Asch. Mech,, 48, |, pp. 143=161, Warszawa 1996

Stiffness loss in laminates with intralaminar cracks
Part I. Two-dimensional modelling

T. LEWINSKI and J.J. TELEGA (WARSZAWA)

By MPOSING STRESS constraints of Hashin type and corresponding kinematic constraints on the
Reissner two-ficld functional, a new two-dimensional model for the three-layer symmetric laminate
is derived. This model is capable of taking into account transverse cracks in the internal layer.
These cracks behave according to Signorini’s conditions. In Part [ the basic properties of the
model without and with transverse crack in the internal layer are investigated. The equilibrium
problem is governed by a variational inequality involving five kinematic unknowns,

1. Introduction

OWING TO A DISCREPANCY between the values of thermal expansions and elastic
moduli of fibres and the matrix, the composite laminates incur transverse mi-
crocracking even under relatively low in-plane loadings. The appearing intralam-
inar cracks go usually across the whole thickness of the layer and are almost
equally spaced, cf. GARRETT and BAILEY’s [10, Fig.2] experiments with glass
fibre-reinforced polyester; graphite-epoxy patterns in GROVES et al. [11, Fig. 3]
and cracks in glass-epoxy laminates in HiGusmiTH and REIFSNIDER [19]. At a cer-
tain level of loading, the crack patterns attain a saturation state in which the
layout of cracks is also nearly uniform, called CDS-characteristic damage state.

The loss of stiffnesses of a laminate can be viewed as a characteristic of the
degree of its damage. The main characteristics of the laminate interrelate its stiff-
nesses with density of the transverse microcracks defined as parameters inversely
proportional to the crack spacing. Apparent regularity of cracking patterns war-
rants the derivation of the effective macro-properties of the laminate from the
properties of microcracking. Such approach stipulates formation of special mi-
cromechanics models, the point of departure of which is the analysis of stresses
in the vicinity of transverse cracks. A review of such models can be found in LeEg
et al. [25], YANG and BoeHLER [58], MCCARTNEY [39] and in Tsar and DANIEL
[56], cf. also ABoupnr and BENVENISTE [2], ABRATE [4], THIONNET [55], TENG [54],
GAMBAROTTA and LAGOMARSINO [9], KaTTaN and Voviapiis [20], GUDMUNDSON
and OsTLUND [12, 13], GUDMUNDSON and ZANG [14].

A successful method, albeit based on simple stress assumptions, of local anal-
ysis in the stretching and shearing problems is due to HasHiN [17, 18]. Hashin’s
approach was followed by new displacement-based approaches of HAN er al. [16],
HaN and Hawun [15], Asoupt [1], ABoupt et al. [3] and Tsar and DANIEL [56].
The development of the theory resembles here the progress in the theory of
moderately thick plates which was started by stress-based approach of REISSNER
[42, 43] as developed by Hencky, Bollé and Mindlin into its displacement-based
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formulations, cf. REISSNER [45]. Hashin’s approach has recently been reconsidered
in McCARTNEY [37, 38], where two new relevant models have been discussed: a
“generalized plane strain” model (called further GPS) and an “approximate 3-D
solution”. The range of validity of the former model is similar to that of HASHIN
[17], but, as it has been reported in MCCARTNEY [38], this model results in the
unique formulae for all the effective stiffnesses relevant to the tension problem.
The latter model is applicable for tension of laminates with finite width. Hashin’s
approach is also a basis for NAIRN [40] to define a strain energy release rate
due to microcracking. By putting forward a hypothesis that its value is a material
constant, Nairn arrived at a relationship between the given load and the crack
density, cf. also YALVAC at al. [57].

The modern tools of homogenization make it possible to perform the process
of smearing-out the cracks rigorously. The aim of the present paper Is, by using
these new tools, to put forward an alternative model of cracked laminates by
basing it on HAsHINs [17, 18] — type stress assumptions. The model is constructed
by:

i) relaxing HASHIN’s [18] stress assumptions by introducing new stress resultant
fields, none of them being viewed as directly dependent upon the edge loading;

ii) augmenting them with assumptions on displacements;

iii) constructing a new two-dimensional model of a three-layer symmetric lam-
inate by using a two-field variational principle of ReissNer [43]. Hashia adopted
a method of REISSNER [42] but without introducing Lagrange multipliers;

iv) performing the process of smearing-out the transverse cracks in the internal
layer by the method of homogenization.

