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Invariance of sliding motions with respect to control matrix

S. KOTOWSKI (WARSZAWA)

Tug owecT of this paper is the proof of the theorem that the sliding solutions of systems of
differential equations with discontinuous functions, with a lincar control input, which describe
mechanical systems, are independent of parameters of the control input matrix.

1. Introduction

DISTURBANCES are an element which usually accompanies physical phenomena.
They can be produced either by changes of environment, in which the given
phenomenon is observed, or by changes of the object itself. Hence, determination
of characteristic features of the objects insensitive to disturbances is of great
importance, similarly to the problem of formulation of conditions making possible
a synthesis of systems which would be invariant with respect to disturbances. Also
the number of the developed systems insensitive to disturbances is still growing.

Systems with variable structure belong to the systems which are insensitive
to disturbances. For such systems, an invariance principle has been formulated
which gives the conditions of invariance of a variable structure system, which per-
forms sliding motions, resistant to possible disturbances [3]. The aforementioned
invariance principle specifies the conditions of insensibility to a variable structure
system to disturbances without separation of a special class of such systems. The
object of consideration in this article is the invariance of mechanical variable
structure systems. It appears that such systems are independent of the disturb-
ances of control input parameters. This peculiar feature of mechanical variable
structure systems is the object of analysis in this article.

Mechanical systems are described by differential equations of the second or-
der. These equations can have various forms, depending upon the form of de-
scription (Newton, Lagrange). Moreover, the form of the equations also depends
on the fact whether we have to do with holonomic, or non-holonomic systems.
But nevertheless, irrespective of the kind of the description, we obtain, as a result,
a system of differential equations of the second order. Transformation of such
equations into a system of differential equations of the first order can lead to a
situation, where the obtained matrices of coefficients of those equations contain
many zero elements. When the equations which describe the sliding motion of a
system with discontinuous functions are derived, these matrices must be appropri-
ately transformed. A considerable number of zero elements makes it possible to
put forward a hypothesis that elements of some matrices can be eliminated during
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the process of construction of the equations which describe the sliding motion.
Full elimination of matrices would mean independence of the sliding solutions of
the elements of that matrix. This article will be devoted to determination of the
conditions of such independence.

2. Systems with discontinuous functions and sliding solutions

Variable structure systems subject to sliding motion are most often described
by differential equations with a linear control input. They have the following form:

& = Az + Bu,

(2.1) s= Kz,
_ ut for s >0,
L w” for s < 0.

The system so described has a variable structure, determined by the control func-
tion u, varying over the surface s (in our case s is a hyperplane). The author will
consider the properties of a motion, which takes place on a switching surface,
which is called a sliding motion. When the sliding conditions [2, 4] are satisfied,
then a sliding motion described by the differential equation (2.2) takes place on
the discontinuity surface:

(2:2) & = Az — B(KB) 'K Az .

Let us note that the sliding solutions, that is the solutions of Eq. (2.2), depend
upon the matrix B. Invariance of those equations with respect to B means a
reduction of matrix B in the quotient B(A B)~!. This means, that there exist
conditions, whose satisfaction enables the elimination of matrix B in Eq.(2.2).
However, in a general case, such a reduction is impossible. Another important
and interesting problem is the determination of special cases, when all elements
of matrix B are reduced after all the operations are performed in the case of
matrices B(K B)~!, even if such a reduction was not possible @ priori. In such
a case the sliding motion would be independent of the elements of the matrix
B, in spite of the fact, that the structure of the equation (2.2) depends upon the
structure of matrix B. The same can also be said about the sliding solutions. In the
paper the author has verified the hypothesis that mechanical variable structure
systems perform sliding motions independently of the elements of the matrix B,
in spite of the fact that they depend upon its structure (even the dimensions and
positions of nonzero elements).
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A natural system is a system of n differential equations with one-dimensional

control of the following form [1]:

Ty, = &2,
Ty = 13,
(2.3) -in-l = Iy,
T, =ary + axy + azzz+...+ a,z, + bu,
s = kjzy+ kg + ...+ kpzy,,

ut for s> 0,
Tl u for s <0,

and hence the system in a matrix form can be written as follows:

i = Az + Bu,
(2.4) s = kixy+ k.. + bz,
ut for s >0,
{u' for s < 0.

Matrices A and B will have the following form:

01 0 ... 0
0o 1 ...0
A= | eeiiaeieieaimmim B =
0 0 0 1
ay ap as ay,

07 07y !
0 0

(25)  BWIBY ' = || [k ke k] | =
0
b Lb ]

o

=

(knb)_l =

!

0
1

by, 4

As a result, we will obtain an expression independent of matrix B, and hence

also the sliding solution will be independent of matrix B.

In this way the following lemma has been proved.

http://rcin.org.pl



194 S, KoTowsKI

LemMAa 1. For the system (2.3), or for an equivalent system (2.4), both the
sliding solution, as well as the equation which describes it, are independent of
elements of matrix B.

The hypothesis stating that the sliding solution for the mechanical systems is
independent of matrix B, will be verified on an example of the system with two
degrees of freedom with two intersecting discontinuity surfaces, which have the
following structure:

Z1 = 22,
Ty = anzy + apnzy + ancy + ayrs + bu,
T3 =14,

(2.6) T4 = a1y + agnry + agzrs + agarq + bau,

81 = kney + kizz + kiazs + kaza,
82 = kyxy + kpwy + knzy + kagzy,

ut s; > 0,
U=
w” s; < 0.

