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Stiffness loss in laminates with intralaminar cracks
Part II. Periodic distribution of cracks and homogenization

T. LEWINSKI and J.J. TELEGA (WARSZAWA)

I[N THE SECOND PART of the paper, under the assumption that periodically distributed cracks in the
internal layer can open or close according to Signorini's conditions, the homogenization procedure
is carried out. With the help of two types of scaling, three effective models of the laminate with
smeared-out cracks are proposed: a model of moderately thick laminates with cracks of high density,
a model for thin laminates with cracks of arbitrary density, and for thin laminates with densely
distributed cracks. The models derived show nonlinear and hyperelastic features, the relevant
hyperelastic potentials being convex or strictly convex. The homogenized constitutive relations
assume Kachanov'’s form in which the damage moduli tensor is uniquely determined.

1. Introduction

By APPLYING the new two-dimensional laminate model developed in Part 1 [8],
two methods of homogenization will be applied in the second part of the paper.
The first of them is based on the in-plane scaling of the longitudinal dimensions
of periodicity cells, whilst the second method uses simultaneous scaling of all
dimensions of cells.

The formulae interrelating the loss of effective characteristics with compo-
nents of macrodeformations will be rigorously derived. Tt will be proved that the
effective laminate has nonlinear hyperelastic properties, its hyperelastic potential
being convex or strictly convex. The homogenization approach enables us to de-
termine all components of the tensor of effective stiffnesses within the framework
of one scheme. The reason for that is that the homogenization scheme satisfies
Hill’s lemma of equivalence of mutual works of stresses stored in the effective
and periodic (here: periodically cracked) composites, being sufficiently flexible to
produce all effective stiffnesses, see SUQUET [1.48]; cf. also TELEGA [1.49], where
a generalization of this lemma to the case of discontinuous fields has been put
forward. HiLL's [4] lemma can be symbolically written as

(-‘.‘T’E”) —_ (ﬂ’)(E”),

where (+) means averaging (in the periodic case — over the basic cell of periodicity)
and o', ¢” are admissible stress and strain fields, respectively.

The papers which are based neither on the homogenization method nor on
Hill’s lemma, usually make use of a more restricted lemma of equivalency of
energy (o’ and ¢” are then interrelated by a constitutive relation), capable of
evaluating only diagonal components of the stiffness matrices, viz. the effective
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Young and Kirchhoff moduli, ¢f. Hasuin [1.17], Asoupi [I.1]. Then the Poisson
ratios have to be assessed independently, cf. HasHin [1.18].

Another feature of the homogenization method is that it rigorously distin-
guishes between micro- and macrofields, defining them precisely. Correctness of
the homogenization results follows from the proof of convergence of the solu-
tion of the e-problem to the solution to the homogenized problem as ¢ — 0.
In the problem studied here the following two reasons: presence of cracks and
non-conventional space scaling make the convergence proof difficult. This proof
is included in the paper by TELEGA and LEwiNski [14].

The micromechanics model put forward in the present paper can include nei-
ther the effects due to delamination nor those due to fibre breakage. An extended
micromechanics model has been recently proposed by YANG and BOEHLER [I.58].
Their model is capable of describing the onset of interlamination and its interac-
tion with transverse cracks.

Supported by the own experimental results, the papers of ALLEN ar al. [1],
GROVES et al. [1.11], HARRIS et al. [3], LEE et al. [1.25], MoTtoct and Fukupa
[10], Moroat et al. [11] show that also a phenomenological continuum damage
mechanics approach can be helpful in the description of stiffness degradation of
composite laminates.

Throughout the second part of the paper Roman numeral T refers always to
the first part of our contribution [8].

2. Regular crack system

In this section we assume that the internal layer incurs transverse cracks which
form a fixed layout. No attempt will be made to interrelate the crack pattern
geometry neither with the directions of principal stresses nor with the directions
of anisotropy of the plies. For fiber-reinforced polymeric composites this would
also be unrealistic since the onset of matrix cracking is caused mainly by the
mismatch between the thermal expansion of the fiber and the resin, cf. YALvAg
et al. [1.57].

Our aim is to find a relation between the layout of cracks and the stiffness
loss of the laminate. To arrive at transparent and useful formulae we confine
our attention to the case when the layout of cracks is periodic. Otherwise we
would have to resort to stochastic methods or bounding techniques that require
different mathematical tools and result in less viable final formulae, cf. TELEGA
and LEwiNski [1.53].

Consider the laminate of Sec.1.2 weakened by a family F of fissures F; de-
scribed in Sec.1.3. One can divide the domain 2 (except for a boundary zone)
into homothetic rectangular cells Z;, each of which is weakened by a crack 7.
Z; may contain a finite number of cracks. We observe only that I should not
intersect the boundary of the rectangle Z; (cf. Fig.1) as well as the boundary
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I' of the domain §2. This assumption can be weakened so as to admit cracks
intersecting the boundaries, cf. CHACHA and SANCHEZ-PALENCIA [1.8]. For the
effective models which will be derived in the succeeding sections, the properties
of the homogenized elastic potentials will also be discussed when cracks intersect
the boundaries.
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Fia. 1. Z-periodic layout of cracks. Geometry of the basic cell Y £ = Y\ F.

For future convenience we define a cell Z with a crack F such that all cells
Z; with cracks F; are homothetic to it; Z = (0, Z;) x (0, Z2).

Mathematical description of Sec.1.3 applies here. A single crack F* should
be replaced by F which is a sum of a finite number of cracks. Both strong and
variational formulations of Sec.1.3 remain formally unchanged.

If the number of cracks is very large, the solution to the relevant problem
becomes unattainable even by employing numerical methods. On the other hand,
a natural question arises about the overall properties of such laminates. It is the
homogenization method that provides an answer to this question. As a method
of averaging, this method provides a unique and perfect algorithm. As a method
belonging to the family of small parameter methods, it depends upon the manner
in which a small parameter ¢ is introduced. Two versions of the homogenization
method corresponding to two methods of introducing ¢ into the original problem
will be discussed in the sequel.

