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Friction relations for the many-sphere Oseen hydrodynamic
interactions

I. PIENKOWSKA (WARSZAWA)

THE pAPER concerns weak inertia effects arising in the many-sphere hydrodynamic interactions.
Rigid spheres are held fixed in an incompressible fluid flowing with uniform velocity U at infinity.
The friction relations, up to the contributions of the order O(Re), where Re is the Reynolds
number, are considered on the basis of the Oseen equations.

1. Introduction

THE MoTIVATION for this work is to analyse the effects of weak convective inertia
on the hydrodynamic interactions of a finite number of spheres, immersed in an
incompressible, unbounded fluid. The present paper is a continuation of earlier
publications on the low Reynolds number hydrodynamic interactions [1]. The
O(Re) convective inertia effects, where Re is the Reynolds number of the sphere
(based on the radius a of the spheres, the kinematic viscosity » of the fluid and
the uniform velocity U of the fluid at infinity), are considered on the basis of
the Oseen equations [2]. In particular, we will consider the O(Re) contributions,
appearing in the friction tensors, describing the dependence of the forces F; and
torques T;, 7 = 1,..., N, exerted on the spheres by the fluid, on the uniform
velocity of the fluid. The study of the friction relations enables an insight into the
hydrodynamic interactions between the spheres.

To quote the literature, concerning the study of the uniform flow past a single
sphere at low Re, we recall the paper by DENNIS and WALKER [3], and by DENNIS,
INGHAM and SINGH [4]. The authors have compared the calculated drag force
exerted by the fluid on the sphere, with the results of previous investigations and
with the experimental data. In author’s opinion, the approach to Re — 0 is via
CHESTER and BREACH [5] drag, rather than via the Oseen drag, as suggested by
the experimental results of MAXWORTHY [6]. To calculate the drag force up to
terms of the order of O(Re?), Chester and Breach used the method of matched
asymptotic expansions. Recently, an arbitrary time-dependent motion of a rigid
particle in a time-dependent flow of a fluid has been examined by LovaLENTI and
Brapy [7]. The authors have calculated the hydrodynamic force acting on the
particle, including the contributions up to the terms of O(Re).

Referring to the examination of the small inertia effects appearing in the
many-sphere hydrodynamic interactions, we recall the early experimental results
of JAYAWERRA, MAsSON and Srack [16]. The authors have analysed the behaviour
of clusters of spheres, falling in a viscous fluid. Their observations have been
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discussed in the theoretical paper by HockiNG [17]. He has pointed out that
some hydrodynamic phenomena, observed by the authors of the paper [16], are
not explicable by the Stokes slow motion hydrodynamics. Subsequently, the in-
fluence of small nonlinear effects on the hydrodynamic interactions of spheres
has been discussed by HApPEL and BRENNER [18]. For the particular case of two
falling spheres, these effects have been observed experimentally for the cases
of Re>0.25.

Recently, the effects of weak inertia on the motion of particles in a viscous
fluid have been reported in a review paper by LEAL [19]. He has argued that
even small departures from the Stokes flows can have a strong influence on
the positions or orientations of the particle. Problems of the motion of a few
particles in the presence of the bounding walls at moderate Re have been treated
by means of a numerical package that simulates two-phase Navier - Stokes flows
[8]. The authors of that package have taken into account full nonlinearity and the
fluid-solid coupling. The papers concerns, however, two-dimensional flows. Kim,
ELGHOBASHI and SIRIGNANO [9] have performed a three-dimensional numerical
simulation of a steady uniform flow past two fixed spheres, at Re reaching up
to 150.

In the present paper we regard small inertial effects appearing in the steady
uniform flow past N fixed spheres, at Re < 1. The problem is considered on the
basis of the Oseen equations. To deduce the friction relations, the velocity field
of the fluid is expressed in terms of the integral equation, involving the Green
tensor acting on the forces f;, distributed on the surfaces of the spheres [1]. The
properties of the Green tensor have been recently discussed by Garpi [2]. The
dependence of the Green tensor on |U|/r leads to a nonlinear dependence of
the hydrodynamic interactions between the particles on the value of Re. How-
ever, for the particular case of the hydrodynamic interactions characterized by
Re,, < 1, where Re,, = R|U|/v, R - typical distance between the centres of
the spheres, we are, qualitatively speaking, close to the Stokes hydrodynamics.
For that régime, we confine our considerations to the O(Re) convective effects.
The hydrodynamic interactions are presented to be due to the multiple scatter-
ing processes. In terms of the multiple scattering events, such properties of the
hydrodynamic interactions as non-locality and non-addivity can be conveniently
discussed. Knowing the dependence of the hydrodynamic interactions on Re and
on the spatial configuration of the particles, we obtain the O(Re)-friction rela-
tions. These relations describe the convective corrections to the respective Stokes
friction relations. The obtained relations have the form of series expansions with
respect to o, where o = a/R, 0 < 1/2.

