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An alternative approach to the representation 

of orthotropic tensor functions in the two-dimensional case 

S. JEMIOLO and J . J. TELEGA (WARSZAWA) 

THE AlM of this paper is to derive in a simple fashion the non-polynomial representations of a class 
of orthotropic functions in the two-dimensional case. Scalar-valued, vector-valued, symmetric and 
skew-symmetric tensor-valued functions of the second order have been considered. 

1. Introduction 

STRUCTURES made of anisotropic materials are often used in engineering practice. 
Constitutive modelling of the behaviour of such materials has been significantly 
infl uenced by the theory of invariants and tensor functions, cf. [6, 18, 24]; vice 
versa, development of the invariant theory has been stimulated by the consti tutive 
modelling. The reader interested in the fundamentals of the theory of invariants 
and tensor functions and their appli cations should refer to [6, 13, 21, 22, 23]. 

The problem of the determination of the general form of a tensor function of 
specified order and symmetry depending on tensor arguments consists in finding 
irreducible sets of scalar invariants and tensor generators; to put it simply, in the 
determination of the so-called canonical form of the tensor function. Though the 
theory of tensor function representation has been developed for more than three 
decades [18, 22, 23], yet no comprehensive, systematic and up-to-date study is 
available in the relevant lit erature. The book by SMITH [21] is restricted to the 
presentation o f theoretical results elaborated by this author and his coworkers, 
by employing classical methods of the group representation theory. SMITH [21] 
has delibera tely focussed on polynomial representations only. Many other com-
plementary contributions exist, however, concerning the general representation 
of practically important isotropic [3, 14-16, 19, 20, 22-28] and anisotropic [1 , 2, 
4-6, 10, 12, 21, 29, 30] tensor functions. 

Irreducibility of a set of invariants may be understood in two ways: 
1. If one determines an integrity basis, then none of its elements can be a 

polynomial in the remaining elements, cf. [22]. 
2. In the case of a functional o r non-polynomial basis, none of its elements 

can be a function of the remaining elements. 
Similar characterization pertains to the irreducibility of generators appearing 

in the canonical form of a tensor function, cf. [3, 6, 16]. To find the polynomial 
representation of a tensor function it suffices to determine the relevant integrity 
basis, because the generators are obtained by a simple process of differentiation 
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[6, 22]. The problem of the non-polynomial representation of a tensor function 
is more complicated, cf. [3, 19, 20, 25-30]. In the paper by the second author 
[24], a similar approach was suggested for the determination of generators of 
non-polynomial tensor functions. This method was next developed by KoRSGAARD 

[14, 15] and used in [11, 12]. 
In general, the determination of functional bases and generators leads to 

solving complicated algebraic relations. Hence only some classes of tensor func-
tions are known explicitly. Even when the representations of scalar-, vector- and 
tensor-valued functions are available, alternative methods of their determination 
are still proposed, cf. [28, 29]. 

As is well known, two-dimensional problems are often studied in the con-
tinuum mechanics. Thus the problem of the representation of isotropic and 
anisotropic functions in the two-dimensional case is of interest in itself. How-
ever, such two-dimensional representations do no t necessarily coincide with those 
derived directly from the corresponding three-dimensional cases. 

The aim of this contribution, precisely formulated in the next section, is to pro-
pose an alternative derivation of functio nal bases and generators for orthotropic 
functions in the two-dimensional case. 

2. Fonnulation of the problem 

The objective of our considerations is the determination of the general form 
of the following functions: 

(2.1) 

S = J(A;, Wp, Vm), 

t = f(A;, Wp, V111) , 

S = F(A;, Wp, V m), 

T = G(A;, Wp, V111) , 

i = 1, . .. , I , p = 1 , . .. , P, m = 1, ... , M , 

in the two-dimensional case. Here s E JR, t, vm E IE2, S, A; E T ' (dim ys = 3), 

T, WP E ya (dim y a = 1), T = IE2 Q9 IE2 = rs EB ya (dim T = 4), IE2 stands for 
the two-dimensional Euclidean space and ys = {A E T I A = A 1}, y a = {W E 
TI W= - W }. 

In our 2D case, the orthotropy group S satisfies the condition 

(2.2) V Q E S, QMQ1 = M, 

where M = e Q9 e and the unit vector e characterises orthotropy, see ([6] , p. 51). 
Obviously we have tr M = tr M 2 = 1. 

