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Friction relations for the many-sphere Oseen hydrodynamic 
interactions 

I. PIENKOWSKA (WARSZAWA) 

THE PAPER concerns weak inertia effects arising in the many-sphere hydrodynamic interactions. 
Rigid spheres are held fixed in an incompressible fluid flowing with uniform velocity U at infinity. 
The friction relations, up to the contributions of the order O(Re), whe re Re is the Reynolds 
number, are considered on the basis of the Oseen equations. 

1. Introduction 

THE MOTIVATION for this work is to analyse the effects of weak convective inertia 
on the hydrodynamic interactions of a finite number of spheres, immersed in an 
incompressible, unbounded fluid. The present paper is a continuation of earlier 
publications on the low Reynolds number hydrodynamic interactions [1 ]. The 
O(Re) convective inertia effects, where Re is the Reynolds number of the sphere 
(based on the radius a of the spheres, the kinematic viscosity v of the fluid and 
the uniform velocity U of the fluid at infinity) , are considered on the basis of 
the Oseen equations [2] . In particular, we will consider the O(Re) contributions, 
appearing in the friction tensors, describing the dependence of the fo rces F1 and 
torques Tj , j = 1, ... , N , exerted on the spheres by the fluid , on the uniform 
velocity of the fluid. The study of the friction relations enables an insight into the 
hydrodynamic interactions between the spheres. 

To quote the literature, concerning the study of the uniform flow past a single 
sphere at low Re, we recall the paper by D ENNIS and WALKER [3], and by DENNIS, 
INGHAM and SrNGH [4]. The authors have compared the calculated drag force 
exerted by the fluid on the sphere, with the results of previous investigations and 
with the experimental data. In author's opinion, the approach to Re __. 0 is via 
CHESTER and BREACH [5] drag, rather than via the Oseen drag, as suggested by 
the experimental results of MAXWORTHY [6] . To calculate the drag force up to 
terms of the order of O(Re3), Chester and Breach used the method of matched 
asymptotic expansions. Recently, an arbitrary time-dependent motion of a rigid 
particle in a time-dependent flow of a fluid has been examined by LoYALENTI and 
BRADY [7] . The authors have calculated the hydrodynamic force acting on the 
particle, including the contributions up to the terms of O(Re). 

Referring to the examination of the small inertia effects appearing in the 
many-sphere hydrodynamic interactions, we recall the early experimental results 
of JAYAWERRA, MASON and SLACK [16]. The authors have analysed the behaviour 
o f clusters of spheres, falling in a viscous fluid . Their observations have been 
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discussed in the theoretical paper by HOCKIN G [17). He has pointed out that 
some hydrodynamic phenomena, observed by the authors of the paper [16), are 
not explicable by the Stokes slow motion hydrodynamics. Subsequently, the in-
fluence of small nonlinear effects on the hydrodynamic interactions of spheres 
has been discussed by HAPPEL and BRENNER [1 8). For the particular case of two 
falling spheres, these effects have been observed experimentally for the cases 
of Re> 0.25. 

Recently, the effects of weak inertia on the motion of particles in a viscous 
fluid have been reported in a review paper by L EAL [19). He has argued that 
even small departures from the Stokes flows can have a strong influ ence on 
the positions or orientations of the particle. Problems of the motion of a few 
particles in the presence of the bounding wall s at moderate Re have been treated 
by means of a numerica l package that simulates two-phase Navier- Stokes flows 
[8). The authors of that package have taken into account full nonlinearity and the 
fluid- solid coupling. The papers concerns, however, two-dimensional flows. K1M, 

ELGHOBASHI and SrRIGNANO [9) have performed a three-dimensional numerical 
simulation of a steady uniform fl ow past two fi xed spheres, at Re reaching up 
to 150. 