As an example, we consider the drag and side forces exerted on three spheres,
placed in the transversal and longitudinal directions with respect to the uniform
flow of the fluid at infinity. The dependence of the associated hydrodynamic
interactions on o is taken into account up to the terms of order O(o).
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2. Multiple scattering representation of the hydrodynamic interactions

We adopt the idea of induced forces f;, j = 1,..., N, distributed on the
surfaces of the spheres [10], to describe the presence of the spheres in the flow.
The dependence of the induced forces on the uniform velocity of the fluid U can
be expressed in terms of the following set of integral equations [1]:

R,(2) = v'®,(2) + [ d2TIR,(2;) - RUZ)I ()

2.1) £y [ AR0TIR (2)) = Ru(20)] Bu( 20
k#j

Vi(2)) = R;(2)) - V(R;(2))) = -U,  R;=0,

where V; is the relative velocity of the j-th sphere with respect to the fluid, R; —

position coordinates of the points on the surface of the j-th sphere, 1'21- —velocity
of the j-th sphere, T(R; — R;) — Green tensor of the problem considered. The
first integral on the r.h.s. accounts for the interaction of the j-th sphere with the
fluid, the second integral is due to the hydrodynamic interactions between the
spheres.

The convolution form of Eq.(2.1) reflects the non-local character of hydro-
dynamic interactions. For the present purposes it is convenient to work with the
Fourier transform of the Green tensor [11]:

B dk exp(ik «r) oo
(22) Ty = f @27) p(k? + iU -k)(l ~ Kk

where k = k/|k|, & = |k|, u — the dynamic viscosity of the fluid.

The dependence of the Green tensor on |U|/r leads to the nonlinear relations
between the induced forces f; and Re. These relations can be expressed in terms
of admissible sequences of the hydrodynamic interactions. To deduce the multiple
scatttering representation of the respective interactions, we follow the procedure
used by YosHizaki and YAMAKAWA for the case of the Stokes hydrodynamics [12].

After the two steps:

(i) expansions of V;, f; in terms of the normalized spherical harmonics,

(ii) integrations with respect to the angular variables (2,
we arrive at the set of algebraic equations, relating the expansion coefficients
f; 1,m, of the induced forces to the expansion coefficients V;,,,, of the relative
velocities:

N
lam  miam
(23) Vj-’l’”l Z Tl;mf(o ’27“2 + Z L Tl?m,f(RJvk) .kaZ’"l ’

lyms k#j) lyma
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where r; = R; — R), r; = r;j(a,92;), Rjr = R — R, and #? - position of the
centre of the j-th sphere,

-U, 1=0
2.4 Viim = .
(2.4) j 0. I>1

Tensors Tff;’if(o ;) are called the self-interaction tensors, representing the particu-
lar type (specified by the indices /ym;, l;m3) of influence of a single sphere on
the surrounding fluid; tensors Tffo(Rjk) denote the mutual interaction tensors,
describing the interaction between the j-th and k-th spheres, respectively. De-
pendence of the above tensors on the spatial configuration of the spheres can be
presented in the following form:

(2.5) TP (Ri) = 3 T2 (R DY (246),

lams

where spherical polar coordinates R;.(|R;.|, $2,,) are used.
Next, we formally solve the basic set of the algebraic equations by iteration,

Alams
@26)  Ligm; = X T304 Viiym,

lama

N
plams l3ms ) plamng
a Z Z E Z T[lml(ol) ‘lemg(R.]k) 'Th””(O}\-) .Vk'l.nnq Fwes ’
k#j lamy lama lymy
where Tfﬁzf is the inverse self-interaction tensor. The inverse tensors can be
expressed by the following approximate formula [1]:

(27) T = Ttl = Td 'Tod 'Td + Tr{ 'Tm[ 'T({ 'ng 'T,l =iy

where T, are diagonal, and T,; — off-diagonal in [ (it means, they are of the

form Tf:gf(O,) anfi Tf:;ﬁl(OJ), where [y # [o, r?spec[ively). Thus the expansion
coefficients of the induced forces are expressed in terms of admissible sequences
of the hydrodynamic interactions. These sequences, depending on the properties
of the interaction tensors involved, present the allowed types of coupling of the

spheres to the fluid.

