~H(29~€) _ (,vzf.—a(é—e) _ (;3,]~W(29~t) _ (]4(,"’*'(5"0)’

here B, G;, D, and F, are unknown constants. The first equilibrium equation
(4.5); makes it possible to determine the function w, being equal to wy for £ €
0, n) and wyr for £ € (o, 2{))

wp = K+ %(alil + Gh)e 7t — 7—3(&132 + Gq)e~7(e=9)

+;—;(ﬂ B3 + (:3)(:'_“}{E s ;—;(()(]34 + (,:'4)(‘—w(9_£),

4.17 .
( ) w = Ll + %(01))1 + (71)(-_U(29‘E) Ye) %((i,B2 + Gz)e—(‘r(t—g))

+§(aB3 + G3)e—we=0) _ %(a By + Ga)e—6-0),

Having found the formulae (4.14)-(4.17) one can express the stress resultants
NgL LEY, QF in terms of the functions involved in (4.15)-(4.17) and unknown
constants D, F,, Ky, Ly, B;,, G;;1=1,2,3,4; a = 1,2. We shall omit details of
the evaluation of thesc constants and report only the final results. The relative
opening of the crack &%, defined by Eq. (4.9) depends on sign [}! = sign Ej:

~f7 09 fOl‘ Eh S 0,
(4.18) =4
F“(Q)Eh, for Eh > 0,

http://rcin.org.pl
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where E) has been defined by Eq. (3.8); and the function /7,(o) has the form

-1

g
@19 Fu() = fu | 50(00) + a0,0)F@Ee0)|
where
(4.20) 9a(0,0) = Va1 + 702070? + 7a3(0? + W)
and
Y _ 0 | cthwpe cth (rg)
(4.21) Floyw,o0) = g R ( » = .

Parameters 7., f1; and 3y, depending on the geometry and material properties
of the laminate, are defined in the Appendix.

Note that the function Fy;(p) preserves its form after the change: 0 — w, w —
o; moreover, g, do not depend on whether o and w are real- or complex-valued.
In fact, in view of (4.13)

(4.22) P Hu? = —apfar, %t = azfar.
Ifo=p—ig,w=7=p+iq(p,q € R) we change the definition
(4.23) F(o;w,a) = Foles p, q)-

After appropriate manipulations we find

L _ J(pe,q0)
(4.24) Fo(o;p,q) = —2]"{(]}2 )’
where the function f is defined by

_ ysh2z + zsin2y
ch2x — cos2y

(4.25) @, y)

4.2. Assessing loss of the ES"H" stiffnesses

Having found the relation £f,(€") one can determine the homogenized con-
stitutive relationships via Egs. (2.4)

AnullEhl + ,’1“’“225’1 . for Ey, < 0,
(4.26) Ny = " 1 Lt 1
Agallg?l + I.-‘f:xnx22€gz’ . for E, > 0’
where the reduced stiffnesses can be expressed by a single formula

(427) f'i';:“\“ﬂ/r/t},ln = (1‘7\# — /3,\1/}“] F”(Q),
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and the coefficients ay, and /), are defined by Eqs. (A.1). The relations (4.26)
are continuous along the line £, = 0.

The constitutive relationship (4.26) can be expressed in terms of orthotropic
constants. For the case of closed cracks (E;, < 0) these relations have the form
(3.14), and for the case of open cracks (£ > 0) they assume the form

11 e ~c Tc h
(4.28) lNh ] _ 2h EY v E [511]
’ 22 — vt | ~c 1 Tic =B |
Nh 1 VIZVZI Uﬁ] E‘Z 14‘2 By
where
. Al 122 . Al 122
v = =0 V. = =
2 Ali? - A2’
(4.29) N - ©
f‘CY(YL'VO

o ~p (3

e e :
Eq = (1 - vpvy

The formula for E‘f(g) does not coincide with the analogous formula found by
HasHIN [5], although one can note a similarity between the formulae (2.40) and
(2.46) of HasHIN [S] and formulae (4.27) for A = p = 1, (4.19) and (4.24) derived
above.

