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An alternative approach to the representation
of orthotropic tensor functions in the two-dimensional case

S. JEMIOLO and J.J. TELEGA (WARSZAWA)

THE Am of this paper is to derive in a simple fashion the non-polynomial representations of a class
of orthotropic functions in the two-dimensional case. Scalar-valued, vector-valued, symmetric and
skew-symmetric tensor-valued functions of the second order have been considered.

1. Introduction

STruCTURES made of anisotropic materials are often used in engineering practice.
Constitutive modelling of the behaviour of such materials has been significantly
influenced by the theory of invariants and tensor functions, cf. [6, 18, 24]; vice
versa, development of the invariant theory has been stimulated by the constitutive
modelling. The reader interested in the fundamentals of the theory of invariants
and tensor functions and their applications should refer to [6, 13, 21, 22, 23].

The problem of the determination of the general form of a tensor function of
specified order and symmetry depending on tensor arguments consists in finding
irreducible sets of scalar invariants and tensor generators; to put it simply, in the
determination of the so-called canonical form of the tensor function. Though the
theory of tensor function representation has been developed for more than three
decades [18, 22, 23], yet no comprehensive, systematic and up-to-date study is
available in the relevant literature. The book by SmiTH [21] is restricted to the
presentation of theoretical results elaborated by this author and his coworkers,
by employing classical methods of the group representation theory. SmiTH [21]
has deliberately focussed on polynomial representations only. Many other com-
plementary contributions exist, however, concerning the general representation
of practically important isotropic [3, 14-16, 19, 20, 22-28] and anisotropic [1, 2,
4-6, 10, 12, 21, 29, 30] tensor functions.

Irreducibility of a set of invariants may be understood in two ways:

1. If one determines an integrity basis, then none of its elements can be a
polynomial in the remaining elements, cf. [22].

2. In the case of a functional or non-polynomial basis, none of its elements
can be a function of the remaining elements.

Similar characterization pertains to the irreducibility of generators appearing
in the canonical form of a tensor function, cf. [3, 6, 16]. To find the polynomial
representation of a tensor function it suffices to determine the relevant integrity
basis, because the generators are obtained by a simple process of differentiation
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[6, 22]. The problem of the non-polynomial representation of a tensor function
is more complicated, cf. [3, 19, 20, 25-30]. In the paper by the second author
[24], a similar approach was suggested for the determination of generators of
non-polynomial tensor functions. This method was next developed by KORSGAARD
[14, 15] and used in [11, 12].

In general, the determination of functional bases and generators leads to
solving complicated algebraic relations. Hence only some classes of tensor func-
tions are known explicitly. Even when the representations of scalar-, vector- and
tensor-valued functions are available, alternative methods of their determination
are still proposed, cf. [28, 29].

As is well known, two-dimensional problems are often studied in the con-
tinuum mechanics. Thus the problem of the representation of isotropic and
anisotropic functions in the two-dimensional case is of interest in itself. How-
ever, such two-dimensional representations do not necessarily coincide with those
derived directly from the corresponding three-dimensional cases.

The aim of this contribution, precisely formulated in the next section, is to pro-
pose an alternative derivation of functional bases and generators for orthotropic
functions in the two-dimensional case.

2. Formulation of the problem

The objective of our considerations is the determination of the general form
of the following functions:

s = f(A;, Wp,v), i = Livsas by 9= LinaelPy = Lyaz: M5
t = f(A;,W,,v,,),

S = F(A;,W,,v,,), §=5

T = G(A;,W,,v,,), Y= =

I

2.1

in the two-dimensional case. Here s € R, t, v,, € E% S, A, € T* (dim7~* = 3),
T,W, e T* (dimT* = 1), T = E*@ E* = 7* ¢ T* (dimT = 4), E? stands for
the two-dimensional Euclidean space and 7° = {A e T |A = A"}, T* = {(W ¢
T|W=-W'},

In our 2D case, the orthotropy group S satisfies the condition

(2.2) YQeS, QMQ'=M,

where M = e @ e and the unit vector e characterises orthotropy, see ([6], p.51).
Obviously we have trM = trM? = 1.