3. Weak inertial effects

Considering the weak inertial effects, we focus our attention on the low Re
properties of the hydrodynamic interaction tensors. In paper [1], the dependence
of the tensors on Re is expressed in terms of the modified Bessel functions 7; 41/,
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and K 4+1/2. From the properties of the Bessel functions for Re — 0 it follows
that the Stokes self-interaction tensors are equal to

1 1 ,
1 Thmz B Ki1m2
(3.1) b (09) = 3 7an W+ 172) om0
where
Kpme o= il [ k(1 — kkyy," ™y ey
l]TlLl,Ingg I3 .

lamy
lymy,l3ms

It was shown in the paper [12], that K # 0 for the following sets of indices

(32) L+ —13> -2, L+bL+1;=2n, n=0,1,2,....

We note that the Stokes self-interaction tensors are diagonal in /.
The Stokes mutual interaction tensors, under the assumption of Re,, — 0,
can be obtained in the following form:

! oo ; ﬁ % |+!2+1
3- 2m2 = T 21,1 -
G Tty = 2 Tiinilon, dapl'(l; +3/2)I(1y + 3/2) (R,,»k)

m=0
th+2m+ 1/ +h+m+1/2) ()

lam-v (11
[|m| l3ms Z m! I‘(Z + ])
m=(0 '

2 2
1 ]. 3 3' - -
-y [—m,lt + 1+ m+ ok I+ 7 I + ok (m) ’ (R—M) ] '

where |I; + I+ 2m — 15| =0,

) 1 1 R ; 1 1
A=max(l1 + b+ 2m+ 5 [3+§>, g=mm(ll + 0+ 2m + 7 l3+§),

and Fjy is the hypergeometric series.
The allowed values of the respective indices read:
(i) m = 0, Iy + 1 = 13,
(34)
(i1) m =1, Lh+hL+2=1.

From (3.3) we obtain the following leading order dependence of the interaction
tensors on Ry

I+1+1
137”2 a
(35) Tllml,hm3 ik (Rfk :

This property is characteristic for the Stokes flow régime [12].
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The next step is to consider the quadratic dependence of F; and T; on U. To
that end, we have to take into account the O(Re) contributions to the interaction
tensors. First, we have the self-interaction tensors, being of the leading order
of O(Re),

lyms A Re [ Kl2m2
T12+1m|( J) Kl-;+lm|.i0

8v3 /T ap(ly + 1/2)(la + 3/2)

(3.6) + ...,

1 ~ i lamr 1 T 37 lam
t 5 (0= - zUy) B * 5 (h * ill, I

lzmz (OJ) _T12+1 ml(OJ)

12+1rnl lp—my

They are off-diagonal in /. Then, the O(Re) contributions appear in a series
expansion of the tensor T with respect to Re [1].

The mutual interaction tensors, being of the leading order of Re, under the
assumption Re,, < 1, read:

(37) T!;mz _ f: lemz,m - il_ilReV 2”(2]3 + 1)

lymy,lyms ™~ bmandsms ™ 16, (1) + 3/2)1' (12 + 3/2)

B(—m3)
m :O

m S [ [3 1 i 1 :
{Z‘ VIr + 1K (- ”"'3(_'“)(0 0 0) [\m°(—"'3 0 )

P i 1 r Ao L 1o
_(U"_'U“)(—;q i i) +(1’J.+11fy)(_,323 1 Z)]}

a \"*" i (h+L+2m+ 1) +b+m+1/2) ()
m! I'Z +1)

bbby md o bt o byt o\’ ”2+
—m, | m+ =; =, ) JELIEN B .
WA TREETE AT R R LR, R

where (:::) is the Wigner 3 — j symbol [15],

-

[h+l+2m =15 =1;
r=1 for 3=0; r=(3-1,13+1) for 3> 1,
G(s) = (41)35‘;[5')/2.
In contrast to the Stokes régime, we have here the following sets of admissible

indices:

(I) m = 0, l1+[2—l3 i and [1+1’2*[3 —1,
(3.8) (i) m = 1, h+l—13=-1, and [+ —13=-3,

(iii) m = 2, L+ 1l—13=-3.
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The above tensors exhibit the following leading order dependence on R ;;:

1+
lama a
(39) Tllml,[;mg e (Rjk :

We have also the second source of the contributions to the mutual interaction
tensors, being of the order of O(Re): a series expansion of the tensor TI(R;x)
with respect to Re,, [1].