REMARK 4.1

The constitutive relations (4.26) can be inverted to the form similar to (3.44),
where instead of £, v;; one should put Ee, v - The condition N;, < 0 or
Ny, > 0 remains unchanged.

4.3. Solution of the shearing local problem
The dimensionless fields
(4.30) %= us/h, o=uv3/h,

will play the role of basic unknowns. The stress resultants that intervene in the
shearing deformation are, cf. ([10], Eq. (5.20))

dv  _du
N = a2 (S G 42k

d€ d¢
v du
431 13 = gAun ((——+—+2£").
(431) i = a2k,
&
2 2121~
= — /A u.
QO B u
The equilibrium equations
dN§' dL} )
(4.32) & -0 i hQg,

http://rcin.org.pl
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expressed in terms of the unknowns (4.30) assume the form

#5 __Pa % (P D)
(433) JEE-'-Q-(EE = () (l'@'f‘ (CY@-(’)) a =0,

Further analysis will be confined to the case when the matrix

A2121 A2121
(4.34) [ N o J

A%]l}l AE]Zl

is positive definite, which for real laminates is not a restriction. This means that
(4.35) 0<ac<l,

which is readily satisfied since @ = ¢/h, cf. (A.2). Let us pass to the strong
formulation of the local problem considered. Our goal is to find the fields (v, u)
defined on [0, 2p] and satisfying:

o the equations (4.33) for £ € (0, 0) and & € (0. 20),

e the conditions of periodicity

0) = ©(20), i(0) = u(20),

4.36
( ) Nd’”(o) = ]Vgl(ZQ). ]‘[Z)I(O) - ],51(2y).

¢ the switching conditions at £ =

io—0)=3(e+0), N§'(o—0)=N§'(o+0),

4.37
V=) L3(o—0) = Li'(e +0) = 0.

Prior to solving the local problem formulated above let us recall that the only
field we need for assessing the loss of (71, is the quantity 15, cf. Eq.(2.3). Here

(4.38) 2h = [[”[5]] - [[2‘—‘;]

The tilde indicates that we use the space-scaling (hg, /) method. The homogenized
constitutive relation has the form (2.4); with =1, defined by Eq. (4.38).

Bearing in mind that we are now interested only in finding the field 15,
we proceed to analyze the local problem. Equations (4.33) yields the governing
equations of the form

(4.39) L =0, Li=0, 1,__,()2

de4 (152
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The parameter

- 1/2
(4.40) ?\=[ - } ,

a(l - a)

is positive, cf. Eq.(4.35). Taking into account (A.2) one can express A by the
formula

(4.41) 5 = g [( 3((c/d) + 1) ]1/2.

dG 4feGr) + 1
Thus the fields (@, ) are spanned over the basis {1,¢,exp(A€), exp(—A€)} on

both subintervals (0, o) and (o, 20). For the sake of brevity we omit the derivation
and report only the final result:

o h = o~
5{2 = (—.1’12(/\0)5?2,

=1
(1+(—1$Cthm> .
c

4.4, Assessing the loss of the Kirchhoff modulus

(4.42)

]

[’11 2 (.l‘ )

According to the definition (2.4); combined with (4.42), one finds

(4.43) NiZ2= g 12120, 12121212 2 1 _ Fus(20),
(4.44) asy = AMV%2h,

where (5, is the reduced Kirchhoff modulus of the laminate. One can prove that
formulae (4.43) and (4.44) coincide with those of HasHiN [5, Eq. (3.22)], TAN and
NuisMER [14] and Tsar and DANIEL [16].