In the present paper we regard small inertial effects appearing in the steady 
uniform flow past N fixed spheres, at Re < 1. The problem is co nsidered on the 
basis of the Oseen equations. To deduce the fri cti on relations, the velocity fi eld 
of the fluid is expressed in terms of the integral equati on, involving the Green 
tensor acting o n the fo rces f1 , distri buted o n the surfaces o f the spheres [1 ]. The 
properties of the Green tensor have been recently discussed by GALDI [2). The 
dependence of the Green tensor on IUI/v leads to a nonlinear dependence of 
the hydrodynamic interactions between the particles on the value o f Re. How-
ever, for the particular case of the hydrodynamic interactions characterized by 
Rem < 1, where Rem = RIUI/v, R - typical distance between the centres o f 
the spheres, we are, qualitatively speaking, close to the Stokes hydrodynamics. 
For that regime, we confine our considerations to the O(Re) convective effects. 
The hydrodynamic interactions are p resented to be due to the multiple scatter-
ing processes. In terms of the multiple scattering events, such properties of the 
hydrodynamic interactions as non-locality and non-addivity can be conveniently 
discussed. Knowing the dependence of the hydrodynamic interactions on Re and 
on the spatial configuration of the parti cles, we obtain the O(Re )-friction rela-
tions. These relations describe the convective corrections to the respective Stokes 
friction relations. The obtained relations have the form of series expansions with 
respect to a, where a = a/ R, a < 1/ 2. 

As an example, we consider the drag and side forces exerted on three spheres, 
placed in the transversal and longitudinal directions with respect to the uniform 
flow of the fluid at infi·nity. The dependence of the associated hydrodynamic 
interactions on a is taken into account up to the terms of o rder O(a). 
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2. Multiple scattering representation of the hydrodynamic interactions 

We adopt the idea of induced forces fj , j = 1, .. . , N, distributed on the 
surfaces of the spheres [10], to describe the presence of the spheres in the flow. 
The dependence of the induced forces on the uniform velocity of the fluid U can 
be expressed in terms of the following set of integral equations [1] : 

R j(S?1) = v0(Rj (S?1)) + j df?jT[Rj (Itj)- Rj(f?j)] ﾷｾＨｦ＿ ｪ Ｉ＠

N 

(2.1) + L jdstkT[Rj (It j ) - ｒ ｫ ＨＱＷ ｾ［ Ｉ｝＠ ·fk(f?k); 
kt-i . 

R j := 0, 

where v1 is the relative velocity of the j-th sphere with respect to the fluid , R1 -

position coordinates of the points on the surface of the j-th sphere, R J - velocity 
of the j-th sphere, T(Rj - Rk) - Green tensor of the problem considered. The 
first integral on the r.h.s. accounts for the interaction of the j-th sphere with the 
fluid, the second integral is due to the hydrodynamic interactions between the 
spheres. 

The convolution form of Eq. (2.1) reflects the non-local character of hydro-
dynamic interactions. For the present purposes it is convenient to work with the 
Fourier transform of the Green tensor [11]: 

(2.2) J rlk exp(ik ·r) ｾｾ＠

T(r) = (211-)3 JL(k2 + iv - 1 U ·k) (t - kk) , 

where k = k/J kj, k = jkj, tt - the dynamic viscosity of the fluid . 
The dependence of the Green tensor on IUI /v leads to the nonlinear relations 

between the induced forces fj and Re. These relations can be expressed in terms 
of admissible sequences of the hydrodynamic interactions. To deduce the multiple 
scatttering representation of the respective interactions, we follow the procedure 
used by YosHTZAKJ and Y AMAKAWA for the case of the Stokes hydrodynamics [12]. 