3. Moderately thick laminate weakened by transverse cracks of high density
Model (h,[y)

This section is aimed at deriving formulae for the static analysis and assessing
effective stiffnesses of a moderately thick three-layer laminate densely cracked
in the internal layer. The derivation will be based upon the conventional hom-
ogenization approach applied to the problem posed in the previous section. The
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model thus derived will be referred to as a (%, /y) one, which means that it applies
to the case when the distances between cracks are much smaller than h, and that
the thickness 2 can be considered as moderately thick as compared with the
longitudinal dimensions of 2.

3.1, Family of s-problems

As a method that belongs to the family of small parameter methods, the ho-
mogenization approach requires an introduction of a small parameter. The phys-
ical nature of the problem should provide us with the hints of how to introduce
this parameter. In our problem, two small parameters are present: max(Z;, Z;)
and h (or ¢ and d). In this section we shall assume that only the former dimen-
sion is small and we replace Z, by </, and F by ¢ F. The rectangles of periodicity
are homothetic to the basic cell Y = (0,/;) x (0,72). The domain 2\ F is now
replaced by 2 = 2\ F*, where F* is the sum of all cracks ¢ F;. The set of the
kinematically admissible fields assumes the form

(3.1) K. := K(2°) = Hr,(2)® x K(2°) x Hr,(R),

where

(3.2) K(2°) = {u e H'(2°)*|u=0 on I, and [u,]>0 on F‘}.
For a fixed ¢ > 0 the equilibrium problem assumes the form

Find (v*,u®,w®) € K. such that

3. P
(3.3) (Pa:) age(ve,u, ws v u' —ut, w) > f(V,u' —us w') VYV U, w') e K,.

The bilinear form agpe(+, +) is defined by Eq. (1.2.27), the integration over §2 being
replaced here by integration over §2°,

The scaling: Z, — €la, b — h (¢ — ¢, d — d) used here will be referred to as
an in-plane scaling; the sign (—) means replacement.

REMARK 3. 1. The problem (P}.) is posed on a highly irregular domain ¢,
for which Korn’s inequality does not apply in its standard form. However, in the
paper by TELEGA and LewiNski [1.52], Korn’s inequality has been derived in a
form directly applicable to domains like 2¢ presented in Fig. 1. Essential for such
a domain is the assumption: F' C Y, where F' is closed as a set. In this case F
does not intersect dY . Consequently, the bilinear form ag- is coercive on

V() = Hp, (2)* x Hp,(2°) x Hp, (),

and on K,; the linear form f is continuous in this space. Applying now Th. 2.1
of KINDERLEHRER and STAMPACCHIA [1.21] we conclude that there exists a unique
solution (v*,u®, w) to Pl..
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The case when F' intersects the boundary Y of Y is obviously more compli-
cated, cf. Fig.2 and the paper by CHACHA and SANCHEZ-PALENCIA [1.8]. We still
assume that Y, = Y\ F7 (y > 0) is a connected set with a Lipschitzian boundary.
Denoting by £y the sum of all holes ¢/ (¢ > 0) we deduce that 27 = 2\ F;
is a domain of type [ in the sense of OLEINIK et al. [12]. Now the boundary of
the domain {2 may be intersected by cracks from F¢. By combining the results
concerning extension theorems, presented in Chapter I of the book by OLEINIK
et al. [12], with the approach used by TELEGA and LewiNski [1.52], we arrive at
Korn’s inequality for V (£2¢). Consequently, the problem P}, still admits a unique
solution for this particularly important cracking mode.
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F1G. 2. Fissure F' = Fy U I intersecting dY.

3.2. Asymptotic solution

The asymptotic solution to the problem P, can be found by the method similar
to that proposed by SANCHEZ-PALENCIA [1.47, Ch. 6, Sec. 6 & 7) and extended
in LEwiNskl and TeELEGA [I.29,1.30], TELEGA and LewiNski [1.52]. Therefore we
shall expound here and in the succeeding sections only the ideas and results. The
convergence theorem is provided in the paper by TELEGA and LewiNski [14].

Let us define the space

Hye(Y) = {-z.: € H'(Y) | v assumes equal values on opposite sides of Y}.
For Y F = Y\ F the space H}. (Y F) is defined similarly. Let N, T be the unit

vectors: outward normal to /* and tangent to F, respectively, cf. Fig.1. Let the
brackets [+] denote jump on F. Let us define the sets of kinematical fields:

{we H}u(YF)? | [un]>0 on F},
LAY P x Kyy o Hi(Y).

Ky g

(3.4)
Ky r



168 T. LEwiNskl anp J1.J. TELEGA

The solution to the problem (P},.) is predicted in the following form

v5 = va(2) + €va(2,y) + X0 (z,y) + ..
(3.5) u W0 (z) + cul (z,y) + 2l (z, ) + ...,
w® = wl(z) + ew'(z,y) + 2w(z,y) + ...,
where y = z/e and v3, ul, w® € Hr, (), vi(z,.), w'(z,.) € HlW(Y), vE(z,.),
w*(z,.), k > 2 are Y-periodic and sufficiently regular; u'(z,.) € Kyp, vE(, 1),
w(.,y), uk(.,y) are defined on 2 and are sufficiently regular; y € Y F.

The trial fields involved in the variational inequality (3.3) are expanded simi-
larly

oM™ DOm

™

vl = 0) + ev'l(z,y) + 20z, y) + ...,
(3.6) u, = u(z) + Mz, y) + u(z, ) + ...,
w' = wOz) + cwl(z,y) + 2wz, y) + ... .

where
y=z/e and 9, W0, w¢ Hp ()

vy (z,.), w'(z,.) € Hpee(Y), u'(z,.) € KyF.
The stress resultants associated with the kinematic fields (3.5) assume the form

67 NP = N§P +0(),  R. = Ro+0(),

L2 = L3P+ 0(), Q2 =Qf +O0(),
where

Né\p - 4)\;;&,8 0 + A\;m,ﬁ,}a 1‘\:; El
(338) Ly* = Aji®Peas + AV Pl + AL

Ry = A;’fggﬁ + Aﬂg’ygﬁ + Au,wo;
dw!