A short outline of this modelling has been announced in LEwinskr ard TELEGA
[32, 33, 34] and TELEGA and LEWINSKI [53].

The hypotheses assumed make it possible to reduce the transverse cimension.
In spite of it, they enable us to figure out transverse cracks in the internal layer.
Reduction of the transverse dimension implies neglecting the singulariies of the
transverse distribution of stresses but does not suppress the in-plane cistributed
singularities of the stress resultants.

The modelling carried out in the present paper is neither a generaization of
HasHiN’s [17, 18] approach nor that of MCCARTNEY’s [37, 38] analysis. In the
homogenization approach used in the second part [35], the periodicity cell is
subjected to macrodeformations sf;ﬁ. These macrofields control deformations in
the cell of periodicity. On the contrary, Hashin’s approach does not distinguish
between problems in macro- and microscale. This author considers a state of
stress and deformation in a finite domain of the cracked laminate and the con-
trol variables are boundary loads. This does not mean that such an approach is
equivalent to the stress method of homogenization, since in the latter cise the de-
formation state in the periodicity cell are controlled by effective stress resultants
Nf:ﬁ(r), z € 2 and not by boundary forces. Moreover, in contrast to Hashin’s
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approach, in the modelling proposed the stresses are not directly related to the
edge loading. The in-plane stresses o“” are expressed in terms of two indepen-
dent and a priori unknown tensors of stress resultants N7, L7 (see (2.7)), whilst
in the Hashin-type models mentioned above N!' and N'? are viewed as known.
Consequently, in the approach presented the number of Lagrangian multipliers
(generalized displacements) is greater by three. Only in this manner one can
make the model capable of describing a general family of in-plane edge loadings.

Despite these substantial differences between the Hashin-type models and the
model presented, some comparisons will be made in [36] inasmuch as appropriate
reinterpretation of Hashin’s or McCartney’s quantities in terms of notions of the
homogenization approach is possible.

Regular crack patterns observed in experiments justify the assumption of peri-
odicity of the crack distribution, which enables us to use homogenization methods
effectively. A version of this method, developed primarily by SANCHEZ-PALENCIA
[47], encompassing Signorini-type cracks that can open or close (and then exten-
ded by the present authors [29, 30, 31], TELEGA [51], TELEGA and LEwNski [52])
makes it possible to describe the opening and closure of the transverse cracks in
the internal layer.

In 3D problems of averaging properties of periodic elastic composites, a
uniquely determined construction of the homogenized model is implied by sol-
ution of the basic cell problem. All other averaging methods can only furnish
approximations and their accuracy should be measured by the deviation from the
homogenization results, cf. SUQUET [48]. Less clear situation occurs in problems
of averaging stiffnesses of plates with a periodic structure. The results of KoHN
and VoceLwus [22, 23, 24] and CAILLERIE [7] prove that a correct starting point
should be the three-dimensional model; the method of homogenization results
in the Kirchhoff thin plate model whose stiffnesses are determined by the prop-
erties of 3D periodicity cells. Similar approach for the case of cracked plates
is due to CHACHA and SANCHEZ-PALENCIA [8]. However, if the starting point is
two-dimensional, then the following two methods of averaging are useful:

a) the method based on an in-plane scaling of the longitudinal dimensions of
the periodicity cells,

b) the method based on simultaneous scaling of all dimensions of cells.

Consequences of both averaging methods for moderately thick plates have
been examined in LEwiNski [27, 28] and TeLEGA [50]. The (a) method leads to
moderately thick plate effective model and applies only when in-plane dimensions
of the periodicity cells are much smaller than plate thickness. The (b) method
leads to thin plate effective model and does not impose any conditions on the
dimensions of periodicity cells. Thus the applicability ranges of both methods are
not identical.

In the second part of the paper [35] the consequences of using (a) and (b)
scalings applied to a new laminate model will be examined.
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Part T constitutes the basis for such considerations. Particularly, the two-di-
mensional model of an undamaged three-layer laminate will be derived in Sec. 2.
In Sec.3 we assume that the internal layer is weakened by a transverse crack.
The variational inequality of type (3.11) will be used as a starting point for the
homogenization procedures developed in the second part of the paper [35].

Throughout the whole paper (Part T and II), the following conventions are
adopted: small Greek indices (except for £) assume values 1, 2 while Latin ones
(except for k) run over 1, 2, 3. Summation convention holds only for repeated in-
dices at different levels. Index A labels the quantities referred to the homogenized
models. Comma implies partial differentiation with respect to z;, particularly z,,.
An arrow (—) will denote either convergence or replacement, which should not
lead to misunderstandings.

