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Hall effect on thermosolutal instability in a Maxwellian
viscoelastic fluid in porous medium

R.C. SHARMA and PARDEEP KUMAR (SHIMLA)

THERMOSOLUTAL instability in a Maxwellian viscoelastic fluid in porous medium is studicd to include
the effect of Hall current. For stationary convection, the Maxwellian viscoelastic fluid behaves like
an ordinary Newtonian fluid and stable solute gradient is found to have stabilizing effect, whereas
Hall currents and medium permeability are found to have destabilizing effects on the system. The
sufficient conditions for the non-existence of overstability are also obtained.

1. Introduction

THE ONSET OF CONVECTION in Newtonian fluids heated from below, under varying
assumptions of hydrodynamics and hydromagnetics, has been treated by CHAN-
DRASEKHAR [1]. The effect of Hall currents on the thermal instability of a hori-
zontal layer of conducting fluid has been studied by Gurra [2]. VERONIS [3] has
investigated the thermohaline convection in a layer of fluid heated from below
and subjected to a stable salinity gradient. The heat and solute being two diffus-
ing components, thermosolutal convection is the general term dealing with such
phenomena.

A macroscopic equation which describes incompressible flow of a Newtonian
fluid of viscosity p through a macroscopically homogeneous and isotropic porous
medium of permeability k; is the well known Darcy’s equation. The usual viscous
term in the equations of fluid motion is replaced by the resistance term —(p/ky)v,
where v is the filter velocity of the fluid.

BuaTiA and STEINER [4] have studied the problem of thermal instability of a
Maxwellian viscoelastic fluid in the presence of rotation and have found that the
rotation has a destabilizing effect, in contrast to the stabilizing effect on Newto-
nian fluid. BHATIA and STEINER [5] have also considered the thermal instability
of a Maxwell fluid in hydromagnetics and have found that the magnetic field has
stabilizing effect on viscoelastic fluid, just as in case of Newtonian fluid.

The Hall efTect is likely to be important in many geophysical situations like
Earth’s molten core as well as in flows of laboratory plasma. SHERMAN and SuTTON
[6] have considered the effect of Hall current on the efficiency of a magneto-fluid-
dynamic generator. UBEROI and DEVANATHAN [7] have investigated the effects of
Hall phenomenon on the propagation of small amplitude waves taking compressi-
bility into account. As the Hall current, solute gradient and viscoelastic effects are
likely to be important in geophysical situations, a reconsideration of the thermal
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convection effects occurring in porous medium including these effects is certainly
called for and is the object of the present paper.

2. Perturbation equations

Here we consider an infinite horizontal layer of a Maxwellian viscoelastic fluid
of depth d in a porous medium, heated and soluted from below and acted on by
gravity force g(0,0, —g) and magnetic field H(0,0, /). The Maxwell’s viscoelastic
fluid is described by the constitutive relations

T;; = —pé,'j + 7,

d
(2.1) (1 )\E) Tij = ZUeij,
- _ 1 (0q  0g
elJ‘ - 2 (a-rj + E'T_l ]

where T;;, 7i;(= T), €i;(= ), 8ij, p, ¢i, i, p and A denote respectively the stress
tensor, shear stress tensor, rate-of-strain tensor, Kronecker delta, scalar pressure,
velocity, position vector, viscosity and stress relaxation time. d/dt is the convective
derivative.

When the fluid slowly percolates through the pores of the rock, the gross effect
is represented by the usual Darcy’s law. As a consequence, the resistance term
—(yu/k1)v will replace the usual viscous term in the equation of motion. Here k,
is the permeability of the medium and v is the filter velocity of the fluid.

The equations of motion, continuity and heat conduction for a viscous, incom-
presible fluid heated from below (CHANDRASEKHAR [1], pp.11-16) are

(2.2) gj—? =pX—-Vp+divT,
(23) Veq =0,
d J aT
4 —(e,T) = — [ k— |,
(24) th(f &) dx; (Lf}xj)

where p, o, T, q and X denote respectively the fluid pressure, density, temperature,
velocity and the external force acting on the fluid. & and ¢, stand for the thermal
conductivity and the specific heat at constant volume. The viscous dissipation
term, being very small in magnitude, has not been included in (2.4). Since external
forces are of non-electromagnetic origin (gravity) and of electromagnetic origin
(Lorentz force per unit volume), equation of motion (2.2) may be rewritten as

dq _ e .
(2.5) g = —~Vp+og+ 4“_(\7 x H) x H + divT.
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Using the constitutive relations (2.1) for the Maxwellian viscoelastic fluid and
also using the fact that when fluid flows through a porous medium, the gross
effect is represented by Darcy’s law, the equations of motion and continuity for
a Maxwellian viscoelastic fluid through porous medium become