3.9 Q8 = HP | &} :
( ) 0 ﬁ ()Jﬁ y=zfe

The deformations are defined by
B o b 1 0 — . h 1
€ap = €ap + €ap(V ly=zrer  Yap = Tap + Vs (W y=ase

where

' ow’
(3.10) aﬁ . Eaﬁ(v )s 72;} = ’70,8(“0)3 :3 = uoi c];t:g :
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1 t'.'}i.’l C)UL 1 Oul Bul
v oyl o / v o1y — a B
: o) e ; =s\l3_*t75 ]
G easlv) =3 (aya * 9. 7060 =2\ 34y O
Quantities (3.10) play the role of homogenized (or averaged by the procedure

of smearing-out the cracks) deformation measures. The following simple averages
are the stress resultants of the model:

(12) NF =GP, L =(L3F), BRi=(Ro), QF=(Q})

where

(3.13) (*)

,-}‘_—,l [Oran,  vi=th

To find the effective model of the laminate one should substitute expansions
(3.5) and (3.6) into variational inequality (3.3) and let ¢ tend to zero. Follow-
ing the lines of the derivation elaborated upon by SANCHEZ-PALENCIA [1.47] and
Lewinskr and TeLEGA [1.29, 1.30], one eventually arrives at the homogenized prob-
lem and at the local problems the solutions of which intervene in the homogenized
stress-resultants (3.12) and the effective elastic potential, see Subsection 3.3.

The homogenized problem assumes the form:

Find (v*,u’,w% € V such that

3.14 P!
( ) (F) an(v?, w0, w0 v/ o', w') = f(v',u',uw'), VY(V,u,w')evV,

where

(3.15) ﬂh(Vﬂa llO. wo; v, w") = ][Nfﬁ(vo. uO._ mo)st,ﬁ (v")
n
+Liﬁ(¥'01 “0, 'fi’o)‘?a;j(u') + H’.;,(VO‘ u’, wa)u-" + Q}f(uo, -wo)un(u’, w')| dzx.

The homogenized stress resultants can be expressed by the formulae

N = AdwaBeh o pduap [75: % hgﬁ(u‘))] + ANt
A 4N afi_h Ape @ 1 AA R
(3.16) Ly = AMPehs + AR [yhs + (vLo(u"))] + Adsuwh,

R = ASlehs + 430 [vhs + (12,0)] + Auwh,  Qf = HoPx},

since
Jw!
fy - l = ———— —3
(3.17) (¢ 0;5(" )) =0, <By;j> 0.

We recall that v}, and w! are continuous on F. The notation w* = w? indicates
that this field plays the role of a deformation field.
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The fields v!, u!, w! depend upon the homogenized deformations (3.10). This
interrelation is provided for by the local or basic cell problem:

Find (v!,u!, w!) € Kyp such that
(3.18) (Phe) [(NGels) =0, (LgPs(w' —ul)) 2 0,
<Q3 g%> =0, V(V’,U", w’) € Kv,fp.
Here NJ°, 13", Qg depend on v!, u!, w‘ according to the relations (3.8) and
(3.9), the z-dependent fields ¢ ;, 4/ has wh being viewed as given and z being

treated as a parameter.
The problem PL_ is equivalent to the following minimization problem:

Find

g 1 .
a5 inf ] j}l(x € +gy(v) ¥ +73‘(u) w )riy | (v,u)e H;cr(}/)?-xpr
(P]oc) Y\F

ot L [ioae (s 22 (g - 20 1
+mf{2!Y|y/H () (na 950 K 905 dy | w € Hpe(Y) ¢,

where : J1 is defined by (1.3.13). Consequently (v}, u', w') € Ky  solves the prob-
lem (P,oc) and vice versa. On account of the properties of j; and H, the local fields
v! and u' are determined uniquely up to constant vectors while w! is unique up
to a constant,

3.3. Hyperelastic potential
The elastic potential of the homogenized laminate is given by

l Pe ' o
(3.19) U= §<N0" [.-:i.‘,g + sf:,g(v‘)] + Lg” [m +75(u )]

9.1
+Row" + Q§ ( Kt — i ) S
Do

where

(320) Ul (xveh!"'h! wh)

= inf |—}1,~’ /jl (z,€" + €¥ (), 7" + ¥ (u), w") dy | (v.u) € HL (V) x Ky
Y\F

Y\F
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(3.21) Uy(z, k") = %H“ﬁ(;r:)rcgﬁg,
since the simple relation

ﬂdy=jw'r.cc,d.s=0 a=1, 2)
aYy

reduces the second infimum in the problem (PL)) to Uz(z,k").
Below it will be proved that

o O o W g O oo OUh
(322) Nh =7 asgﬁs h a’}(gﬁ, h Ow"‘ 3 Qh 852 L

It is worth noting that the expression (3.19) can be reduced to

(3.23) 2y = NPPehy + LYPyhs + Ruw" + Q5ixl .

To prove (3.23) let us insert vV = v! and w’ = w! into (3.18);3 and then
u’ = 2u' and once more u’ = 0 into (3.18),. On combining the identities obtained
with (3.19), one easily finds (3.23).

Let us pass now to the study of the properties of the effective elastic potential
Uh - Ul + Uz.

(i) Up(z,.,.,.,.)is a strictly convex function provided that F" does not separate
Y into two (say) disjoint subdomains.
Firstly we demonstrate that Uj(z,.,.,.,.) is always convex. Due to (1.3.14),

the partial elastic potential Up(x,.) is always strictly convex. Therefore we must
investigate the function U;. Let E@) = (&) ~@) w(@)) e B2 x E* xR, a =1, 2
and assume that (v(®),u(®)) ¢ J’!I},L.r(}")2 x Ky g solves the following minimization
problem:

1
Uy(z, el “1(0), w{“)) = inf{ m

[t (26 + @), + (), w®) dy | (v,0) € 13 (¥)? m}.
Y\F

To prove that Uy(z,.,.,.) is a convex function we calculate
(3.24) U, [.r %(E“) + Em)]

= U, [x, %(e(n +e@), %(’1“’ +~@), %(wm i w(zp)]
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(3.24) 1 ] {1‘ " s L
< — . Y Yy (1)
[cont.] = |YIHF /1 (2‘,& + &8 (VLAY ENY (v ) b )

N % i (2,6@ + € (V) A® + yu(u®), wm)} it

G %Ul(x,em,'j“) w D) + 1{;1(3 e @ ()

[

= 5Ui(z, ED) + U (z,ED).