2. In-plane deformation of symmetric three-layer laminates of moderate
thickness

The aim of this section is to form a new two-dimensional model of a three-layer
symmetric laminate, capable of describing the independent in-plane displace-
ments of the faces and of the internal layer. In particular, the cross-ply laminates
of the [02,,902], class are of such a type.

Consider a symmetric laminate composed of the faces of thickness d and
the internal layer of thickness 2¢. The middle plane {2 of the internal layer is
parametrized by Cartesian coordinates z.; (z,) = = € §2. The whole laminate

occupies a cylindrical domain B = 2 x (=h,h); h = ¢ + d. To an arbitrary

point x € B we assign its coordinates x = (z;) = (z,, 23 = z), z-axis being
perpendicular to the §2 plane.
The lower and upper faces z = +h are assumed to be free of loads, whilst the

lateral edge surface S = I'x(—h, k), I' = 12, is subjected to the tractions p'(s, z),
s € I'yonits part S, = I, X (—h, h). The remaining part of S, S, = Iy, X (=h, h)
(I'wUT, = I')is clamped. For the sake of further simplifications, the loading p*
is assumed to have the following through-the-thickness distribution

' zl‘f"*(s), 2] < e,
(2.1) P2 =97 B
Z—j(NO(S) — I%(s)), otherwise;
. ] _—
2—({(3 = h)Q(s), g€ 72 <R
o i
2.2) P(s,2) = { —5:Q0), 2| <e,
i(.: + h)Q(s), ~h< z < —c.

\ 2d
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The loading functions N, ", @ are defined on I',. The body forces are omitted.
The through-the-thickness distribution of elastic compliances has the form

23) b D7 s |z| < e,
- T DL, otherwise,

and the components of the tensors D™ and D/ may depend on x € B, As it is
usually done in most treatments, we assume that the z = const planes are the
planes of material symmetry, hence

(2.4) D3,5, = D3z = 0, n=m or [.
The tensor D satisfies the usual symmetry condition

(2.5) Dijit = Djirt = Dy -

We make further the following assumption

Diju € L™ (B);
(m) there exists a constant C' > 0 such that
Dijua(@)THTH > C|TP,

for a.e. x € B and for each T € E2, where E? is the space of symmetric 3 x 3

matrices and
3

IT2= ) TVTY,
ij=1

We recall that throughout this paper only Cartesian coordinate systems are em-
ployed, thus we may identify (77) with (7};), etc. Moreover, ' possibly with a
subscript will denote a positive constant.

Within the three-dimensional framework, the problem of equilibrium of the
laminate considered amounts to finding the stress fields 5/ as well as the dis-
placement fields @* for which the two-field Reissner [43] functional

1
(2.6) I(w, o) = / [-2—(11.\.,43 + -e.-c;;',})ar‘“ﬁ + (wy 3 + 'H.‘3_{-,)003 + 11'3|3033
B

1 Gk -
—ED;J-HU'JU“] dx — ‘/p’(s?z)t.-.r,(s,:)ds dz,
Sa

assumes its stationary value at a saddle point, cf. NECAs and HLAVACEK [41].
To prove that the functional / possesses a unique saddle point one can use
the ArRNOLD and FaLk [5] version of BrezzI’s theorem [6].
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(NP _(2P)s2d

S
=

Fia. 1. Stress and displacement assumptions.

To facilitate the envisaged treatment of cracks in the interior layer |z| < ¢, it
is thought to be helpful to develop a new two-dimensional laminate model. We
base this modelling upon the following stress assumptions (Fig. 1)

f

—'_Lnﬁ("r)v |:I <,
@.7) o®Px) = { %
= afr.y _ rafby. an
| 54 [N (x)-L (.L‘)], otherwise;
[ 1 m)Q°@) <z<l
2d~x., 1 Z), [H Z 1,
al — 2 0%( -
(2.8) o (x) = § —5,Q" (@), 2| < ¢,
1 o P _ = e
. EE,(., + h)Q" (), h< z < —6
l~-z)2ﬁ' ) eg pd
4“:(.:, ) (3- y b 2 [N
(2.9) o¥(x) = { %(_32 + ch)R(x), 1 <e,
! 2 (s 5 5 T
| ZI’_{(H + h)" R(x), -h< 2z <-—c.