4. Friction relations

In the present section we will examine the friction relations which express the
forces and the torques, experienced by the spheres, as quadratic functions of the
fluid velocity U. To that end, the forces and torques are presented in terms of
the respective expansion coefficients of the induced forces:

F; = —f00,
(4.1) T
T_j = 8a Z (U)-'/nfj.im«
m=-1
where
D) = 2 (801 (Bt + 6 1) = + Sa(= Byt + 61— + 6438
7)m )k \/§ k1WOm1 m—1 \/i k2 ml m—1 \/-2— k39m0| -

Using the result (2.6) for the expansion coefficients, the friction relations can be
written in the following form:

N
_ NCpTV
Fj =) € U
k=1

(42) ”
T = Y v
k=1

where € denote self-, and £, j # k, the mutual friction tensors.

The above relations are of a structure similar to that of the respective Stokes
friction relations, the difference consisting in the properties of the friction tensors.
The tensors involved can be presented as a sum of the Stokes contributions and
the corrections due to weak convection. That sum accounts for the influence of
the spatial configuration of the spheres on their hydrodynamic interactions.
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The translational self-friction tensors are equal to

TV T T T - T
(4.3) =T+ T 0T T Ty T + T;

I#]
S VTN | W VI VIR TR VIS VIR VI AR S VTR VR VIR ¥
i I#5
+T] . ZTJ! . [T} GT[] .;i‘] -+ :[-‘1 ‘TU -T}]
l#)

_’T‘_} » Z Z Z [TJ" .T[ 'Tfln .;i‘n -T"j

1#7 n#l n#Fj
+TJll 'Tl *Tin 'Tn 'Tuj + le -'i‘; T, -’i‘n .T! ] T, +iiua

njy

The Stokes dependence of the friction tensor on o is described by the first
two terms, being of O(c”) and O(o?), respectively. The Stokes hydrodynamic
interactions between two spheres contribute to the above tensors. The remaining
terms express the inertial corrections, being of O(a"), O(c') and O(c?), respect-
ively. They are due to two and three-sphere interactions. The non-additivity of
the interactions appears in the inertial corrections through the terms of order
O(c?). The self- and mutual interaction tensors entering the expression for G,LL
are equal to

(i) the self-interaction tensors

T; = 6rpal,
(4.4) "
TJ] = 6mpa [1;6- (3[ — UU)] Re,
(ii) the mutual interaction tensors:
1 3 PR ~
Tik = 6l [Z(l * e'lkejk)] ' Sk = R/ [Rikls
@45 T =- L |4 (3[ -~ Gf)) ¥ \/_} - Z]: e(=m)La (m)Y{" (£2x)
' kT rpa |16\ "4\s m=_1h l L
1 2
_ﬁig z Z s(—m)La(m)Y5" (£2;1) | Re,
m=-3
where
B o \ 1 -~ q 17
L!l(’”) . ;’ Vi + Sl =158~ (O 0 0) V2o, (—m 0 ")
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and tensors K, are given by YOsH1ZAKI, and YAMAKAWA [12]:

2
Ky = \/;(—erex —e,e, + 2ee,),

K = eze. +e.6;, — e e, —ie,e,,
Ky = e e, —e e, —ie e, —ig e, ,
K—m = K:na

where the complex conjugate is denoted by an asterisk, and (e,,e, e.) is an
external Cartesian coordinate system.

The first two tensors describe, for the particular case of a single sphere, the
Stokes and Oseen contributions to the drag force, exerted by the fluid on the
sphere.

The translational mutual friction tensors read:

(46) 'jrkv = —Tj 'Tjk -Tk + Z Z :I“j‘ -TJ‘[ -i‘[ T 'Tk
I#k 1#35
— 3 TH0;) T (k) +Tr = T, + > Toe (Rx) - T90,(O)
+TJ' . Z Z [T}[ -T[ Ty + T_,'[ ':i‘i 'Tl]k] -:l:‘k + -'le . Z ZTJ'[ -T[ T -:I"k
I#k 1#] £k I#]
+'i‘j v Z Z T_)l . [:ﬂ Ty -Tk + T( Ty 'Ti]
£k 1#]

_T-’ * Z Z Z [TJ( ':i‘i .Tlln .:i;“ 'TH‘C

l#k n#l n#j
+T}1 ';I»‘[ T, "i‘n Tan + TJ‘[ ~T1 "T[n -:i‘n ~T111_k] b:f‘k PR

The Stokes contributions to the friction tensors are described by the first two
terms, being of O(a) and O(a?), respectively. For that régime, the hydrodynamic
interactions of two and three spheres occur. The remaining terms are due to the
inertial effects. They contain two, three, and four-sphere contributions. In the
Stokes régime, the property of non-additivity appears starting from the terms of
0O(o?), whereas in the O(Re) régime, the three-body effect enters at O(a).