Matrices A and B from (2.6) will have the following form:

0 1 0 0O 0 0

A= | a2 an an| B = by 0 ‘ K= ki kiz kia kg .
U 0 0 1 0 0 4".'2] kzz 5?23 k24
g1 Q42 Qg3 44 0 bq

We will verify the result of the operation B(K B)~! being an element of de-
scription of the sliding motions for the matrices described above:

-1

0 0 0 0
BK ) = by 0 [kn k2 ki3 km] b 0
0 0 ka ka ka3 k| |0 O
0 b 0 by
0 0
_ 1 kg  —kaz
" kygkoy — kiakn | 0 0
—kn k2

As a result of the operations performed, we have obtained for the example
considered a matrix with elements independent of matrix 3. However, the struc-
ture of the matrix thus obtained is dependent upon the structure of matrix B. In
consequence, the sliding motion is dependent structurally on matrix B, but it is
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independent of the values of elements of matrix /. As a result, we have obtained
a partial invariance of sliding solutions with respect to matrix B.

In a general case, matrix B(K B)~! does not satisfy the conditions of the
hypothesis of independence of matrix B. This can be illustrated by the following
example:

Let B(KB)~' = C, where C is some unknown matrix. Multiplying the left-
hand side of that expression by ' B we obtain

B=CKB.

If our hypothesis is true (without any exceptions), then the following condition
should be satisfied:

CK =1 (/ — identity matrix, that is B = D).

On the contrary, for the matrix

by — baays
Y a
= b b
K = . . B=|"],
bg — bl“}l f)z

the relationship B = I B is satisfied, where matrix /i is not an identity matrix.

3. Mechanical systems with discontinuous functions

The preceding section included an example of a mechanical system with dis-
continuous functions, the sliding solutions of which were independent of matrix B.
Under these circumstances a question arises, what was the real cause of elimina-
tion of elements of matrix A". We may presume that the real cause of elimination
of those elements was a specific nature of mechanical systems, described by the
equations, their matrices having many zero elements and a specific structure (half
of elements of matrix B are zero); this was due to transformation of the second
order differential equations into a system of differential equations of the first
order.

For mechanical system the following theorem can be formulated.

THEOREM 1. Consider a mechanical system of the form
T = Az + Bu
with discontinuity surfaces

(3.1) s= Dz
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0 1 0
a1 ax a3
0 1 0

0 0 0
La2k,1 Q2k2 Q213
000.. 0]
by 00 ... 0
000...0
0 b40..01, D
0 00 ...0by

............

Sliding solution obtained for a mechanical variable structure system of the
form (3.1) is independent of elements of the control matrix B.

Proof.

/ (000 ... 0]\
d“ d.llz dl,?..l bz 0 0 . 0
dy dp dp 2k 0 0 0. 0

(3.2) (B | | acvmgmmseisias 0 by O . 0

dj\l d;f)_ rfkrz;_ ................

\ (0 00 ... byl
[ [Pl | Do | D

baby .. bk | D] baby...by | D] babg . .. by | D|

| D1kl

| Dy

[ Dby ... byx | D]
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Dj; is a matrix without the i-th line and j-th column,

-1 _ | (C1Y*HDy
(0B) _[b2b4...b3kJDj]’

where

- l_[bl i+1 =
|Dji = baby...bygj_1yba(j+1)- - b2l Dl = “E;z—j“(—l)ﬁ | D3l

where D3, is

diz  dyg ... dyggyy  diggay - dl,zk-‘

...............................................

pe = ding diqg ... digaiory diczgay --- diae
" ding ding ... dipiay dinpgry -+ diae

| dra dia oo diagay  diageay oo di2k |

-1 _ |/ j+il|D;i
(pB)y ' = [( 1) o lDl].

From the results presented above we can obtain the form of the expression
B(DB)~! by multiplying of the matrix (D B)~! in the form (3.2) by the matrix B.

0O 00..20

(33 BOB =0 b

................

................

|0 0 0 ... by
[ |Dil D3] (=1* Dy T
by | D bz | D| b2 | D|
_IDTEE IDiz i ("1)“2"9;2!
| D] ba 1) ba 1]
(D¥DL| (=13 D3 (=1)***| Dyl
bax | D| bax | D| bak | D|
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I 0 0 0 i
( 1)2% _lﬁ;;! (_1)k+l%l_|

- ) 0 0 0
ont] |
...... 000
-(_])k+lj%[:l (_l)Hz%T_f (_1)k+k|fé,i: |

Hence, matrix B(DB)~! does not contain the elements of matrix B, which con-
cludes the proof.

In this way we have proved the theorem that the sliding solutions of the
system (3.1) are independent of the elements of control input matrices B, being
dependent on its structure. The structure of matrix B exerts influence on the
sliding motion of a mechanical system. The theorem being proved in that form is
restricted to holonomic systems. The questions whether non-holonomic systems
have the same property deserves a separate consideration.

Invariance of the sliding solutions with respect to internal disturbances was
analysed simultaneously with the first investigations of the sliding motions [3].
This property was one of the main causes of taking applications of sliding in the
construction of the existing technical objects. The present paper extended the
scope of investigations of the problems of parametric invariance, it has shown
that the mechanical systems, as well as the systems of a different physical nature,
wich can be described by the same mathematical model, possess sliding solutions,
which are invariant with respect to the parameters of discontinuous control input
matrix.
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