4 £ ifr_( i)[_ Fe oy
(2.6) E(l-l-)tdt)(“— 1+Ad£ Vp-i-gg-l-‘h(VXH)XH —klv,

(2.7) Vv =0,

where v is the filter velocity, ¢ is medium porosity and k, is the medium permea-
bility. v(= u/p) and p, stand for kinematic viscosity and magnetic permeability.
The fluid velocity q and the Darcian (filter) velocity v are connected by the
relation q = v/e.

When the fluid flows through a porous medium, the equation of heat conduc-
tion (JosepH [8],pp. 53-55) is

L al

a1
(2.8) locs¢ + eses(1 = @)] 7 + e (v-V) = kV2T.
An analogous solute concentration equation is
! 06‘ v ! -~
(2.9) [oc)9 + 0,1 - )] =+ e (vV)C = K'VC.
Using generalized Ohm’s law to take account of the Hall current
[ 4

(2.10) j=o(E+vxB)- —

Ne

j x H,

and eliminating E, j etc., the Maxwell’'s equations in terms of magnetic field
become
JH

1
(2.11) " = -V x (vx H) + yV2H -
di £

| 14
m?x [(VKI{)X H],

(2.12) V.H =0.

Initially
v = (0,0,0), o = p(2), p = p(z),
T=T(:), C=C() ad H=(0,0H).

Let ép, 6p, 0, v, h(hy, hy, h.) and v(u, v, w) denote respectively the perturba-
tions in density p, pressure p, temperature 7', solute concentration ', magnetic
field H(0, 0, /) and filter velocity (zero initially). Let «, &', o, o/, (= |dt/dz|) and
B'(= |dC/dz|) stand for thermal diffusivity, solute diffusivity, thermal coefficient
of expansion, an analogous solvent expansion, uniform temperature gradient and
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uniform solute gradient, respectively. Then the linearized thermosolutal hydro-
magnetic perturbed equations of flow through porous medium (2.6)-(2.9), (2.11)
and (2.12), following the Boussinesq approximation, become

20 a\ ov J He ooV
(2.13) (H)‘az) 5 (1 +/\a)[—V§p+g69+Z;r-(Vxh)xll &
(2.14) Vev =0,
09 :

(2.15) e Bw + V4,
(2.16) B2 < gu+ wvh,

0h
(2.17) =
(2.18) V+h =0,

where £ = ¢ + (1 — ¢)[(0s¢s)/(00cy)] and pg, ¢5; 05, ¢s stand for density and
heat capacity of fluid and solid matrix, respectively. £’ is an analogous solute
parameter. ¢, 7, N and e stand for speed of light, electrical resistivity, electron
number density and charge of an electron, respectively. The equation of state is

(2.19) e =201 -a(T-To)+a(C~-Co),

where the suffix zero refers to values at the reference level z = 0, e.g. g, 7p and
C stand for density, temperature and solute concentration at the lower boundary
z=0.

The change in density §p, caused by the perturbations ¢, v in temperature and
solute concentration, is given by

(2.20) do = —pg(alb — a'y).

Equations (2.13)-(2.18), using (2.20), give

2 a2
2.21) (1+,\£‘;) [1 D 2 (;2+ i )((15—0‘})

pell _o0h,
-—V
drpg Oz

=Ly,

kl\_' w,
190 pH 8{] _ v,

(%22) (1 o Aat) [ ot 4mpg 0z) _klg’

9 9 dw eHle 0
(2.23) g(a—r;\_" )h —HI_ﬁerEU_g'

d 2 (){’ cHe _20}12
224) ¢ (a =V )5 Hoet ane’ 0z
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(2.25) (Eg—t - .‘:Vz) 6 = Bu,
(2.26) (E' (i H’Vz) v = f'w,
L
where ( = 9_‘{ - E)-—u- nd £ = Oy _Ohs z-components of vorticity

dx Oy dx dy
and current density, respectively.

The fluid is confined between the planes z = 0 and »z = d maintained at con-
stant temperatures and solute concentrations. Since no perturbations in temper-
ature and concentration are allowed and since normal component of the velocity
must vanish on these surfaces, we have

(2.27) w=0, #=0 and y=0 at 2=0 and z2=d.