After the two steps: 
(i) expansions of v1, r1 in terms of the normalized spherical harmonics, 
(ii) integrations with respect to the angular variables st1, 

we arrive at the set of algebraic equations, relating the expansion coefficients 
fj,l,m, of the induced forces to the expansion coefficients Vj,l,m, of the relative 
velocities: 

N 

(2.3) Vj,11m1 L ｔ ＺｾＺｾＨ ｏ ｪ Ｉ＠ •fjhm2 + L L ｔ ＺｾＺｾ Ｈｒ ｪｫ Ｉ＠ •fkhm2 , 

I 2m2 kf' j I 2m2 
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where rj = Rj - ｒ ｾＬ＠ rj = r1(a, .ltj ), Rjk = R2 - ｒｾＬ＠ and R9 -position of the 
centre of the j-th sphere, 

(2.4) Vj,/m = ' 
{ 

- U 

0, 
l = 0 } · 
l ｾ＠ 1 

Tensors ｔＺ ｾＺｾ ＨｏｪＩ＠ are called the self-interaction tensors, representing the particu-
lar type (specified by the indices /1 mt. 12m2) of influence of a single sphere on 
the surrounding fluid ; tensors ｔ ＺｾＺｾ Ｈｒ ｪ ｫＩ＠ denote the mutual interaction tensors, 
describing the interaction between the j- th and k-th spheres, respectively. D e-
pendence of the above tensors on the spatial configuration of the spheres can be 
presented in the following form: 

(2.5) 

where spherical polar coordinates Rjk(IRjk!, r21k) are used. 
Next, we formally solve the basic set o f the algebraic equations by ite ratio n, 

(2.6) fj,t1m1 = :L ＱＧ Ｚｾ Ｚ ｾ ＨＰ Ｑ Ｉ＠ ·Vjhm2 

127112 

N 

- :L :L :L :L ｔ Ｚ ｾ Ｚ ｾ ｣ｯ ｪ Ｉ＠ ﾷｔ ＺｾＺｾ Ｈ ｒ ｪｫ Ｉ＠ ﾷＧｾＧ Ｚ［Ｚ［ ｣ｯ ｾ｣ Ｉ＠ ·Vk,t4m 4 + . .. , 
k'f j /2m2 /31113 /4m 4 

where T
1
127112 is the inverse self-interaction tensor. The inverse tensors can be 
' ) 7111 

expressed by the following approximate formula [1]: 

(2.7) 

where T d are diagonal, and T od - off-diagonal in l (it means, they are of the 

form ｔ Ｚ Ｚ Ｚ ｾＨ ｏ ｊ Ｉ＠ and ｔ Ｚ ｾ Ｚ ｾ Ｈｏ ｪ ＩＬ＠ where /1 :f 12, respectively). Thus the expansion 
coefficients of the induced forces are expressed in terms of admissible sequences 
o f the hydrodynamic interactions. These sequences, depending on the properties 
of the interaction tensors involved, present the allowed types of coupling of the 
spheres to the fluid. 

3. Weak inertial effects 

Considering the weak inertial efTects, we focus our attention on the low Re 
properties of the hydrodynamic interaction tensors. In paper [1 ], the dependence 
of the tensors o n Re is expressed in terms of the modified Bessel functions /11 + 1; 2 
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and l\.11 + 112. From the properties of the Bessel functions for Re ---+ 0 it follows 
that the Stokes self-interaction tensors are equal to 

(3.1) Tlpn2(Q ·) _ 1 1 K l1 m 2 
l tm t J - 4yJrCLJ..l (ll + 1/2) 1,m 1,00 ' 

where 
Kl2m 2 = -il1-l 2- l3 J dk(l _ kk)Y: -m1 ym2y-m3. 

l1 m 1 .l3m3 l1 l2 l3 

It was shown in the paper [12), that ｋＺ ｾＺｾ Ｌ Ｏ Ｓ ｭ Ｓ＠ :f 0 for the following sets of indices 

(3.2) n = 0, 1, 2, ... 