The mutual friction tensors &;k‘ are built up of the following interaction
tensors:

(i) the self-interaction tensors:

'i“j and ’Al’“jl-ﬂ given by the expressions (4.4),
@.7) Tio;) = \/67r;1.rtRe[\/§ﬁ':émg+ (02 — i) by + (T + i0, ) 6| .
™ (0)) = —\/gmmRe[\/iﬁzﬁmo+ ((71‘+ iUy ) 61y + (ﬁﬁmy)amm]l;

1m
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(ii) the mutual interactions tensors:

T;r and T}k, given by the expressions (4.5),
T (Rix) = Y Toim, IRk DY™ (256) + > Togam, (IR DY3™ (25),
m3

mja

where
Tlm 1 1m
00,1m3 3”“ K001m3 vty

1 1m
m(lejk) KDO';NIJ LR

48)  TER;) = —Ty™(Rj),

2
Re B m
T;A 67 pa (R_Jl.) {i?\/_ Z e(—=m)Li(m)Y{" (£251)

2v5 m=-—1

1m i
To03ms =

1 Z e(—m)La(m)Y3" (£2;1)] .

m=-=3

In view of the properties of the considered hydrodynamic interaction tensors,
the O(Re) contributions to the friction tensors E,_I’k‘ do not obey the symmetry
relations

(4.9) (&%), = (&), -

characteristic for the Stokes contributions [13].
The rotational self-friction tensors are of the following form:

(4.10) o= Z (6)=m [T30.(0;) + 3" Tjo Ty Ty; -,

m=-—1 [#)

+ 3 Tm0,) - 3T, Rj) T T} T, | +...,
my 1#]

where
Im o 1m
Tlm‘(OJ-) = 6\/‘@1(1}&]"]?00 + ...

There is no Stokes contribution to the approximation considered. The inertial
contributions consist of two terms of order O(c?), due to two-sphere interactions.
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It is seen from the properties of the tensors TS (O;) that

1
(4.11) e Y (r)-mT%(0;) V00 = 0.

m=-—1

Hence we have recovered the well known result that, due to the symmetry of the
problem, the torque acting on a single sphere vanishes.
The rotational mutual friction tensors read:

1
(4.12) BH=—e 3 @)-m |- Y. TP 0;) T, (Rii) T4

m=—1 my

-T.(0,) Tj. - T - 3_T,7(0;) -TY

1m Im

(Rjx) T}
my
+;f‘(1}?71(01) * Z ZTJ! 'T[ 'le ':]‘:‘k

£k 1#]

+ZT1'711(01)_Z ZT(I)O (Rﬂ)-:l:l 'Tl]k -:i‘k i A,

Im my

my 1#k (#)

The Stokes contributions to the friction tensors, due to two-sphere interactions,
are given by the first term, being of O(a?). The remaining four terms describe the
convective inertia effects, being of O(a') and O(c?), respectively. They contain
two- and three-sphere contributions. The non-additivity comes in at O(o?).

To conclude: the weak convection effects enhance the hydrodynamic coupling
of the spheres to the fluid. In the approximation considered, this enhancement
consists in the following effects:

(i) The Stokes interactions involve not more than three spheres, the O(Re)
interactions — four spheres;

(ii) the non-additivity effects appear at O(c?) for the Stokes régime, but at
O(c!) for the Oseen régime;

(iii) the tensors Efkv, vanishing for the Stokes flows, occur in the Oseen flows;

(iv) the contributions to E,JT,CV, dependent on the angular, but not on the radial
variables, absent in the case of Stokes interactions, are generated in case of the
Oseen interactions.