If F does not intersect Y, like for instance in Fig. 1, then U;(z, ., .,.) is strictly
convex even in the situations such as in Fig. 2.

(i) Un(z,.,.,.,.) is of class C'.

To corroborate this statement it is sufficient to consider the partial effective
potential U; once again. As we know, U is convex and finite, thus subdifferen-
tiable, cf. ROCKAFELLAR [1.46, Corollary 10.1.1 and Th. 23.4]. The straightforward
proof, however, is more instructive also for our further developments. Let the
microscopic generalized stresses Ny, Lg and Ry be specified by Eq.(3.8) for a
prescribed (e", 4%, w*) € E* x E2 x R. For each (€,5,w) € E* x E? x R we have

3.25 Uy(z,E, N, @) — Uy(z,e", ~", wh
( 3 |
=57 [ hEEreOA+ YW
Y\F

1 . 3 .
_|Y| / 71 (nr,E:'J +e¥(vh), " +'1—’(u1) w )ify
AR

257 [ {N570) [an + 4,600 - Ehs + L5

+L5P W) [Fap + 125@W)) - (s +22500" @))] + Ro(w) (@ - w") }dy

> NpB (sw hog) + 137 (70‘, -;-nﬁ) + Ry, (Tv > w"‘).

Here (3.12) and (3.18) as well as the subdifferentiability of the function j,(z,.,.,.)
have been taken into account. The subgradient (N;, Ly, R;) € E? x E2 x R is
unique, hence Uy(z,.,.,.) and consequently Uj(z, ., .,.,.) are of class C''. Conse-
quently, relations (3.22) follow.

(iii) There exists a constant C'y > 0 such that

(3.26) Un(z, €™ AR kb wh) < Cr(le? + NP + k2 + |wh]?),

for a.e. z € 2 and all (e, ", kh, wh) € E? x E? x R? x R.
The proof is straightforward. O
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We notice that the property (3.26) holds irrespective of the form of F, the
case presented in Fig.3 being obviously included.

F /

sl

s

F16. 3. Fissure dividing Y into two disjoint subdomains ¥y and 2.
(iv) There exists a constant Cp > 0 such that
(3:27) Un(a,€" A" kE wh) 2 Co(le" P + NP2 + M2 + [t 9),

for a.e. z € 2 and all (*,~" vk, w*) € E? x E? x R* x R.

Y Fc.r';;

/ oS
[ N

\ \

\\ 3 j

T /
K"“-—-._____.-/

Fia. 4.

The coercivity condition (3.27) is valid only for /' C Y (Fig.1, Fig.4) and for
situations like in Fig.2. We assume that: a) Y\ /}, has a Lipschitzian boundary,
FCF,b)|F,|—0asn—0.

http://rcin.org.pl
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Now we have
(3.28)  Un(z,e,~* k* wh)
> inf{Il_| ] J1 (;c,g;h + E:y(v),nfh + ~Y(u), w"‘) dy

Y\F
| (v,u) € H) (Y)* x u];c,(yp)z} + C|rh?
; L : [ ok v h v hy .
> inf 7 (r,e +e¥(v),y" +7¥(u),w )dy

Y|
Y\F,

| (v,u) € Hpe(Y)? x H, ,(}’)2} + C|x"?

C .
>k [ (I + @R + I+ @) dy + Cat P + [P
Y\F,
Here (V,u) € H . (Y)* x H)..(Y)* is a minimizer.
We have
(2 [+ @y 2 MBIV E+ 200 [ 2@
Y\F, of  y\F,
> [Y\FllN* 2 + ZZTQ;@/?D;}(“)”{J - 227.,af7ag(u)rw
Y ST o
= IRV =298 [ 2@y
o3 J:ﬂ
2 IY\FTM”'THZ 2270;3-/‘)’33(“)(!:3‘, 0< <"y, T — fixed.
DJG Pt}
Let us examine the last term. One has
(30 - ok [22:@dy 2 BN @y ~ 0 as 10

Fy
In the last inequality i € H . (Y)* and |F,| — 0 as 5 — 0. Thus we arrive at

the condition (3.27).
When F intersects Y (cf. Fig. 3), the following estimate can only be obtained

(331)  Un(z,e* v" k" 0h) > C (|2 + k"2 + [wh|2)
57 [ ey eR

Yiuls
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where C is a positive constant and u' enters the solution of the local problem.
The last term in the inequality (3.31) can be estimated from below by zero. Then

the effective potential Uy, is not coercive on the space ]E2 X iEz x R2xR. However,
the potential U/;, may be coercive in a restricted sense, namely on IE“ x SxR*xR,

where S is a subset of E2. § depends on the solution of the local problem and
particularly on F.

ReMARK 3.2. Under the condition (3.27), the homogenized problem (P})
admits a unique solution provided that the length of I, is positive.

3.4. Strong formulation of the local problem

Prior to finding a strong form of (P ) we rearrange its variational formulation.
As we already know, w' does not depend on y, viz. w' = w'(z). Let us decompose
the stress resultants (3.8) and (3.9) as follows:

NS"G = n% + ngﬁ Lgﬁ = [*F ¢ Igﬁ,

(3.32)
Ry = r + 1o, Qo =4q4" +qp,
where
nM = APl (v') + APyl g(u'),
(3.33)
l,\lu = 1\;30:,3 y (\" ) o ‘\;_mr.G,T (l.ll),
(3.34) g =0
and
na.u = A\;mﬁ h + 1\;:0;} h + flﬁ{:,urh
(3.35) I = Aﬁ;‘“ﬁsgﬁ + AdHBah, 4 AMSWH,
¢* = HMg}.

The local (P},.) problem reads:
Find v!' € Hl;_,r(}")z and u' € Ky such that

L 0! vl
3.36 B2\ = ap Vv e .oy
(3:36) <n 0ya> < "0 0Jﬁ> par(Y)

Au!, — ul) agd(u .
3. o - - W, 50t ~ 1a) 3 v Kyp.
( 37) < C)Jd > > < l’)yﬁ . u e hyp

Localization of 7L 3 leads to the strong formulation: Find v! and u! such that:
loc g
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(i) the following local equilibrium equations hold in Y F:

(3.38) AP 821",{ 4+ AoPm _f)zull\ -
Y ypdy, " Qypdy,

(3.39) Aﬂﬂl\#_a_zv_gl\__ + AP 3211'.‘1\ _
e Dypdy, o Qypdy,

(i) u! and v' assume equal values at the opposite sides of Y F.