We note that the Stokes self-interaction tensors are diagonal in l. 
The Stokes mutual interaction tensors, under the assumption of Rem ---+ 0, 

can be obtained in the following form: 

•F4 [-m, I,+ /2 ＫｭＫｾ［＠ ｉＬＫｾ ﾷ＠ /2 + ｾ［＠ ｃ ｾ ｊ Ｌ＠ ( R:J] , 
where ll1 + l2 + 2m - l3 l = 0, 

and F4 is the hypergeometric series. 
The allowed values of the respective indices read: 

(3.4) 
(i) 

(ii) 

1n = 0, l, +l 2=l3 , 

1n = 1, lt + /2 + 2 = '3· 

From (3.3) we obtain the following leading order dependence of the interaction 
tensors on Rj k: 

(3.5) 

This property is characteristic for the Stokes fl ow regime [1 2). 
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The next step is to consider the quadratic dependence of Fj and Tj on U. To 
that end, we have to take into account the O(Re) contributions to the interaction 
tensors. First, we have the self-interaction tensors, being o f the leading order 
of O(Re), 

T lzmz (O ) _ Re [o K lzmz 
lz+1mt J - 8J3 ,(iraJ.t(l2 + 1/ 2){!2 + 3/2) z lz+1mt.IO 

{3.6) + ｾ＠ (Vx- iVy) ｋ Ｚ Ｒ Ｚ ｾ ｭ＠ 1-1 + ｾ＠ (Vx + iVy) K :z::m Ill + ···' y 2 2 l o v2 2 I • 

Tlzmz (0 ) = - T iz+ l -mt{O ). 
lz+ 1 mt J lz - mz J 

They are ofT-diagonal in l . Then, the O(Re) contributions appear in a series 
expansion of the tensor T88 with respect to Re [1]. 

The mutual interactio n tensors, being of the leading order of Re, under the 
assumption Rem < 1, read: 

(3.7) 
lzmz _ Loo t2m2,m _ i 1- 13Re J 27r(2/3 + 1) 

T - T - - (J(-m3) 
ltmt .IJmJ m=O ltmt, l3m3 16attF(l 1 + 3/2)f{l 2 + 3/2) 

· { ｾ ｾ ＾ ｲ ｊＲＱ ﾷ＠ + 1 ｋ ＺｾＺｾ Ｌ ｲｳ Ｈ Ｍ Ｑ ｲＨｊ Ｈ Ｍｳ Ｉ＠ ( ｾ＠ ｾ＠ ｾＩ＠ [ hfJz ( Ｍ ｾ Ｑ Ｓ＠ ｾ＠ : ) 

- (D3.- tDy) ( 13 1 7
. ) + (D1. + ,Dy) ( 13 1 r)]} 

-m3 1 s -m3 - 1 s 

• ( _!!__) l t +lz f (L 1 + /2 + 2m + Ｑ ＯＲ Ｉ ｾ ＨＱ Ｑ＠ + /2 + 1n + 1/2) , f(() 
Rjk m=O m . l( Z +l) 

·F, [ -m,t,+ /2 Ｋ ｭ Ｋ ｾ［＠ /1 + ｾ ﾷ＠ /2 + ｾ［＠ ( ｾｾ Ｚ ｊ Ｌ＠ ( ｾｾ ｾ ｊ ｬ＠ + , 

where ( :::) is the Wigner 3 - j symbol [15], 

11, +l2+2m- l3l = 1; 

r= l fo r l3= 0; T=(l3 - 1, 13+l ) for Ｏ Ｓｾ Ｑ ［＠

(J(s) = (- 1)3s+lsi)/2. 

In contrast to the Stokes regime, we have here the fo ll owing sets o f admissible 
indices: 

(i) m. = 0, ll + 12 - /3 = 1, and l t+ l2 - l3 = - 1, 

(3.8) (ii) m = 1, [1 + [2 - [3 = -1 ' and /1+/2- /3 =-3, 

(ii i) m = 2, /1 + /2 - /3 = - 3. 
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The above tensors exhibit the following leading order dependence on R jk: 

(3.9) 

We have also the second source of the contributions to the mutual interaction 
tensors, being of the order of O(Re): a series expansion of the tensor Tgg(Rjk) 
with respect to Rem [1]. 