For each Q € 5, the scalar-valued function f, vector-valued function f, sym-
metric tensor-valued function F and skew-symmetric tensor-valued function G
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satisfy the conditions:

J(ALW,,v) = f(QAQ',QW,Q", Qv,,.),
Qf(A;, Wy, vin) = f(QA,Q',QW,Q",Qv,,),
QF(A;, W, v,,)Q" = F(QAQ',QW,Q". Qv,,),

QG(A;, Wy, v,.)Q" = G(QA:Q',QW,Q",Qv,,.).

By applying I-SHiH Liu theorem [10] (see also [17]) and taking into account (2.2),
the invariance requirement (2.3) may be written in the following way:

(2.3)

J(AL W, v, M) = f(QAQ',QW,Q', Qv,,,QMQ"),
Qf(A;, Wy, v, M) = f(QA;Q",QW,Q", Qv,,, QMQ'),
QF(A;, W, v, M)Q" = F(QA,Q",QW,Q", Qv,,, QMQ"),

QG(A;, W, v, M)Q" = G(QA,Q',QW,Q", Qv,,.QMQ"),

for each Q € O, where O denotes the full orthogonal group. Now M plays the
role of a parametric tensor, and the functions f, f, F and T depend explicitly on
it. We observe that the approach leading to (2.4) has primarily been proposed by
BOEHLER [4, 5].

In the sequel we shall derive the functional basis for the scalar function (2.4),
and generators for the functions (2.4);_4. Our method of determination of the
functional basis follows that used by Smith [19, 20] and KORSGAARD [14, 15] for
isotropic functions. Generators will be obtained similarly as in [11, 12, 14, 15],
following the idea proposed in the paper by the second author [24].

(2.4)

3. Determination of the orthotropic functional basis

Since the tensor M appearing in (2.4) is a parametric tensor, the determination
of the functional basis is less complicated than in the case of isotropy examined
by KorRSGAARD [14]. Obviously, in the last case S = O, because the invariance
with respect to the full orthogonal group has been studied.

To find the functional basis for the orthotropic scalar function (2.4), it suffices
to consider the following three cases.

Case 1

In the set of vectors {v,,,} (m = 1,..., M) there are vectors non-collinear with
the direction of e.

Case 1.1

At least one vector from the set {v,, }, say vy, is not collinear with e and v,,, # 0,
m = 1,..., M. Then we choose the coordinate system {z,} (a = 1,2) in such

a way that Oz, coincides with e and -vgl) > 0, vgl) > 0; here v,, = (v,(ff)). To
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determine uniquely the representation of the function (2.4);, it suffices to know
the following invariants, since then the components of all arguments are available:
ugl)vgl) = vgl) (‘vgl) > 0),

s 4 60 o o0 (D 5 ),

vi*Mv,, = vgl)vfm) = vgm),

= vgl)ﬂm) + vgl)vém) =P (m)

Vl'le

ViV =

ViV = )
(3.1) ) )
vicAv = Ag?v{l)v{l) + 2%15'2)'09) (1) A(i) (1) (1)
V1AV, = A(lil)‘vgl)vgm)"i- A(llz) (vil)ngm)-}vgm)vgn) -+ Agz)vél)vg"), = A;
Vm'AiVm - A(lil) ('rn)vim) + 2 lgz)vgm)vém) s /‘lgz)’t’g”)vg”),
vi*Wpy, = I/'V(p) (vii)v:(,‘m) - 'Ugm)vgl)) = W’g) ,

provided that o{"u{™ — o{™o{" # 0.