(iii) NgPng, Lg"ns assume opposite values at the opposite sides of Y; here
n = (n,) represents a unit vector, outward normal to gV,

G40) @) L% =f:${r =1% <0, 1Y%= Lyl NuNg,
Ly[uk] =0,  [uk]>o0.
G41) ) Ly=13=0, 1% =IZN.Ts.
(vi) vl is continuous on Y.
(342)  (vii)  NyiNaNg= NyaNoNg,  NgiN.Ts= N3N Ts.

3.5, Insensitivity to the I, /h ratios

One can show that the solution to the problem (P! ) is not sensitive to ratios
0o = lo/2h (crack spacing/laminate thickness), hence is not sensitive to the trans-
verse shape of the periodicity cell. This property follows from the fact that all
equations and inequalities of (P..) involve derivatives of the same order, hence
this system is free from length scales. Consequently, the effective potential U,
and formulae for the effective stiffnesses do not depend upon p,. They apply in-
deed to the case when g, are very small, which is a consequence of the in-plane
scaling Z, — ¢l,, h — h (an arrow means replacement).

4. Thin laminate with transverse cracks of high density
Model (hg, lp)

On the basis of the results of the previous section, a model will be derived
suitable for describing densely distributed transverse cracks in the internal layer
of very thin laminates. Notation (hg, l[p) means that 2/ < diam 2 and [, < 2h.

In the conventional engineering analysis of statics of thin laminates, the longi-
tudinal displacements w, are usually treated as uniform through the thickness and
the influence of the stress o33 is neglected. Such an approximation, justifiable for
thin laminates, corresponds to the following assumptions

(4.1) =0, Ry=0.
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Note that only at the macrolevel the graph w, (=) is assumed to be uniform; it is
not stipulated that v, = 0.

Let us substitute v’ = 0 and »’ = 0 into Eq.(3.14). Then we arrive at the
variational equation

4.2) / NoPe,a(vV)dz = / Noulds, VYV € Hp (2P
i

The field w" involved in the constitutive relation

(4.3) Np* = AroPegy + AP (yha(uh)) + AL,

can be eliminated by means of the equation

(4.4) Ri=(Ro) =0,  ABeh;+ A (4¥ (")) + A" =0,

to obtain the homogenized constitutive relations in the form of KacHanov [6], cf.
also SAYERS and KAcHANOV [13], KAcHANOV [7] and Hortt and SAHASAKMONTRI [5].

(45) Nh\ﬂ — 4\.#0,-’3 hﬁ - 1;;:.1,6 f:fj
“Crack deformation measures” ¢f; are defined by
(4.6) Eap = —(785(u"))
or, equivalently

2 1 .
(4.7) siﬁ == m / ([[ul,]]Nﬁ + ['u}j]];\'a) ds .

o
We can also write
- 1 1

(4.8) efy = v f [[[-rz}\:]]Na.Ng + E[[-::H](TD Ng + '!‘,-3.-\«'0()] ds,

F
since

ul = u}VN‘, + u'}-']"a y u}v = u}Nl + u%Nz and ur}- = -u}Tl + 'H.%Tz.

The stiffnesses involved in Eq. (4.5) are given by

(4.9) ATﬁ,\u = Azﬁ,\;; AP g fiw)_ A;ﬁ.\n = Ai:f,\u 10{3A \u( 4!_:})_1'

v m.u s

The stiffnesses A'fﬁ M characterize effective properties of the uncracked laminate,

the moduli A;"B'\“ represent damage moduli of the cracked laminate.

http://rcin.org.pl
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To be consistent, we should appropriately reformulate the local problem (Pl,).
We put Ry = 0, where Ry is given by Eq.(3.8)3, and 7/, = 0 according to (4.1);.
Hence

(4.10) A28 [ehg + 4] + AZ0Y,0") + Auut = 0.

Therefore, according to (3.8), one finds

(4.11) Ng* = 4y ety + ety + 43P0
LS“ = A‘\”"ﬁ [ Eap T+ E0g(v )] + A\’mﬁ y (u )s

where

(4.12) AR o pOPXR. pSP = puBMi_ ASE AR (A )7,

Thus the local problem assumes the form of the problem (PL..) in which ™ and
™ are interpreted in the following way:

M = 11\‘“0’6 v (vl) + A\”“ﬁj (ul),

(4.13)
P

AA;mﬁ y (V ) + A\myﬂ?aﬁ(“ i
while nS“ and !3“ assume the form
(414) A\Hﬂ‘ﬁ zﬁ l(}}l = i\;luﬁugd

The new local problem thus obtained will be referred to as (P

loc)- It is equivalent
to the following minimization problem:

po
PROBLEM F .

For e ¢ E, find

vh(xa Eh) = lﬂf{ 2|Y [Eh 34 ey(‘.)';‘-y(u)] A, [E-’l + Ey(v)‘a‘?f(u)] T.(fy

(4.15) A e

| (v,u) € (V) 1\"1’;-'}:
provided that the matrix

ki & :
(4.16) A = [ ‘ 2] = o]
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is positive. Then the problem (!3]9 ) is a convex one, since A3 = AJ. To assess the
solvability of (I oc)» We assume that 2, is positive definite, i.e.

3 C >0 such that fora.e. z € 2 and for all e, e; € EE
[er, e2) 1 (x)[er, e2]” > C(ler|* + |e2?).

(4.17)

For

(v,u) € Moo (Y)? x Kyp

= {(vu) € Hl(V)2 x Ky | /v(y) dy = 0; f ay)dy =0,
Y

Y\F

the minimization problem in (4.15) is coercive, provided that I is regular and
does not separate Y into two disjoint subdomains like in Fig. 3. As previously, the
unique solution is denoted by (v!,u'). It is determined up to a constant vector
as an element of H ). (Y)* x Kyp.

The homogenized constitutive relationship remains hyperelastic:

(4.18) Np® =

where the elastic effective potential has the form
(4.19) Vi = (NGP[eh s + b,V + L5425 (u)) /2.