4. Friction relations 

In the present section we wi ll examine the friction relations which express the 
forces and the torques, experienced by the spheres, as quadratic functions of the 
fluid velocity U. To that end, the forces and torques are presented in terms of 
the respective expansion coefficients of the induced forces: 

( 4.1) 

where 

Fj = - f j,OO , 

1 

Tj = € : L (rj )-mfj, 1m, 
m=-1 

Using the result (2.6) for the expansion coefficients, the fri ction relations can be 
written in the following fo rm: 

N 

F J = L. TV 
€. j k ·U, 

(4.2) 
k= 1 

N 

T J = L nv U ｾ ｪ ｫ＠ • , 

k= l 

where €.j'; denote self-, and €Ｎ ＳＧｾﾷ ﾷ＠ j 'f /,;, the mutual friction tensors. 
The above relations are of a structure similar to that of the respective Stokes 

fri ction relations, the difference consisting in the properties of the friction tensors. 
The tensors involved can be presented as a sum of the Stokes contributions and 
the corrections due to weak convection. That sum accounts for the influence of 
the spatial configuration of the spheres on their hydrodynamic interactions. 
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The translational self-friction tensors are equal to 

TV - "' - - - - ,1 (4.3) f_11 = Tj + L Tj ·Tjt ·Tt ·Ttj ·T1 + 1 i 
lf j 

- "' [I- - I] +Tj · L T11 ·Tt ·Ttj + T jt ·Tt ·T1i 
IF) 

The Stokes dependence of the friction tensor on a is described by the first 
two terms, being of O(a0) and O(a2), respectively. The Stokes hydrodynamic 
interactions between two spheres contribute to the above tensors. The remaining 
terms express the inertial corrections, being o f 0 ( a0), 0 (a 1) and 0 ( a2) , respect-
ively. They are due to two and three-sphere interactions. The non-additivity of 
the interactions appears in the inertial corrections through the terms of order 
O(a2) . The self- and mutual interactio n tensors entering the expression for f.Jt 
are equal to 

(i) the self-interaction tensors 

(4.4) 
Tj = 6npa I , 

Tj = 6-rrJUL [
1
3
6 

(31- 00)] Re, 

(ii) the mutual interaction tensors: 

T11.: = 6 
1
R· [ -4

3 
(1 + ･ ＮｩｾＮＭ ･ ｩ ｫＩ｝＠ , ei" = ｒ ｩｾＮＭＯｉ ｒ ｩｫ ｬＬ＠

1rf1. ]k 

1 _ 1 [ 3 ( ｾ＠ ｾ Ｉ＠ 3 {1 ｾ＠ / m 
(4.5) T jk - - 67rJLa 16 31 - UU + fi4V 5 ｭｾ ｬ＠ .:(-m)Lt(m)) 1 (J2jk) 

- Ji( /
6
/f ＬＮ ｾ ＬＧ Ｈ Ｍｭ＠ )L3(m) l '3"' ( !l jk )] Re, 

where 

( 
q 1 1" ) [ ｾ＠ ( q 1 1' ) Lq(m) = ｌ ｩｲｾ ｋ Ｕ Ｈ Ｍ Ｑ ｙ ＮＺ Ｈ Ｍ ｳＩ＠ JiUz _ O ｾ＠

,.s 0 0 0 m , 

Ｈ ｾ＠ Ｎ ｾ Ｉ＠ ( (j 1 1') Ｈ ｾ＠ Ｎ ｾ Ｉ＠ ( q 1 '/' )] - u X - tu y + u J" + l Uy , 
- m 1 s - m - 1 s 
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and tensors Ks are given by YosHtZAKl, and YAMAKAWA [12): 

Ko = ｾＨ＠ - exex - eyey + 2ezez), 

K1 = exez + ezex - ieyez - iezey , 
K2 == ･ ＮＮｾＺ ･ ｸ＠ - eyey - ie:J;.ey - ieyex , 

K_m = ｋ ｾ Ｌ＠

239 

where the complex conjugate is denoted by an asterisk, and (ex. ey, ez) is an 
external Cartesian coordinate system. 