4.5. Homogenized potential

Having derived the homogenized constitutive relations (4.26) and (4.43) we
can combine them to form the hyperelastic law, cf. Eq. (5.30) in Ref. [10]

af _ Wi
(4.45) Ni' = 2er
"'0[3

The hyperelastic potential is given by

wj, for E, <0,
(4.46) W, =
W, for FE, >0,
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,” 2 : oa133 h 11212 h N2 -k A2
2“‘ 1 / QQ' 'i’ l 2 ‘ (C]!) + (;2[) 5

(4.47) I Y1212 2 2
Wy = ZAMM r ol + 24, [(‘"12) + (¢3)) ]
o0

The potential W7 for the case of open cracks can be expressed as follows
1 4
(4.48) Wi =W - 5/“1”‘1711(0)(1:}1)2-

By virtue of the above expression one easily verifies that the potential W, is of
class C'', F}, = 0 being its line of non-smoothness of its first order derivatives.
The complementary effective potential W, (N ,":‘3) can be calculated by using the
Fenchel transformation of W, cf. Remarks 3.1 and 4.1. The potential W}, defined
on the space ]Ei remains smooth, the equation N, = 0 (cf. Eq. (3.43)) determines
the line of the non-smoothness of its first order derivatives, cf. Fig. 4b. We recall
that E2 is the space of symmetric 2x2 matrices, here identified with its dual.

5. Final remarks

Accuracy of the formulae for effective moduli of the cracked laminates found
in this work is examined in the second part of the paper [11]. There we refer
to other known analytical models concerning aligned, regularly distributed cracks
as well as to available experimental data. We show that for the case of aligned
cracks the predictions of the model (/¢,!) lie closely to results of MCCARTNEY
[12, 13]. In their principles, however, these models are completely different, see
Introductions to Refs. [9, 10].

Possible generalization of the formulae found in this paper to the case of other
damage modes and, in general, to the case of angle-ply laminates would be of
vital interest. For instance one can choose a different way: use the homogeniza-
tion scheme of Caillerie — Kohn-Vogelius (cf. Ref. [7]) and then apply the finite
element method to solve the local problems. The recent paper of ADOLFSSON
and GUDMUNDSON [1] goes in this direction, yet in the manner that circumvents
the homogenization formalism of the passage from the original problem to the
effective macroscopic problem and the underlying local analysis.

Appendix
The following non-dimensional parameters depending on the quantities de-
fined in Ref. [10] are used in the present paper:

— 4AA 41111 AN 1111
ay, = Al ""/.flu ; o3 \p = A HH A,



STIFFNESS LOSS OF LAMINATES WITH ALIGNED INTRALAMINAR CRACKS. PART | 263

(&,/3.“",6) - ( {lll] /l 111 ‘Lln,hz[[”)//‘ll“l,

(A.1) (pyt) = (h2AN  RYA )AL =8+ A,
(/3]’!32”@3’/34‘73) = ( ‘1122 ,J, 4123“ h "i?u‘ ‘:’122 lHZZ)/ 1]]!(

(a’ ﬁ, 5) = (/131‘21’ A212] h]122)/A121121 )
Since D%ty = —DJ,, we have A212 = 41212, Hence one can prove that

AR = 2hGy

and
w8 -3 [([CA c]
*=TTy hGT . h
(A2) ~ o
A = h(b/ed)'/?.

The parameters appearing in Eqs. (4.10), (4.13), (4.19) and (4.20) are defined by

pnn = 1-ap/A, pi2 = a— B/, 3 =64/,
H21 = a3, i = 5% - p, H23 = Y3,
M2a = PBA = b3 — pa, fa4 = p13/pan;

@y = fiyfi21 — M11H23, az = p[i3p22,
(A3) ay = papiz + i3 — j2afin
u = a—p/pn,
H12

Y11 = paa(B — paa), T2= Efll )

4 2
Y22 = E(fll) 5 713 = paafin

é b
Y21 = l_f(/j — ), Y23 = Efn(ﬂ — Jag)-

The pameters a,, 5, defined by (A.1);2 can be expressed in terms of other
parameters as follows

en = 1-52/u, ap = f1— Bh/n, an =1 - (B2)*/ 1,
(Ad)  Bn — BM/u, B2 = Ba — BB/ u,
Ba1 = B4 — B2/ u, B2 = 72 — B3/ p.

Note that a1 = ag; but 812 # F21.

http://rcin.org.pl
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