Now let us examine the effective potential Vj,. Its properties can be verified
similarly as those of Uy, cf. Subsec.3.3 of the present paper. Therefore we will
only summarize the main properties, assuming that condition (4.17) is satisfied:

(i) Vi(z,.) is a strictly convex function of class C! in the space E2.

(if) There exist constants C'; > C > 0 such that for a.e. = € {2

(4.20) Cole]® < Vi(z,e) < Cile*? V eeE2.

The right-hand side inequality in (4.20) is obvious since each element of the
matrix 2, belongs to L®(§2). The left-hand one also readily follows

(@21 V(9> 5o /]e+a"’(v )2dy + . |)\fP N (u")2dy

(
+ gV 2 - 2
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It is worth noting that on account of the assumption 4" = 0, these two prop-
erties of the potential V,, are satisfied also when F' divides Y into two disjoint
subdomains. Macroscopic constitutive reiation (4.18) is a by-product of (i) while
(4.19) is implied by (4.15) and (4.11). Variational equation (4.2) along with (4.15)
constitutes a new homogenized problem (). Due to the property (ii), the last
problem admits a unique solution.

Let us substitute v/, = v! into Eq.(3.36), v, = 2u! and then v/, = 0 into
inequality (3.37). On combining these relations with (4.19) one can reduce the
expression for V), to the form

(4.22) Vi = NpP(eh)ehs/2,

consistent with (3.23) and the simplifications assumed. Let us observe that the
assumptions (4.1) are, in general, contradictory. They imply equality w® = 0
which cannot be satisfied simultaneously with equation 12, = 0. Such internal
contradictions are inevitable in constructing engineering models of thin plates.

5. Thin laminate weakened by transverse cracks of arbitrary density
Model (hg, 1)

In this section we derive formulae for assessing stiffness loss of a thin three-
layer laminate with transverse cracks in the internal layer. No limitations concern-
ing crack spacing will be imposed. The abbreviation (%, /) means that 2 < diam 2
and [, are arbitrary.

The homogenization process will be based upon a scaling according to which
all characteristic length scales of the model of the laminate are viewed as small
parameters. These length scales represent both the transverse and longitudi-
nal dimensions of the periodicity cell of the original laminate considered as a
three-dimensional structure.

5.1. Family of e-problems
The following quantities
(5.1) e, d, h, b, Zy, 73

are internal length scales of the model of Sec.2. We shall assume that all these
parameters depend upon a small parameter . In this context the following re-
placement is natural

(5.2) c—¢ce, d—ed, h—ch, b—oeb Z,—c¢ely, F—¢F.
If ¢ tends to zero, the thickness of the laminate also diminishes to zero. To
compensate for this degeneracy we scale the loading

3

(5.3) N LeWN?, TPoel?, TQ-0.
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Instead of scaling the loading we could scale the elastic moduli (cf. ClaARLET [2],
CaiLLerie [1.7]), which seems to be even more esoteric.

The length scales scaling (5.2) implies the following scaling of the stiffnesses
involved in the constitutive relationships (1.2.24) and (1.2.25)

(r_‘lgﬂ,\p‘ /1:‘:5,\;1! ,“lgd'\“) —% (Erli:ﬁ.\;l? S-"lt:f'\”y S-‘.ILI:.I’J,\JJ) -

1 1 .- 1
(435’ Aaﬁ) (— ‘lfﬁ “135) ' ‘Uaﬁ g jl‘!“ﬁv Aw = :15"1&' .

[

(5.4)

Scaling (5.2) concerns all dimensions of the three-dimensional periodicity cell.
That is why this scaling will be referred to as the space scaling, although the
problem itself is posed as a two-dimensional one.

Let us re-define the bilinear form of the problem consistently with the scaling
(5.4) of the stiffnesses:

(5.5) boe (vo,u®, w;v v, w')

= f [N28 (v 0 0 (V) + L2 (v, uF ) 7 ()
nt
+Q2 (v, w%) ko (v, w') + R, (V°, 0", w%) w'] dz.

The constitutive relations become

1
N = eA}Peap(ve) + AL P 10p(u%) + - Agkw®,

1
(5.6) 2 = g AN o(vE )+ e AL Pyap(u®) + - A wt,

R = < ASSeap(v) + 2 AL rap(u) + 5 Auuf,

(5.7) g2 = gua-" kp(uf, w).

The equilibrium problem reads:

Find (v¢,u®,w®) € K(£2¢) such that
(5.8)  (PPue | bge(ve,us, 0w v, 0 —uf,w') > ¢5(V 0 — ut, w')
vV (v, v, w') € K(029),

where

(5.9) g (v, v, w') = / (EF"U:, +eL%u, — @w’) ds.

I‘ﬂ

http://rcin.org.pl
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The solution to problem (P3.) has been denoted similarly to the solution of the
problem (P}.). This ambiguity should not lead to any misunderstanding. For a
fixed ¢ > 0 the problem (P3.) admits a unique solution (v*,u®,w®) € K(£2°).
Due to the presence of singular terms this result is not straightforward. Details
are given in our separate paper [14].

5.2. Asymptotic solution

In this section a formal asymptotic procedure will be applied to find the main
terms of the solution to the problem (P3.). A rigorous justification of this method
via the theory of epi-convergence and dual homogenization is addressed to in the
paper by TELEGA and LEWINSKI [14].

The solution to the problem (3,) will be looked for in the following form:

(5.10) v = 00(2) + evl(z,y) + 2P (z, ) + ...,
(5.11) ul, = cul (z,y) + e2ud(z,y) + ...,
(5.12) w® = 2wl(z,y) + Sw(z,y) + ..., y = z/e.

The trial fields are expanded similarly

(5.13) vl = v(z) + evll(z,y) + 22 (z,y) + ...,
(5.14) o, = eul(z,y) + u2(z,y) + ...,
(5.15) w' = 2w (z,y) + Sw (@, y) + ..., y=z/e.

It is assumed that
0, v e Hp, (9),
(5.16) va(z,.), v5(z,.), ©¥(z,.), v?2,.) € H(Y),

ul(z,.), v'(z,.) € Kyr.
The deformation measures associated with the kinematic fields (5.10)-(5.12) are
Eaﬁ(vs) = 50;"3("{}) i Eiﬁ(vl)fy=:',-’e i 0(5)3

(5.17) Yap(u®) = 7Y ") ]y=z/e + 0(),
Ka(u, wf) = ex¥(u', w?)|,=z/c + 0(?),

where

Ow?