For each Q E S, the scalar-valued function f , vector-valued function f, sym-
metric tensor-valued functio n F and skew-symmetric tensor-valued function G 
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satisfy the conditions: 

(2.3) 

J(Ai , WP, V m) = J(QA;Q1
, QWPQ1

, Qvm) , 

Qf(Ai , Wp,Vm) = f(QA;Q1, QWPQ1, Qvm) , 

QF(Ai, Wp, Vm)Q1 = F(QA;Q1
, QWPQ1

, Qvm), 

QG(Ai, wp, Vm)Q1 = G(QA;Q1
, QWPQ1

' Qvm)· 
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By applying I-SHlH Liu theorem [10) (see also [17]) and taking into account (2.2), 
the invariance requirement (2.3) may be written in the following way: 

(2.4) 

f(Ai , WP, V m, M) = f(QA;Q1
, QWPQ1

, Qv m, QMQ1
) , 

Qf(Ai,Wp, Vm, M) = f(QA;Q1, QWPQ1,Qvm,QMQ1
) , 

QF(Ai, WP, Vm, M)Q1 = F(QA;Q1
, QWPQ1,Qvm, QMQ1

) , 

QG(Ai, Wp, Vm, M)Q 1 = G(QA;Q1
, QWPQ1

, Qvm, QMQ1
) , 

for each Q E 0, where 0 denotes the fu ll orthogonal group. Now M plays the 
role of a parametric tensor, and the functions j, f, F and T depend explicitly o n 
it. We observe that the approach leading to (2.4) has primarily been proposed by 
BOEHLER ( 4, 5]. 

In the sequel we shall derive the functional basis for the scalar function (2.4)1 

and generators for the functions (2.4)2_4. Our method of determination of the 
functional basis follows that used by SMITH [19, 20] and KORSGAARD [14, 15] for 
isotropic functio ns. Generators will be obtained similarly as in [11 , 12, 14, 15], 
following the idea proposed in the paper by the second author [24). 

3. Detennination of the orthotropic functional basis 

Since the tensor M appearing in (2.4) is a parametric tensor, the determination 
of the functional basis is less compli cated than in the case of isotropy examined 
by KoRSGAARD [14). Obviously, in the last case S = 0 , because the invariance 
with respect to the full orthogonal group has been studied. 

To find the functional basis for the orthotropic scalar function (2.4)1, it suffices 
to consider the fo ll owing three cases. 

CASE1 
In the set of vectors {v m} (m = 1, . . . , M) there are vectors non-collinear with 

the direction of e. 

CASE 1.1 
At least one vector from the set { V m}, say v1, is not collinear with e and V m f. 0, 

m = 1, . . . , M . Then we choose the coordinate system {X a } (a = 1, 2) in such 

a way that Ox1 coincides with e and ｶ ｾ Ｑ Ｉ＠ > 0, ｶ ｾ ｬ Ｉ＠ > 0; here vm = Ｈ ｶｾ ＺＺ ｜＠ To 
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determine uniquely the representation of the functio n (2.4)1, it suffi ces to know 
the following invariants, since then the components of all arguments are available: 

V1•MV1 = v(1)v ( l ) => v( l) 
I I 1 ( v \

1
) > 0), 

YJ'YJ = v(l) v ( I) + v (l)v ( l) => v ( l ) 
I 1 2 2 2 (vi l ) > 0), 

V1•Mvm = 
(1) (m ) (m ) 

v i v l => v l ' 

= 
(I) (m)+ (! ) (m ) (m ) 

(3.1) 
VJ•Vm v 1 v 1 v2 v2 => v 2 , 

t( i) (1) (I) + 2A(i) ( I) ( I ) + A (i ) (1) (1) 
v 1· A ;v1 = 1 Il v l v l 12v 1 V2 22V2 V2 ' 

V1•A ;v m = 
\ (i) (1) (m) + A (i )( (1 ) (m) + (m) (1)) + A (i) (1) (m ) 

f 11 VI VI 12 VI V2 V ! V2 22 V2 V2 ' => A ; 

Vm •A ;Vm = 
\ (i) (m) (m ) + 2 l( i) (m ) (m) + l (i) (m) (m) 

f 11 VI VI f 12 VI V2 f 22 V2 V2 ' 

V1•Wpv m = W (p) ( V (1)v(m) - V(m ) V(I )) ::} W(p) 
12 1 2 I 2 12 ' 

CASE 1.2 
Only one vecto r, say v = ( v1, v2) E {V m} is no t colli near wi th e, whereas the 

remaining vectors are zero vectors. We choose the coordinate system similarly 
as before; then v 1 > 0 and v2 > 0. The invariants li sted below suffice for the 
determination of the representa tio n o f the function (2.4)1: 