Case 1.2

Only one vector, say v = (v}, v2) € {v,,} is not collinear with e, whereas the
remaining vectors are zero vectors. We choose the coordinate system similarly
as before; then vy > 0 and vy > 0. The invariants listed below suffice for the
determination of the representation of the function (2.4);:

v-Mv = vjv; = v (v1 > 0),
vi" + 'v% = (v2 > 0),

Vv

VA Y = A(')v% + 2(‘1( )trwz + A22 vz,

(3.2) .
trA; = AD + A%, = A
NG
tr MA = /111,
VMW, v = 00, W = w),
where

A = (1‘05) (0, = 1,2).
Summarizing, we compile Table 1.

Table 1. Functional basis in Case 1.

ViV, ¥ MV, VinoVn, Vi -My,, | i = 1 s oo M m < n,

Vi AiVim , Vi AiVn, Vi 'prn, Vm'waVm y i=1,..., Iy pi= 1,... s P.
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CaASE 2
We assume that v,, = 0, m = 1,..., M. Since M = e ® e # 0, hence the
eigenvalues are A} = 1, A\, = 0.

Cask 2.1

Among the tensors A; (¢ = 1,...,7) there is none with non-zero off-diagonal
components in the coordinate system {z,}, such that Oz; and Oz, coincide with
the directions of the eigenvectors of M. Let W € {W, }. Then the sense of Oz, is
chosen in such a way that Wy, > 0. Now one has to know the following invariants:

trA; = Atlli + A(zz)v } N A(lil) sl Agz)’
(33) trMA; = A,
trw? = 2W3 = Wy, (W2 > 0),
trWW, = —2W, W = wi,
CASE 2.2

Let B € {A;} denote a tensor with non-zero off-diagonal components. The
positive direction of Oz is chosen in such a way that By > 0. The set of invari-
ants is:

trA; = AS) + AL, : :
= = AW and AY),

trMA; = A7,
trB = By + By,
B d By,
(34) trMB = B” 5 = bu an 2

trB2 = B}, + 2B, + B3, = B2,
trBA = ByA{) + BpAY) +2844), = A(),
trt MBW, = - B,W3), = w.

By applying formulas (3.3) and (3.4) we construct Table 2.

Table 2. Functional basis in Case 2.

trA,, trA? trMA,  trAA, i i=1..., I, i< g,
trW%, trW, W, trMA,W, pg=1,..., P, p<q.
CASE 3
All vectors v,,, (m = 1,..., M) have the formv,, = c,,e. Letv € {v,.}, v = ce,
and choose the coordinate system in such way that ¢ > 0. Then we have
(3.5) vev= 2, = ¢ (¢ > 0), veMv,, = ccpm = Cpy .

The remaining invariants are derived similarly as in Case 2.

http://rcin.org.pl
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Summarizing all three cases: 1, 2 and 3, we obtain the orthotropic functional
basis for the two-dimensional problem.

The last table coincides with ZHENG’s results [29], who has however used a
different method.

BOEHLER [4, 5, 6] determined functional bases provided that functions ap-
pearing in (1) depend only on symmetric tensors A;. In the two-dimensional
case, Boehler’s results correspond to the first row of our Table 3. This author
approached the two-dimensional case through the three-dimensional one by us-
ing Cayley- Hamilton theorem, cf. also [21]. The method of determination of a
functional basis employed in [4, 5, 6] and based on Cayley - Hamilton theorem,
proves that the functional basis is also the integrity basis, see also the first row
of Table 3.

Table 3. Functional basis for the orthotropic scalar-valued function (2.4),.

trA;, trA?, trMA, | trAA, ii=1,..., I, i< g,
trw2, tr W, W, , tr MA,W,, il = 1 s P, p<q,
Y Vmy YoMV, VeV, Vi My, mn=1,.... M, m<n,
vrn'Axvru v Ym 'Alvﬂ ’ vnx'w;;vn v Y 'wavrn .

ADKINS [1, 2] determined integrity basis, in the two- and three-dimensional
cases, for arbitrary second order tensors, under the condition of linearity of in-
variants with respect to each argument. Consequently, two-dimensional reduction
of the invariants in the case of transverse isotropy characterized by the parametric
tensor M does not yield the invariants listed in the first and second row of Table
3. It is worth noting that the tensor M describes only one of the five possible
cases of 3D transverse isotropy, cf. [29].