.10 00 A S CO e il
(5.18) KY(u, w”) = ug W

The remaining symbols have been already introduced in Sec.3.2.
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The stress resultants associated with the kinematics (5.10)—(5.12) are

Q
@
|

NoP = eNSP 4+ 0(?),  L2P =L’ +0(s%),

Q7

(5.19)

1
Qg + 0(<), R. = ER(} + 0(1),
where the rescaled stress resultants assume the form
No# = AP [ehs + el o(v!)] + ANyl (u") + Alw?
(5:20)  Lg* = ANOP [ehy + el p(v)] + APyl () + AL 2,

Ro = A8 [ehs + €450 + AL r2 (") + A,

(5.21) Q5 = H*Pxl(u', wd),

and eh; = £o5(V?). Once more we note that quantities introduced in this section
are frequently denoted by the same letters as their counterparts of Sec.3.2, but
they do not coincide with them.

By using the relations (5.17)—(5.21) one can express the bilinear form (5.5) as
follows:

(522)  bae (v u w0 ol w) = e [ (NG [canv) + 45V
nt
+ L5 2, u") + QERL (™ w?) + Row}da + 0(?).

On the other hand, the linear form (5.9) assumes the form

(5.23) gV, u) = ¢ ] N0 ds + 0(2).

Our aim is to determine the main part of the solution to the problem (PZ.),
see (5.8), in which the bilinear and linear forms are given by (5.22) and (5.23),
respectively. At the first stage we put

(5.24) V=4v%), u'=0, =0,

and next divide both sides of (5.8) by ¢ and pass with ¢ to zero. We arrive at the
variational equation

(5.25) /N;:Bsﬂg(v’“)d;c= / N°vQds, where NP = (NGP).
2 I's
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Let us return now to inequality (5.8), in which the left and right-hand sides are
given by (5.22), (5.23). On dividing its both sides by ¢, passing to zero with ¢ and
taking account of (5.25) one obtains the following variational inequality:

(526) [N ey + L5t ~ o)
krd

awwz

Y

+Qf (u:: —ul - ) + Row™)dz > 0, V (v, ', w') € K(2°).

Now we put
Viz,y) = £V @)e(z),  v(z,y) = £0'(y)(e),
(527)  w'(z,y) = w5, 1) + @) W) -u'@zy)],  0<x<,
¥y 'ﬁsX € D(Q)s (V’v “'! w!) € K!’F .

In the standard manner we find the set consisting of two variational equations
and a variational inequality that constitutes the basic cell problem:

Find (v!,u',w?) € Kyr such that
(NgPels(v)) =0,

2
(5.28) (Fice) (Lﬁ’ﬁwaﬁ(u _ u1) 4 QS(U’; _ uL)) >0

o
<Row' - Qg(?—w> =0, VvV, v, w') € Kyp.
Yo

The rescaled stress resultants depend on (v!, u', w?) according to the relationships
(5.20) and (5.22).
The local problem (72.) is equivalent to the following minimization problem:

Find
}"52
(Hic) inf L[ / J (I,E" + €¥(v),v¥(u), KY(u, w), w) dy | (vyu,w) € Kyp 3,

Y
Y\F

where e* € E? and

1
i(z, 6,9, K, 1) = ji(z,€,v,K, 1) + 5!1“"3(:::)&(,&;;,
(€,v,k,7) € E* x E? x R? x R.
The properties of the microscopic elastic stored energy function j, read;ly
inferred from (1.3.14), imply that a solution (v!, u Lw?) € Kyp to (P2) and

hence to (P2 ) exists and is such that v! and u! are unique up to constant
vectors while w? is unique up to a constant.
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Now we are ready to formulate the homogenized problem:

Find v € I, (£2) such that the variational equation (5.25); holds,
where V¥ are given by (5.25); and(5.20);, and the fields (v}, u!, w?)
(P?) appearing in the constitutive relation (5.25); depend on the tensor
ehy= eap(v?) according to the implicit relation determined by the

problem (P2.).

REMARK 5.1. Unlike the results based upon the in-plane scaling, the problem
(PZ.) is sensitive to the change of the coefficients g, = [, /2h. The space scaling
(5.2) preserves the relations: [, /d, [, /c for each . Consequently, the homoge-

nized constitutive relation Nf‘j(e") will depend on the crack spacing measured
with respect to the laminate thickness.

5.3. Hyperelastic potential. Well-posedness of the problem (PY)

The constitutive relationship (5.25); can be rewritten by introducing the hom-
ogenized potential

(5.29)  Wy(z,eh) = I1_l fj (a-,a" +e’(vh), vY(uh), k¥(u!, w?), u-'?‘) dy

Y\F
1 a e
= <Né“3 [Eﬁﬁ + ¥ 5 (v! )] + L5y, (u") + Qi kY (', w?) + Rowz> .
One can prove that

fQ. (‘)“r-ll
(5.30) NP = L.
oc? 4

(48

The proof follows the lines of the demonstration of the property (ii) charac-
terizing the effective potential Uy, see Sec.3.3 and, in particular, formula (3.25).
More precisely, the basic properties of W), are specified by:

(a) Wi(z,.) (e, € E?) is strictly convex and of class C'!.

(b) There exist constants 'y > Cy > 0 such that for ae. z € {2

Colel* < Wi (z,€) < Cylef*  forall ecE2.
We observe that formulae (4.18), (5.30) and the properties (a) and (b) just
stated are preserved when I divides the basic cell Y into two disjoint subdomains.

The property (b) of the effective potential W, ensures unique solvability of the
homogenized problem (P?), i.e. its well-posedness, provided that the length of

http://rcin.org.pl
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I, is greater than zero. Note that the homogenized potential (5.29) assumes a
simple form

1o
(5.31) Wiz,€") = 3N (€Megs

To prove it, let us substitute v/ = v!, w’ = w?, w! = 2u! and then w'' = 0 into
(5.28). Upon adding the equalities obtained in this manner one finds

(532) <N5!ﬁ518(v1) + L8ﬁ7gﬁ(“l) + Qgﬁg(ulTwz) + RO-{.{jz) =,

and (5.31) follows.