(3.2) 

where 

V• MV = V ] v 1 => v1 ( v i > 0), 

v·v = v? + vi => v2 ( v2 > 0), 
( i ) 2 2 (i ) A (i) 2 

v·A;v = A 11v 1 + !1 12 v 1v2+ 22 v2 , 

trA; = ａｾ ＿ Ｋ ｾｾ ｾｾ Ｇ＠

trMA = AW, 
MW - w<P> ｾ ｶ＼ ｐ ＾＠

V • pV - VJ 'V2 12 ::} V 12 ' 

A-= ( / t(i )) 
' 01(3 (a,f] = 1,2). 

Summarizing, we compile Table 1. 

Table l. Functional basis in Case 1. 

m = 1, . . . , NI , 

i = 1, ... ' ! , 

=> A ; 

m < n, 

p= l , . . . , P. 
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CASE2 
We assume that Vm = 0, m = 1, . . . , M . Since M = e ® e :j: 0, hence the 

eigenvalues are .A 1 = 1, .A2 = 0. 

CASE 2.1 
Among the tensors A; (i = 1, .. . , I) there is none with non-zero off-diagonal 

components in the coordinate system { x(.\' }, such that Ox1 and Ox2 coincide with 
the directions of the eigenvectors of M . Let W E {Wp}· Then the sense of Ox1 is 
chosen in such a way that W12 > 0. Now one has to know the following invariants: 

tr A; = A(i ) + A(i) } 
11 22 , =:} A(i) and A(i) 

A
(i) 11 22 • 

trMA i = 11 , 

trw2 = - 2Wr2 =:} w12 cw12 > o), 
(3.3) 

= 2w w<P> w<P> trWWp - 12 12 =:} 12 · 

CASE 2.2 
Let B E {Ai} denote a tensor with non-zero ofT-diagonal components. The 

positive direction of Ox1 is chosen in such a way that B12 > 0. The set of invari-
ants is: 

(3.4) 

trA; =A(i)+A(i) } () 
11 22, =:} AW and A2'2 , 

t MA = A(i ) r i 11 , 

tr B = B 11 + fln , } 
=:} B11 and Bn , 

trMB = lJ11 , 

trB2 = 13?1 + 2n?2 + ni2 , =} B12 , 

(i ) (i) (i) ( i ) 
tr BA = fl,, A 11 + fl22A22 + 21]12A 12 , =:} A 12, 

trMBWp = Ｍ ｮＬＲｷ Ｑ ＼ｾ＾Ｌ＠ =:} ｗ Ｑ ＼ｾ＾Ｎ＠

By applying formulas (3.3) and (3.4) we construct Table 2. 

CASE3 

Table 2. Functional basis in Case 2. 

tr A, , tr ａｾ＠ , tr MA, , tr A, A1 , 

tr ｗ ｾ＠ , tr W P W q , tr MA, W p , 

i , j= 1, . .. , ! , i < j , 

p, q = 1 . .. . , P, 1! < q. 

All vectors V111 (m = 1, . . . , M) have the form V111 = cm e. Let v E { V111}, v = ce, 
and choose the coordinate system in such way that c > 0. Then we have 

(3.5) v·v = c2
, =:} c (c > 0), 

The remaining invariants are derived similarly as in Case 2. 
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Summarizing all three cases: 1, 2 and 3, we obtain the orthotropic functional 
basis for the two-dimensional problem. 

The last table coincides with ZHENG's results [29] , who has however used a 
different method. 

BOEHLER [4, 5, 6] determined functional bases provided that functions ap-
pearing in (1) depend only on symmetric tensors A;. In the two-dimensional 
case, Boehler's results correspond to the first row of our Thble 3. This author 
approached the two-dimensional case through the three-dimensional one by us-
ing Cayley- Hamilton theorem, cf. also [21 ]. The method of determination of a 
functional basis employed in [4, 5, 6] and based on Cayley- Hamilton theorem, 
proves that the functional basis is also the integrity basis, see also the first row 
of Thble 3. 