Let D; € T (+ = 1,...,1) be arbitrary two-dimensional second order ten-
sors, not necessarily symmetric. Assuming that one of the axis of the Cartesian
coordinate system coincides with e, Adkins’ integrity basis is given by

(¥) (1)
b, D

afl
(3.6) DOyDR), DY, aBy=1,2,
pIp®pY) i ki=1,...,1,
pfip®plpd, s ik,
where

D; = D%e, @ es and e =e.
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4. Determination of generators of an orthotropic vector-valued function

In this section we shall derive the general form of the vector-valued function
(2.4),. To this end we consider the scalar function, cf. [11, 14, 24]

(4.1) g=fA;,W,,v,)d = fod,,

linear in d. Thus we may write

S
(42) g(Aiawps vm,d) = g(Iers) = Zd"s(lr)']s s

s=1

where [, are the invariants listed in Table 3, while J, are the following invariants,
linear in d:

(4.3) dv,,, dMv,, d-Ayv,, dWy,.

They are obtained by using the procedure outlined in the previous section. In fact,
since in (4.1) a vector d appears, therefore we do not consider Case 2. In Case
1 the invariants d-v,,, d-Mv,,, permit us to determine d uniquely. Considering
Case 3, since

dev,, = djc,, = dy,

we must additionally examine the following two situations.

Cask 3.1

At least one of the tensors, say A € {A;}, is not singular, that is it has two
different eigenvalues. Then the two invariants: d-v,,, d-Av,, determine the com-
ponents d, (a = 1,2) of d uniquely.

Cask 3.2
At least one of the tensors, say W € {W, }, is such that the corresponding axial
vector [22] is not collinear with e. Then

dv,,, d-Wyv,, = d; and d,,

and d is determined uniquely.

We observe that if in Case 3 the situations covered by Cases 3. 1 and 3. 2
do not occur, then it suffices to know the invariant d-v,, = d,c,,, because the
vector-valued function has the form f = ¢e, where ¢ stands for an invariant,

The canonical form of the vector-valued function (2.4), is given by

g BY, &
(4‘4) f(Aiwwwvm) = % = Z 21’5('[7‘)'(-)'? = Z ¢s(1r)gs-
s=1 s=1

The generators g, are listed in Table 4 and coincide with the results due to
ZHENG [29].
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Table 4. Generators of the orthotropic vector-valued function (2.4),.

Vin, Mvy, AV, wpvma m=]w--'aﬂ’jv 1=1,..., L, P=1,'--,P-

5. Determination of generators of the orthotropic symmetric tensor-valued
function

Proceeding similarly as in the previous section we take
(5.1) h = trFC,

where C is a symmetric second-order tensor. The scalar-valued function A has
now the form

S
(5.2) h(Ai, Wy, Vi, C) = h(I, J;) = Y doll;)Js

s=1

where [, are the invariants listed in Table 3, and ./, are linear in C:
(5.3) trC, trMC, trCA;, trCMW,, v,:Cv,, v,,+Cv,.

To justify (5.3) one has to consider the following three cases.

Cask 1.1

Let v, v2 € {v,,} be such that det[vf,”z:ff)] # (. Then by using the invariants
v1+Cvy, v2:Cv; and v;-Cv; we determine C uniquely. In Case 1.2 one can also
calculate these invariants, because vy and e are not collinear.

Case 2.1

Knowing the invariants: tr C, tr MC, tr CMW one determines C uniquely.

If in Case 2.1 all skew-symmetric tensors disappear or their axial vectors are
collinear with e, then it suffices to know the invariants: tr C, tr MC, because F has
diagonal form.

Casg 2.2

Since the off-diagonal components of the tensor B are non-zero, it suffices to
know the invariants: tr C, tr MC and tr CB.