Here we consider the case of two free boundaries, and the medium adjoining
the fluid is electrically non-conducting. The case of two free boundaries is slightly
artificial, except in stellar atmospheres (SpieGEL [9]) and in certain geophysical
situations where it is most appropriate, but it allows for an analytical solution.
The condition of vanishing of tangential stresses at free surfaces implies

20
0“—0 and ()—C—O at z=0 and z =d.

(2.35) a2 = 2

Moreover,

(229) €=(Vxh),=0 and h is continuousat z=0 and z =d.

3. The dispersion relation

Here we assume the perturbations to be of the form

3.1)  [w, 6,7, ks C,E] = W), 0(2), T(2), K(2), Z(2), X (2)]
cexp(ikzx + ikyy + nt),
where k.., k, are horizontal wave numbers, k = (k2 + k2)!/2 is the resultant wave

number and n is a complex constant.
Using the dimensionless variables

d2
a = kd, 0’=‘-E——, p1=£_, p2=£,
v K n
=2 P=k—1 o =2 y =14 S =2 and D =d/d
¢=gy WS @y TR VYEge YR &
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and removing the dashes for convenience, Eqs.(2.21)-(2.26), with the help of
(3.1), become

i . .
(3.2) g(l‘i'FO')-l-ﬁ- ( 2)W+(1+I )J( a® (a0 — o'T)
+ Fo )'u Hd - a®)DK =0,
r &
(3.3) %(1 + Fo) + % Z=(+ )“cndm
- I
Hd clid
2 - 2_ S = - e 7 Y
(3.4) [D a pzrr] I ( o= ) DW + 4IrNe1;D‘\’
Hd el
?—d®- =—-|— — 2_ 2 -
(3.5) [D a pza] X ( = ) DZ 47rNer,rd(D a*)DK,

36) [D*-d-Epo|6=- (ﬁd ) W,

1,42
37  [PP-da?-FEgo| T =- (’3 . ) W,

The boundary conditions (2.27)—(2.29), using expression (3.1), become
(38) W=D*W=0, =0, I'=0, DZ=0, X=0

and h;, hy, h. are continuous at z = 0, 1.
Eliminating @, Z, I, X and K between Egs. (3.2)-(3.7), we obtain

{h(]+}'a)+}1!}2

32 (1+ Fa)

[(,D2 a*)(D?* - a* — Ep0)
«(D? — a® - E'qo)(D? — a® — pyo 2w
/|

+§ {(D? - & - Epio)(D* - a® - E'qo)(D* - a2)}

{2( 1+ Fo+ l) (D?* - a® — pro) + g(l + 1-*0)92}] D*w

f'l'f( 1+ Fo + :

2
! ) al
+ T+ Fo) ! [(!)2 - “2)2(92 — a* — Epy0)

{(D¥=a? - 1-;#;0)] D*W — [{ Ra*(D? — a* - E'qo0)
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(3-5) U2 _ 2 _ g 1
[cont.] - S5a"(D” —a” - Lmn)} S1+Fo+ }7,)
'(DZ ~a*- Pza)z + g(l + Fd)([)z —at— PZU)Dz
—_— 1
+M (51 ¥ Fo+ _) (DF= az)Dz}] W = 0.
£ Py
Here
R= gapd®
VK
is the thermal Rayleigh number,
_ gn"ﬁ"d“
2= VK

is the analogous solute Rayleigh number,
_ ueH 242
4 pgrn

is the Chandrasekhar number, and

2
M =( cl )
47 Nen

is a non-dimensional number according to the Hall currents.

Using the boundary conditions (3.8), it can be shown with the help of Egs. (3.2)-
(3.7) that all the even-order derivatives of W vanish at the boundaries, and hence
the proper solution of Eq. (3.9) characterizing the lowest mode is

(3.10) W = Wysinrz,
where W; is a constant. Substituting (3.10) in Eq. (3.9) and letting
R 8

a? = nz, Ry =—, Hr=—, Q=
T

\)[0

v

1
w

=

. a
i) = — and P =P,
T

we obtain the dispersion relation

fj————— . 1)\2%
"A—I] + t.‘h'zFO'] + F)

[ =4

1+ 2)1+z+iEpoy) (

(3.11) Rz = [ (1 + in2Fo,)

{0+ +ipo) + M(1+2)} + %(1 +2)(1+ 2+ iEpoy)

http://rcin.org.pl
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(3.11)

[cont.]