Table 3. Functional basis for the orthotropic scalar-valued function (2.4)1• 

tr A; , tr ａ ｾ＠ , tr MA , , tr A, A1 , 

ｴｲｗ ｾ Ｌ＠ trWpWq, trMA,Wp , 

Vm •Vm, Vm• MV ,n , Vm·Vn 1 Vm• MV n , 

V.,n·A ,vm , Vm·A,Vn , Vm•W p Vn , Vn l·MW p Vn1 • 

i , j =I , . .. , I , 

p, q = 1, . . . , P, 

m , n = 1, ... , 111, 

i < j , 

p < q, 

m < n , 

AoKTNS [1 , 2] determined integrity basis, in the two- and three-dimensional 
cases, for arbitrary second order tensors, under the condition of linearity of in-
variants with respect to each argument. Consequently, two-dimensional reduction 
of the invariants in the case of transverse isotropy characterized by the parametric 
tensor M does not yield the invariants listed in the first and second row of Table 
3. It is worth noting that the tensor M describes only one of the five possible 
cases of 30 transverse isotropy, cf. [29]. 

Let D; E T ( i = 1, ... , I) be arbitrary two-dimensional second order ten-
sors, not necessarily symmetric. Assuming that one of the axis of the Cartesian 
coordinate system coincides with e, Adkins' integrity basis is given by 

D(i) D(i ) 
11 , Ot{J , 

(3.6) 
D (i) nU> D(i)D(j) (3 1 2 

01{3 {301' 101 01 1 ' a, ,/ = , , 

D (i )D(k)D(j ) . . I. l 1 I 
l Ot 01{3 {3 1 ' Z, J , r.: , = , ... , ' 

D(i ) D(k) D(l) n U> i > 1. > k > l, 
l Ot Ot{J {3-y . -y l ' 

where 

and 
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4. Determination of generators of an orthotropic vector-valued function 

In this section we shall derive the general form of the vector-valued function 
(2.4)2. To this end we consider the scalar function, cf. (11, 14, 24] 

(4.1) 

linear in d. Thus we may wri te 

s 
(4.2) g(A;, W p, V m, d)= g(Jr, Js) = L 7/Js(Jr )Js' 

s=l 

where Ir are the invariants listed in 'Pdble 3, while l s are the following invariants, 
linear in d: 

(4.3) 

They are obtained by using the procedure outlined in the previous section. In fact, 
since in ( 4.1) a vector d appears, therefore we do not consider Case 2. In Case 
1 the invariants d·vm, d·Mvm, permit us to determine d uniquely. Considering 
Case 3, since 

d·Vm = d1 cm => d1, 

we must additionally examine the following two situations. 

CASE 3.1 
At least one of the tensors, say A E {A ;}, is not singular, that is it has two 

different eigenvalues. Then the two invariants: d·vm, d·Avm determine the com-
ponents d01 (o = 1, 2) of d uniquely. 

CASE 3.2 
At least one of the tensors, say W E {Wp}, is such that the corresponding axial 

vector [22] is not collin ear with e. Then 

and d is determined uniquely. 
We observe that if in Case 3 the situations covered by Cases 3. 1 and 3. 2 

do not occur, then it suffices to know the invariant d·vm = d1cm, because the 
vecto r-valued function has the form f = c!Je, where c/J stands for an invariant. 

The canonical form of the vector-valued function (2.4 )2 is given by 

a-g s 8Js s 
f(A ;, W p, Vm) = fJd = L 7/Js(J,.)fjd = L 7/Js(J,.)gs · 

s=l s=l 
(4.4) 

The generators gs are li sted in Table 4 and coincide with the results due to 
ZHENG (29]. 
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Table 4. Generators of the orthotropic vector-valued function (2.4)2. 

Vm , Mv m , A.vm , W p Vm, m = 1, ... , M, i = 1, ... , l , p = 1, . . . , P. 

5. Detennination of generators of the orthotropic symmetric tensor-valued 
function 

Proceeding similarly as in the previous section we take 

(5.1) h = trFC, 

where C is a symmetric second-order tensor. The scalar-valued function h has 
now the form 

s 
(5.2) h(Ai , W p, Vm, C)= h(Jr ,Js) = L 4>s(Ir )Js' 

s=l 

where Ir are the invariants li sted in Table 3, and .J., are lin ear in C: 

(5.3) trC, trMC, trCAi , trCMWp, Vm·Cvm , Vm•CVn . 

To justify (5.3) one has to consider the foll owing three cases. 

CASE 1.1 
Let v1, v2 E {v m} be such that det[vi1>v12)] :f 0. Then by using the invariants 

v1·Cv1, v2·Cv2 and v1·Cv2 we determine C uniquely. In Case 1.2 one can also 
calculate these invariants, because v1 and e are not collin ear. 