All in all, to satisfy the cases considered, the set of invariants linear in C has
to be specified by (5.3).

The canonical form of the tensor-valued function (2.4); is given by

1/0h Ok oh &S BE st

4 FA,. s Vi) = =l o=t = 5 = bellp)—=— = b (1 )Fs.
64 FaWwm) =5 (G + ger) = e = L HUIGE = LAl
The results are summarized in Table 5. The generators F, are the same as those
obtained by ZHENG [29]. The case considered by BOEHLER [4, 6] is covered by
the first row of Table 5.
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Table 5. Generators of the orthotropic, symmelric tensor-valued function (2.4);.

I, M, A, t=1,...10,
MW, — W, M, p=i, ..., P
Vin @ Vi, Vi @Vy + Vn @ Vi, mn=1,.... M, m < n.

6. Determination of generators of the orthotropic skew-symmetric tensor-valued
function

We begin by constructing the scalar function [14, 24]

(6.1) k= trTX,
where X is a skew-symmetric tensor. Hence we may write
- S
(6.2) k(Ai, Wy, Vi, X) = k(1K) = > 6u(1)K,
s=1

where K, are the invariants, linear in X:

(6.3) trMAX, trXW,, v,,-MXv,,, v,,-Xv,.
To justify (6.3) we have to examine the following cases.

Case 1.1

Vm‘XVn \[ ( (m) (n) %n)lém)) e "\,12 -
Casge 1.2
V,.-MXv, = X zv(m)vg" = X3
Caske 2.1
trXw, = X1,
CASE 2.2

trMBX = — B2 X2, By > 0,=> Xi».

Case 3 is treated similarly as Cases 2.1 and 2.2.
The canonical form of the function T is given by

1 /0k Ok
(6.4) T(A:;, Wy, V) = 2 (ﬁ B W)
ok, OK >

- 32000 (G - 5) = S

The generators of T, are listed in Table 6. They coincide with those obtained by
ZHENG [29].
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Table 6. Generators of the orthotrepic, skew-symmetric tensor-valued function (2.4),.

MA, —AM, W, =1 o ks p=1..., P

Vi OMvi, — MV, @ Vi, Vi @ Vi — Vi ® Vi, mn=1..., M, m < n.

7. Equivalent functional bases and sets of generators

ZHENG [30] determined an alternative form of the functional basis and gen-
erators in comparison with the results of his first paper [29]. In [30] the repre-
sentations of functions (2.1) corresponding to all anisotropy groups have been
investigated. Then orthotropy group is the group ', (cf. also [21]) and the para-
metric tensor K has the form
(7.1) K=e ®e —e@ep.

Here e, (a = 1, 2) are unit vectors specifying the directions of orthotropy. By
setting €; = e, we readily obtain

(7.2) K=2M-L

This relation enables the passage from our results to those due to ZHENG [30] in
the two-dimensional case of orthotropy.

The results obtained by ZHENG [29, 30] and in this contribution can be applied
to the determination of representations of the following functions:
= f(A, W,V , H), i=1,....1, p=1,..., P, m=1,...,.1 M,
= ?(Ais wps Yo, H),
= F(AL, W,, V., H), S=§,

T = G(A;, W, ¥ H), T=-T,

U =) )

(7.3)

where H is a symmetric, positive definite tensor. Its eigenvalues are denoted by
H, and 15, Hy > ;. Now we have
H = Hieg®e + e e,

(7.4)
H = M+ Hy(I - M).

Consequently one can easily determine the representations of the functions ap-
pearing in (7.3).

The last case is important for applications if H plays the role of a fabric tensor,
cf. [7, 8, 9]. This tensor is sometimes used to model the mechanical behaviour of
materials as different as soils [6] and bones [7-9].

In the case when I} = I, H is a spherical tensor and the representations of
functions (7.3) coincide with those derived by KorsGAARD [14]; then the tensor
H does not appear in these functions.

http://rcin.org.pl
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