5. Three-sphere effects

As an example, the forces acting on three rigidly held spheres are calculated for
two particular configurations of the spheres. Consider first three spheres with the
centreline perpendicular to the flow direction (|[Rj2| = |Ras| = R, U = (0,0, U)).
Up to the terms of the order of O(e), the hydrodynamic interaction tensors
required read:
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(i) the self-interaction tensors

'i'j = brual,
(.1) 3
T, = 6rpa 16Rf:(3ereI + 3e,e, + 2e.e.)|,
(ii) the mutual interaction tensors (¢ < 1/2, Re,, < 1)
1 3 :
Tk = r—— [2e.e; + e, +e.¢.], j k=123,
=Tl =Th =  _2q Re [3e e, — e e, + 3e,e, — e e, + 2e.e.]
2 13 23 67fﬂ(l 16 z%r r&z y%y 2%z Lez€. |,
(5.2) 1
TS = Tgl = T-_‘;z = 67r;m ERC [3e.e, + e e, +3e,e, +e.e, + 2e.e.)],

in the external Cartesian coordinate system (e, e,, e.).
The obtained drag forces, exerted by the fluid on the spheres, are given by
the following formulae:

(i) for the side spheres:

”{ C
(F1): = (Fs), = 6mpal [1 P Y 3Re( . ﬂa) . ]
(5 3) 8 8 4 16

(ii) for the central sphere:

3 3 3 33
Fy), =6rpal [1+ -Re— -0+ -Re|1-—a | +...|.
( 2): L [ 8 € 20 4 e( ] rr) ]
The inertial contributions to (/). and (F3). are due to the following types of
interactions:

(i) self-interaction of a single sphere: 3/8Re,

(i) pair-wise interactions, independent of 7t: 3/4Re,

(iii) R-dependent pair-wise interactions: —(108/64)Rea,

(iv) non-additive interactions: —(63/64)Rea.

For the vector component (/3)., the respective terms are qualitatively similar,

3 3 72 27
gRe, ZRC’ (32) Reo and (32> Reo .

In the expression (5.3), the first two terms describe the drag force, experi-
enced by a single sphere; the remaining terms describe the decrease of the drag
forces due to the hydrodynamic interactions between the spheres. The vector
components (F}),, (F;),, t = 1,2,3, representing the side forces, read

(F1)r = =(F3)r = =67 pal [%Re (1 - %a) + .. ] .

(5.4) (F)s = 0,
(F}), =0, i=1,223.
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We note that the two side spheres are repelled. The side forces contain pair-wise
contributions equal to —3/8Re (3/8Re, respectively), and non-additive contribu-
tions, equal to (45/128)Reo (—(45/128)Reo, respectively).

Let us now consider three spheres in line with the flow direction (|Rj3| =
|R23| =R, U= (0,0, U))

Here the respective interaction tensors read:

(i) self-interaction tensors are given by the formulae (5.1),

(ii) mutual interaction tensors (¢ < 1/2, Re,, < 1):

1 3
o — oy - + + z%z
Tix 67ruaa4 [ece. + e e, + 2e.e.],
1 3
(5.5) T =T =Th S ~bom gRe(ee; +3e,e, + 2e.e.),

Ty = TZIH =T; =0.
The obtained drag forces are given by the formulae,

(i) for the leading sphere:
[ . 3 9 3 9

3 : = [ = = = = == v
(F1). = 6rual -1 + 8Re 4(7 # 2Re (l 2(1’) + ] ,

i1) for the central sphere:
(5.6) (ii) p

' 33
(F2)s = 6mpuall |1+ gRe — 30+ %Re (1 - 'jff) + ] -

(iii) for the rear sphere:
3 9 3
(£3). = 6rpall |1+ gRe o ?_GRC(T + ] .
The inertial contributions to the drag forces, quadratic in the fluid velocity, are
generated by:

(i) self-interactions of the respective spheres: 3/8Re,

(1i) pair-wise interactions, independent of ft: 3/2Re, 3/4Re, 0, respectively,

(iii) R-dependent pair-wise interactions: —27/8Reo, —9/2Reo, —27/8Reo, re-
spectively,

(iv) non-additive interactions: —27/8Reo, —27/16Res, —9/16Reo, respect-
ively.

Let us note the differentiation of the drag forces, exerted by the fluid on the
spheres. The side forces are equal to zero, due to the symmetry of the considered
spatial distribution. .

The above examples illustrate the properties of the friction tensors E,Jrj" and

ka_V up to O(c'). We note that the multisphere interactions, giving rise to the

drag and side forces, cannot be described in a pair-wise additive scheme. The
approximations in the Oseen equations can in principle be refined, by using the
results presented in a series of papers by FINN [14], for a particular class of flows.
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