http://rcin.org.pl
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Here L*?, N*f Q®, R are unknown fields defined on {2. The stress assumptions
(2.7)~(2.9) can be viewed as a modification of HastiN’s [17, 18] formulae for
stresses in which counterparts of the stress resultants N'', N1? were considered
as determined by the boundary loads applied, Q“ and I being directly expressed
in terms of LoF by: Q* = Lfi-jj, R= —Lfﬂj. In our approach the stress resultants
N8 are unknowns of the model. Moreover, we introduce Q“ and I as indepen-
dent stress resultants, similarly as it is usually done in the theory of plates, cf.
REISSNER [42, 43].

The stress assumptions (2.7)-(2.9) determine the two-dimensional model to
be derived. However, to have all information about the through-the-thickness
distribution of the displacements, it is helpful to add the kinematic assumptions:

(2.10) 'li?a(X) - { '!.‘.:y(;r) + %(cz = zz)ua(.‘fj), |2| < C,

va(z), otherwise;
1
Em(;.-:), c< z <h,
(2.11) () = 4 2200 6l 26,
Cl b
—Bm(.‘r), -h< z < —g
& .
where b = 3 + 3 cf. Fig. 1. Note that
h ) c
(2.12) fa"’g dz = N°F | 5 f wy dz = v, + ug
-h —

The specific form of the hypotheses (2.7)-(2.11) cannot be cleared up at this stage
of the analysis. We mention only that stresses (2.8) and (2.9) satisfy the boundary
conditions on the faces

(2.13) o*3(z, £h) = 0,

as well as the continuity conditions on the interfaces z = L.

Deformations associated with displacements (2.10) and (2.11) are not corre-
lated with stresses (2.7)—(2.9) by constitutive relationships. Modelling based upon
the [(w,o) functional admits such a mismatch. Nevertheless, the form of kine-
matic assumptions (2.10) and (2.11) has no influence on the errors of stress evalu-
ation. The model construction could be based only upon the stress constraints
(2.7)-(2.9) and then (v,u, w) would occur formally as Lagrangian multipliers.
The hypotheses (2.10) and (2.11) endow the multipliers with a physical meaning.

http://rcin.org.pl
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A more accurate evaluation of the displacement fields can be done after solving
the problem by integrating the three-dimensional constitutive relatiorships with
stresses given by (2.7)-(2.9). In this manner, displacement representaions com-
patible with stress fields of HasHIN [18] have recently been found by MCCARTNEY
[37]; similar ones can be constructed for the (2.7)-(2.9) representations. They
could be helpful in forming the displacement-based models, cf. comments in Fi-
nal Remarks.

Let us now proceed to form the two-dimensional model of the leminate as-
suming, for the sake of simplicity, that the compliances D;;; depend on z € 2
only. We substitute the expressions (2.7)-(2.11) into the Reissner funcional (2.6)
and perform z-integration to obtain a new functional J:

(2.14) J(v,u,w;N,L,Q, R) = I(w,0),
where the fields w, o have the form (2.7)—-(2.11). The functional J hes the form

2i15) J= f [UQ"@NQ'G + o gL + (g — wo)Q% + w R
n

-W,(z,N,L,Q, R)] dr — / (Wﬁ Vo + L g — @w) ds,
Fﬂ

where the complementary energy reads
(216) 2w, = DY, NN 4 DLy, LoB[M 4 2DNE NoB[Au
+D3,Q° Qf’ + 2DRERLP + 2DEN RN*F 4 DRR2,

a3

The generalized compliances DV, DX, DVL, DY, DAL DAN| DR depend on z € 2
if D;;x do, and they are given by

1

Daﬁ Ap = ED:":,G,\;.[" Dms A = —Df;a,\;;-
1 m 2 m
(2 17) Di‘ﬁl\ﬂ- = Daﬁ\n 2{: afflp Df:‘;} = 5 (d DL{SM tec ‘{)-:3113) y
' RL (L' 1 c m fi'

Daé = _ﬁDc{ﬁss + 4 (h a 5) Dz s Dfdv = 1_?!)9;333=

d3 C p c? .

R — 2 3y

D - 40 93333 + = 8 (h - 3—(‘-"1 + ?) 1)3333.