The first two tensors describe, for the particular case of a single sphere, the 
Stokes and Oseen contributions to the drag force, exerted by the fluid on the 
sphere. 

The translational mutual friction tensors read: 

m m 

- ｾ＠ ｾ＠ [ I - - 1 l - -, ｾ＠ｾ＠ - -+Tj • ｾ＠ｾ＠ Tj1 ·T1 ·Tu, + Tjl ·T1 ·Tn ·Tk + T1 • ｾ＠ ｾ＠ Tjl ·T1 ·T1k ·Tk 
l 'f- k l'f- j l'f- k l'f- j 

- ｾ＠ｾ＠ [-1 - - -,] +Tj • ｾ＠ ｾ＠ T11 • T1 ·Tn ·Tk + T, ·Tn ·Tk 
l 'f- k lt-j 

- Tj • L L L [Tj i 'TI •T} 11 •Tn •Tnk 
l'f-k n 'f-1 n'f- j 

1 - - --- 1] -+Tjl ·T1 ·T1n ·Tn ·Tnk + T ji'TI 'Tin ·Tn ·Tnk ﾷｔ Ｌｾ［＠ + . . . . 

The Stokes contributions to the fri ction tensors are described by the first two 
terms, being of O(cr) and O(cr2), respectively. For that regime, the hydrodynamic 
interactions of two and three spheres occur. The remaining terms are due to the 
inertial effects. They contain two, three, and four-sphere contributions. In the 
Stokes regime, the property of non-additivity appears starting from the terms of 
O(cr2), whereas in the O(Re) regime, the three-body effect enters at O(cr1) . 

The mutual friction tensors ｾ ｊ ｾｶ＠ are built up of the following interaction 
tensors: 

(i) the self-interaction tensors: 

T1 and Tj, given by the expressions (4.4), 

(4.7) Tl;} (Oj ) = J67r!-LaRe[J2Dz8rno+ (Dx- iUy) Dm(- l) + (Dx + -i Uy)om(I)J I, 

T??,,(Oj ) = - J6rr1wRe[J2ifz8mo+ (Dx+ iUy)<\ n(- 1)+ (Dx-i Uy)om(l) JI; 



http://rcin.org.pl

240 

(ii) the mutual interactio ns tensors: 

Tjk and Tjk , given by the expressions (4.5), 

T6Q'(Rjk ) = ｌ ｔ ｾｴ ｭ Ｓ Ｈ Ａ ｒ ｪ ｫＡＩｙｴｭ Ｓ Ｈ ｦＲｪｫ Ｉ＠ + 2::Tb0,3m3(IRJki)Y3m3(f2jk) , 

where 

T/,Q:lm, = ＳｾＯＱ＠ ( R:,) 2 K!XJ:Jm, + . .. ' 

T6Q,3m3 = _21 (Ra.) 2 K{;) 3m3 + ... ' 
Ofl j k ' 

(4.8) J1?,
1
(Rjk ) = - T6Qm(Rjk ), 

TJk = 6Re (Ra ) 2 [ ｾ＠ t £( -m)Lt (m)Ylm(f2j k) 
1r)W Jk 2v 5 m=-l 

Ｍ ｾＡﾥ＠ mt E(- m)L,(m)l',m(!l jk )] . 

In view of the properties of the considered hydrodynamic interaction tensors, 
the 0 (Re) contributions to the fri ction tensors ｴ ｊｾｶ＠ do not obey the symmetry 
relations 

(4.9) ( TV) ( TV) t )k = ｾｫ ｪ＠ . 
pq qp 

characteristic for the Stokes contri butions [1 3]. 
The rotational self-f ri ction tensors are of the fo ll owing form: 