CASE 2.1 
Knowing the invariants: tr C, tr MC, tr CMW one determines C uniquely. 
If in Case 2.1 all skew-symmetric tensors disappear or their axial vectors are 

collinear with e, then it suffices to know the invariants: tr C, tr MC, because F has 
diagonal form. 

CASE 2.2 
Since the ofT-diagonal components of the tensor B are non-zero, it suffi ces to 

know the invariants: tr C, tr MC and tr CB. 
All in all , to sati sfy the cases considered, the set of invariants linear in C has 

to be specified by (5.3). 
The canonical form of the tensor-valued function (2.4)3 is given by 

l(Dh Dh) Dh ｾ＠ DJs ｾ Ｍ
(5.4) F(Ai, WP, vm) = 2 DC+ aCT = DC = ｾ＠ </Ys(l,. ) DC = ｾ＠ 4>s(f,. )Fs. 

s=l s=l 

The results are summarized in Table 5. The generators Fs are the same as those 
obtained by ZHENG [29]. The case considered by B OEHLER [4, 6] is covered by 
the first row of Table 5. 
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Table 5. Generators of the orthotropic, symmetric tensor -valued function (2.4 )3. 

I, M, A,, i = 1, .. . , I , 

p = 1, ... , P, 

rn,n= l , ... , M , m<n. 

6. Determination of generators of the orthotropic skew-symmetric tensor-valued 
function 

We begin by constructing the scalar function [14, 24] 

(6.1) k = trTX, 

where X is a skew-symmetric tensor. Hence we may write 

s 
(6.2) k(A;, wp, Vm, X) = k(fr, A". )= L <P.(J,. )A"s' 

s= l 

where K s are the invariants, lin ear in X: 

(6.3) 

To justify (6.3) we have to examine the fo ll owing cases. 

CASE 1.1 
X X ( 

(m ) (n) (n) (m)) v 
Vrn • Vn = 12 V I V2 -VI V2 '=:} ./\ 12 . 

CASE 1.2 

CASE 2.1 
XW v(P) 

tr P =:} ./\ 12 . 

CASE 2.2 
tr MBX = -B12X12 , B12 > 0, =:} X 12 . 

Case 3 is treated similarly as Cases 2.1 and 2.2. 
The canonical form of the function T is given by 

The generators ofT. are listed in Table 6. They coincide with those obtained by 
ZHENG (29). 
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Table 6. Generators of the orthotropic, skew-symmetric tensor-valued function (2.4) • . 

MA, - A, M , Wp, i = 1, .. . , I , p = 1, . . . , P, 

m , n = 1 , .. . , AI , m < n . 

7. Equiva lent functional bases and sets of generators 

ZHENG [30] determined an alternative form of the functional basis and gen-
erators in comparison with the results o f his fir st paper [29]. In [30] the repre-
sentations o f functions (2.1) corresponding to all an isotropy groups have been 
investigated. Then orthotropy group is the group C2v (cf. also [21]) and the para-
metric tensor K has the form 

(7.1) 

Here ea (a = 1, 2) are unit vecto rs specifyin g the directio ns o f orthotropy. By 
setting e1 = e, we readily obtain 

(7.2) K = 2M - I. 

This re lation enables the passage from our results to those due to ZHENG [30] in 
the two-dimensional case o f orthotropy. 

The results obtained by ZHENG [29, 30] and in this contribution can be applied 
to the determination of representations o f the foll owing functions: 

(7.3) 

s =f(Ai, Wp, vm, H) , i = 1, . . . , 1, p=l , . .. , P, m =l , . .. . !Yf , 

t = f(A i, Wp, Vm , H), 

S = F(Ai , Wp, Vm, H), 

T = G(Ai, w 7» Vm , H), t = - 1'1 

' 
where H is a symmetric, positive definit e tensor. Its eigenvalues are denoted by 
H 1 and lh, 1!1 > !! 2. Now we have 

(7.4) 
H = H1e1 @ e1 + lf 2e2 ® e2, 

H = lf1M + H2(I - M) . 

Consequently one can easil y determine the representations of the functions ap-
pearing in (7.3). 

The last case is important for applicatio ns if H plays the ro le of a fabric tensor, 
cf. [7, 8, 9]. This tensor is sometimes used to model the mechanical behaviour o f 
materials as different as soil s [6] and bones [7-9]. 

In the case when H 1 = lf2, H is a spherical tensor and the representati o ns of 
f unctions (7.3) coincide with those derived by K oRSGAA RD [14]; then the tensor 
H does not appear in these functio ns. 
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