{2(1 + z + ipyoy) (—l +irlFo) + P) @

—(1 + nrzfal)}l
/ [(?1 +ir?Foy + %) {0+ +ipo) + M1 +2)}

+&(] + ir?Foy)(1 + z + ipyoy)

Q+z+ iffplal)]

+S
YA+ o+ ik'q0y)

4. The stationary convection

For stationary convection, ¢ = 0 and Eq. (3.11) reduces to

(1+I+Q1)2+M(1+x)

o fl+g P & P2

Gl R’_( 2! ) 1+z A M s
P 3 P

and the Maxwellian viscoelastic fluid behaves like an ordinary Newtonian fluid. In
order to investigate the effects of Hall current, stable solute gradient and medium
permeability, we examine the behaviour of dR;/dM, dR,/dS; and dR;/dP ana-
lytically.

Equation (4.1) yields

1+J’:+Q
dR, (1+1) (p ?)
4.2 it SO
(4:2) dM ex Q](l+z+ﬂ.!+(2_1)2
P €

which is negative. The Hall current, therefore, has a destabilizing effect on the
thermosolutal convection in porous medium. It is evident from Eq. (4.1) that

(4.3) —1 = 41,

implying threby that stable solute gradient has a stabilizing effect on the ther-
mosolutal convection in porous medium.
Equation (4.1) also yields

dRy _ (1+.-r)(]+ )(1+ + M)+ w ‘(1+:, M)

4.4 = -
Sl dP zP? (l+x+M+Q])2

Y

P €
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which is negative if i + @ > M. The condition 7 + z > M is met for all wave
numbers as the Hall current parameter M < 1. The medium permeability, there-
fore, has a destabilizing effect on thermosolutal convection in porous medium in
a Maxwellian viscoelastic fluid for the stationary convection.

5. The overstable case

Here we discuss the possibility as to whether instability may occur as oversta-
bility. Equating real and imaginary parts of Eq. (3.11) and eliminating IZ; between
them, we obtain

(5.1) Aﬁf_‘? + Asc‘? + /14("; + .438? + Az{'% + Ay + Ag = 0,

where we have written ¢; = 0, b =1+ z and

n8F3 F’ b
(5.2) Ag = LS d L 2EE'p1q + w2 Fb(Ep, — E'q)] ,
1 F h?); 2M 2?1' FQ]
A Ag= — | —— — b-1
(5 3) Ag (5 P ) [ P3 EPZ cP? ( )
42

el n QIr*F(b - 1) 2M Ep,
P g2P P3

"
|..

Q 2Q1 /., ) M Q\?
Pz”!’l -m)+ P2 (Lp - FM) (? + w)

(1 B :’1)] i+ [MQ M? Ep;
£ r

2 2FM J
+Q__.{ (J!'ﬂpl—;pz)+?r B +([£1—-M)}]b5

&

Q1. M Fpl]
—_— +
(Epy = p2) P

p M+b
b+ - ( )
Si(b-1) P

Q, M} 3
Epp—FE b7,
(Epy ff){ 2 P

The six values of ¢y, oy being real, are positive. The product of the roots
(= Ap/As) is positive.
Ag is negative if

(5.4) Epy > E'q,
and Ap is positive if

Epp, M

> —,
P 3

2
(5.5)  Epr>p, Ep > E'q, >%, Epy> M7®F and

| e
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The inequalities (5.4) and (5.5) imply that the sufficient conditions for non-
existence of overstability are

1 =%F
E E’ - > —
”m > q, € > P
and
. MP
Epy; > maximum of | ps, T) ,
ie
! I kl
E'x < Ex', AL —
VE
and
L > maximum of d ( met )2 L
K n' \4rNe/ ed?|’
k
E'x < Ex/, Mot =
ve
and
Ev N v ( well )2 ky
i - l—) —|-
X 9 n’ \4rNe) ed?

These are, therefore, the sufficient conditions for the non-existence of overstabil-
ity, the violation of which does not necessarily imply the occurrence of oversta-
bility.

6. Conclusions

A Maxwellian viscoelastic fluid layer heated and soluted from below in a
porous medium is considered to include the effect of the Hall currents. For
stationary convection, the Maxwellian viscelastic fluid behaves like an ordinary
Newtonian fluid and stable solute gradient is found to postpone the onset of
instability, whereas medium permeability and Hall currents speed up the onset
of instability. The sufficient conditions for the non-existence of overstability are
obtained, the violation of which does no necessarily imply the occurrence of
overstability. The problem and the results have relevance and importance for
geophysics.
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