( 4.1 0) ｴ ｾｶ＠ = - e: t (rj )-m ['f??,l(01 )·LTit ·Tt ·Tt1·Tj 
m=- 1 l'fJ 

+ I::t:: 1(0i ) · l::'f??n1(Rjt ) ·Tt ·T}1 ·T;l + ... , 
mt /'f j 

where 

T- l m t (0 ) 6 r::: K- l m1 
I j = vnJw 1 oo + .... m m, 

There is no Stokes contri but io n to the approximation considered. The inertial 
contributions consist of two terms of o rder O(a2), due to two-sphere interactions. 
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It is seen from the properties of the tensors ｾ Ｈｏ ｪ Ｉ＠ that 

1 

(4.11) e:: L (rj ) -m ｾＨ ｏ ｪ Ｉ＠ ·Vj,OO = 0. 
m =-1 

Hence we have recovered the well known result that, due to the symmetry of the 
problem, the torque acting on a single sphere vanishes. 

The rotational mutual fr iction tensors read: 

(4.12) 

+ i'??n(Oj ) • L LTjl -'f1 •T1k •l\ 
I# l'f j 

ｾ＠ - l m 1 ｾＮＮｲｬ｜Ｐ＠ - I - ] + 0 Tl m (Oj ) • L 0 1 lmi (Rjl) •TI 'Tik •Tk + .. . . 
m 1 l'fk l'f j 

The Stokes contributio ns to the fri cti on tensors, due to two-sphere interactions, 
are given by the fir st term, being of O(a2) . The remaining four terms describe the 
convective inerti a efTects, being of O(a1) and O(a2) , respectively. They contain 
two- and three-sphere contributions. The non-additivity comes in at O(a2) . 

To conclude: the weak convectio n etTects enhance the hydrodynamic coupling 
of the spheres to the flu id. In the approximation considered, this enhancement 
consists in the fo ll owing effects: 

(i) The Stokes interactio ns invo lve not more than three spheres, the O(Re) 
interactions - four spheres; 

(ii) the non-addit ivi ty effects appear at O(a2) for the Stokes regime, but at 
0 (a 1) for the Oseen regime; 

( ii i) the tensors t jlv, vanishing for the Stokes fl ows, occur in the Oseen fl ows; 

(iv) the contribut ions to f..Jt, dependent on the angular, but not on the radial 
variables, absent in the case of Stokes interactions, are generated in case of the 
Oseen interactio ns. 

5. Three-sphere effects 

As an example, the forces acting o n three ri gidly held spheres are calculated for 
two particular configurations of the spheres. Consider fir st three spheres with the 
centreline perpendicular to the fl ow direction (IRd = IR23I = R, U = (0 , 0, U)). 
Up to the terms of the order o f O(a ), the hydrodynamic interactio n tensors 
required read: 



http://rcin.org.pl

242 

(i) the self- interaction tensors 

T j = 67rJW1, 
(5.1) 

TJ = 61r JW [ 
1
3

6 
Re(3er ex + 3eyey + 2ezez)] , 

(ii) the mutual interaction tensors Ｈ ｡ ｾ＠ 1/ 2, Rem < 1) 

I. P IENh:O WSh:A 

(5.2) 

1 3 
T:2 = T:3 = T13 = - -6 - 16Re [3exe2. - eJ.eZ + 3eyey- ezex + 2ezez] ' 

7r JW 

1 3 
T11 = Tj1 = Tj2 = - -

6
- -

6
Re [3exex + exez + 3eyey + ezex + 2ezez)], 

1rJW 1 

in the external Cartesian coordinate system (ex, ey, ez). 
The obtained d rag forces, exerted by the flu id on the spheres, are given by 

the fo ll owing formulae: 

(i) fo r the side spheres: 

(Ft)z = (F3)z = 61r11JlU [1 Ｋ ｾ ｒ ･ Ｍ ｾ｡ Ｋ＠ ｾ ｒ ･＠ (1- ｾｾ｡ＩＫ＠ ... ] , 

(
5
.3) (ii) fo r the central sphere: 

(F2)z = 61r1WU [1 Ｋｾ ｒ ･ Ｍ ｾ｡ Ｋ＠ ｾ ｒ ･＠ (1-3
: a) + .. .J. 