5.4, Kachanov’s form of the homogenized constilutive relations

Let us focus our attention on the homogenized constitutive relation (5.25),;.
Considering (5.20); and recalling that v! € H;c,(}’f one obtains

(5.33) N = AdwoBeh 4 AMB(yY (ul)) + ADE(w?).

We show below that the formula above can be rearranged to a new one depending
only on ! ; and (y!;(u')). Indeed, let us substitute w' = const into variational
equation (5.28)3. One finds

(5.34) (Rg) = 0.
Taking into account relation (5.20)3, one can reformulate Eq.(5.33) to the form
(5.35) Nt = APPegy + 43P (1mh),

similar to the previous formula (4.5): the tensors A2”** are determined by Eqs.
(4.9). Formula (5.35) can be written as follows

(5.36) NP = AdpaBeh, . gavobcF,
where
(5.37) ely = —(1¥5(u")).

These quantities will be referred to as crack deformation measures, similarly to
the quantities (4.6) of the model (ho,lp). One can represent them in the form
(4.7), (4.8). Thus we conclude that the knowledge of the relations [uk €M,
[u}.(e")] suffices for the determination of the homogenized constitutive relation-

ship (5.36).

http://rcin.org.pl
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The constitutive relationship (5.36), along with the representation (4.7) of
(5.37), have assumed the form of KacHanov [6]. The crack deformation measures
sfﬁ turn out to play the role of internal state variables. In contrast to Kachanov’s
phenomenological approach, formulae (5.36) and (5.37) have not been proposed
but rigorously derived. The internal state variables are directly connected with
macrodeformation fields (" ;) through the local problem, cf. also TeLEGA [1.49].
The tensor A; may be called a “damage moduli tensor”. For the investigation of
damage in laminates, ALLEN at al. [1] use Kachanov’s concept. According to their
analysis A; = —Aj. The formulae (4.9) do not warrant such an identification.

5.5. Characteristics of the model (hg, 1)

Let us list the main characteristics of the model (Lig,). Within its framework,
the analysis is decomposed into macro and micro- (or local) levels.

At the local level:

o the axial stresses in the external and internal layers are assumed to depend
only upon the in-plane coordinates,

e the equilibrium equations are satisfied exactly,

o the interface conditions for both stresses and displacements are satisfied
exactly,

o the stress-strain relations are satisfied in an average sense by requiring that
the Reissner functional expressed in terms of stress resultants and generalized
displacemets attain a saddle point at the solution,

o the local elasticity problem is reduced to solving the set (5.28) of two varia-
tional equalities and one inequality. In the case of cracks going parallely through
the whole laminate, this problem is reduced to solving a set of three ordinary
differential equations (see [9] for details).

At the macro-level:

e equilibrium equations involve the in-plane stress resultants as in the con-
ventional plane-stress description; hence the equilibrium equations are satisfied
in an average sense,

e boundary conditions are formulated as in the plane-stress model, in an
average sense,

e stress-strain relations are nonlinear and their form expresses the unilateral
cracking effects at the local (micro) level.

5.6. The (hy, ly) laminate model as a limiting case of the model (/iy, 1) when g, — 0

We shall now prove that the thin laminate model (hg,ly) of Sec.4 can be
derived from the (hg,{) model by passing to zero with p.; 0. = [,/2h. Let us
introduce non-dimensional coordinates

€a = Ya/lr, E=(,6)e X, Y =(0,1) x (0, &), & = I/1y.
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In the sequel, a re-defined cell of periodicity X' and the transverse dimensions h,
¢, d will be held fixed; averaging over X' being denoted by (-)o.

Consider the consequences of passing to zero with p; (then also p; tends to
zero). On introducing the variables &, into (P2_), muliplying both sides of (5.28)3
by (I;)?, taking into account the relations (5.21) and passing to zero with oy (h is

held fixed), one obtains the following variational equation

dw? dw'
5.38 H*P _— =0,
( ) < 660 d&ﬁ >

satisfied for all w’ € I}, (¥). Hence w? = const and consequently w? = (w?)q.

According to (5.34) (Rg)o = 0 and we can eliminate w? from the relations
(5.20) to arrive at relations (4.11). On multiplying Eqs. (5.28), 2 by /; and passing
to zero with p;, one arrives at an equality and inequality of the form (3.18);
and (3.18),, respectively. Thus we obtain the problem (£.) formulated in Sec. 4.
Averaging equation (4.11); results in the homogenized constitutive relation (5.35).
Thus we obtain the problem (P?) in an alternative manner. In particular, the
oo-independent potential V), defined by Eq.(4.22) turns out to be a limit of the
o.-dependent potential W (cf. (5.31)) as o, — 0, viz.:

(5.39) Vy, = hm Wi(o1, 02), ly/l, — fixed.

ga—0

Two ways of deriving the model (hg,ly) are outlined in Diagram 1.

Diagram 1.
i Laminate with cracks .
averaging by : of periodic layout avcIspTE 'hy
in-plane scaling (Parr) ? space scaling
a\F
Laminate of moderate thickness. Thin laminate with cracks
High density of cracks. of arbitrary density.
Model (h, ) Model (hy, 1)
(PL), (P}). Potential Vi, (PL), (PP). Potential W,
constraints of “thinness” pa — 0
w'=0, ¥ =0 I,/ l-fixed, h-fixed

Thin laminate. High density of cracks.
Model (J{f”‘ i”)
(P1), (P]. Potential Vi,

loe
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6. Final remarks

In our accompanying paper [9], the case of cracks going along straight lines
is examined in detail. The analytical results are compared with the available
experimental data and with theoretical predictions of HAsHin [1.17], Asoubt [1.1],
ALLEN et al. [1] and McCartnEY [1.37, 1.38].

Partially angled and curved cracks observed in experiments, as well as delam-
ination (cf. GROVES et al. [1.11]), could not easily be accounted for by two-di-
mensional laminate models. Curved cracks result, in general, in transverse asym-
metry, thus coupling the membrane and bending effects. Such effects could be
considered within the framework of the three-dimensional local problems, similar
to that derived by CHACHA and SANCHEZ-PALENCIA [1.8].
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