The inertia l contributions to (F1 )z and (/'3)z are due to the foll owing types of 
interactions: 

(i) self-in teraction of a single sphere: 3/8Re, 
(ii) pair-wise interactions, independent of R: 3/ 4Re, 
(iii) R-dependent pair-wi se interactions: - (108/ 64)Rea, 
(iv) no n-additive interactions: - (63/ 64)Rea. 
For the vecto r component (F2)z, the respective terms are qualit atively simil ar, 

3
Re ｾ ｒ ･＠ - (

72
) Rea and - (

27
) Rea. 8 ' 4 ' 32 32 

In the expressio n (5.3), the fir st two terms describe the drag force, experi -
enced by a single sphere; the remaining terms descri be the decrease of the drag 
forces due to the hydrodynamic interactions between the spheres. The vector 
components (P;)x, (Fi )y, i = 1, 2, 3, representing the side forces, read 

(Fl)x = - (F3)x = - 61r1wU ｛ｾ ｒ ･＠ (1 - ｾｾ｡ Ｉ Ｋ＠ ... ]. 
(5.4) (F2)x = 0, 

(F;)y =O, i =1, 2, 3. 
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We note that the two side spheres are repell ed. The side forces contain pair-wise 
contributions equal to - 3/ 8Re (3/ 8Re, respectively) , and non-additive contribu-
tions, equal to (45jl28)Rea ( - (45/ 128)Rea, respectively). 

Let us now consider three spheres in line with the fl ow di rection (IRd = 
IR23I = R, u = (0 , 0 , U)). 

Here the respective interaction tensors read: 
(i) self-int eraction tensors are given by the formulae (5.1 ), 
(ii) mutual interaction tensors Ｈ ｡ ｾ＠ 1/ 2, Rem < 1): 

(5.5) 

1 3 
T jk = -

6 
-a-

4 
[exe.c + eyey + 2ezez] , 

1f)la 

1 3 Tl2 = TlJ = ｔ ｾＳ＠ = - -
6

- -
8

Re(3exex + 3eyey + 2ezez), 
1fJ.la 

T l - Tl - T l - 0 21 - 31 - 32 - 0 

The obtained drag forces are given by the formulae, 

(i) fo r the leading sphere: 

(5.6) 

(FI) z = 61r j.tnU [1 Ｋ ｾ ｒ ･ Ｍ ｾ ｡ Ｋ＠ ｾ ｒ ･＠ ( 1 - ｾ ｡ ＩＫ＠ ... ] , 

(ii ) for the central sphere: 

(F2)= = 61rJ.wU [1 Ｋｾ ｒ ･ Ｍ 3a Ｋｾ ｒ ･＠ ( 1 -
3
} a) + . .. ] , 

(iii ) fo r the rear sphere: 

[ 
3 9 63 ] ( F3)= = 61r pnU 1 + 8Re - 4a - T6Rea + .... 

The inerti al contributions to the drag forces, quadratic in the flui d velocity, are 
generated by: 

(i) self-int eractions of the respective spheres: 3/ 8Re, 
(ii) pair-wise interactions, independent of R: 3/ 2Re, 3/ 4Re, 0, respectively, 
(iii) R-dependent pair-wise interactions: - 27 / 8Rea, - 9/ 2Rea, - 27 / 8Rea , re-

spectively, 
(iv) non-additive interactions: -27/ 8Rea, - 27/ 16Rea, - 9/ 16Rea, respect-

ively. 
Let us note the differentiati on of the drag fo rces, exerted by the fluid on the 

spheres. The side forces are equal to zero, due to the symmetry of the considered 
spatial distribution. 

The above examples illu strate the properti es o f the fri ction tensors f_Tiv and 

ｦ｟ ｝ ｾｶ＠ up to O(a1) . We note that the multisphere interactions, giving ri se to the 
drag and side forces, canno t be described in a pair-wise additive scheme. The 
approximations in the Oseen equations can in principle be refined, hy using the 
results presented in a series of papers by FrNN (14], for a particular class of flows. 
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