Their symmetry properties follow directly from those of D;’;H and D, The
functional J attains its stationary value if the following relations are satisfied:

i) the equilibrium equations

(2.18) _N°Bg=0, -L*®z4Q"° Q°.+R=0,
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ii) the constitutive relationships

- A A RN
Eaff = Dﬂ'ﬁ\j&N o I){:ﬁ\pL g Drrﬁ RY

(2.19) Yag = DYHNM + DLg, LM + DELR,
w = DRYN*F 4+ DRL1>F + DRR,
(2.20) ke = D3,Q",

where the deformation measures introduced above are defined as follows:
1
€ap = €ap(¥) = 5(Va,p + Vg,a),

1
(2.21) Yop = Yap(u) = E(uo'ﬂ + ugq),
Ko = K’L‘r(uv IU) = Uy — Iw.ﬂa
iii) the stress-type boundary conditions along the line I,

J?Vn=w‘us NT=WT-

(2.22) _ _ o
L, = Ly, Lr= L., Q=0Q.
Here
N, = N°Pn ng, N, = N%¥ngr, ,
(2.23) L, = L°Pu,ng, L; = L*Fngr,, Q@ =Q%n,,
N.=N'ng,, N, =Nr,, etc

Here n and T are unit vectors: outward normal and tangent to the [, line,
respectively.
The constitutive relationships (2.19) and (2.20) can be inverted to the form
f\'r'\‘u = zli’ua'@&'aﬁ + rll,::aﬁ 3 + _.1-\.:1_

(2.24) LM = A Peqp + AR Pyas + Adbw

tn.u
i /'lc"gsmg + 1um'}m3 + Ayw;

(2.25) Q% = H*Pxs,

that can be viewed as the primal one.

Note that if the equations of equilibrium (2.18) are fulfilled for every z € 12,
then the stresses o/ determined by formulae (2.7)-(2.9) satisfy the three- dimen-
sional equilibrium equations ¢*/ ; = 0 identically for every (z, z) € B. Bearing in
mind that these stresses satisfy the boundary conditions (2.13) on the faces we
note that, up to the boundary zone along S, the stresses assumed are statically

http://rcin.org.pl
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admissible. This property clears up the form of the stress hypotheses (2.7)-(2.9).
Therefore the model construction presented here is similar to REISSNER’s [43]
construction concerning transversely homogeneous plates.

The strong formulation of the equilibrium problem reads:

Find the kinematic and stress fields v = (v.), u = (ug), w; N = (N?F),
L = (L*?), Q = (Q“) and R such that there are satisfied:

o the equilibrium equations (2.18),

o the constitutive relationships (2.24), (2.25),

» the strain - displacements relations (2.21),

e the boundary conditions (2.22) on [,

e and the boundary conditions:

(2.26) v =10, u=0, w=0 ot I -
As a prerequisite for the primal variational formulation, we define the space

V={(vuuw) | ve H'®Q? we 'R}, we ')
v=0, u=0, w=0 on Fw}

representing the space of kinematically admissible fields. Let us define the bilinear
form

2.27)  agp(v,u,w;V, v, w") = f [N”’ﬁ(v,u, w)eap(V) + L7 (v, u, w)yas(u’)
7}
+Q° (u, w)k, (v, w') + R(v,u,w)w'] dz,

(where N, L, Q, R depend on (v, u, w) according to the relationships (2.21), (2.24)
and (2.25)) and the linear form
(2.28) [V W) = ] (;‘701}; + L%, - aw') ds.
[1‘1
The variational problem in its primal formulation reads:

Find (v,u,w) € V such that

[s )
(%-22) (Pa) ag(vyu,wy v, w') = f(V u',w') YV, W w') e V.

Instead of studying problem P one can solve a more general one, that of the
existence of a saddle point of the Reissner-type functional (2.15). We set

DN DNL DRN N
(230) ©=|D¥ D¢ DRL|, R=(NLR), N =|L
DN pRL pk R
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Thus we may write

1 i o Py
(2.31) We(x,N,L,Q, B) = ;R DRT + DY,QQP).
The properties of the compliance tensor (D;jz) imply that each element of the

matrix © belongs to L>(£2); similarly DS;? € L>($2). Further, the assumption
(/1) implies that there exists a constant ' > 0 such that

KD(2)KT > C Y2 5o 1(AapAap + BapBap + a?),

I )
() Dfﬁ(r)a“a” >¥2_, a%a®,

for a.e. z € 2 and for K = (A,B,a) € E? x E? x R and a € R,
To corroborate this statement we write

1 . §
'Z—Di_-,'kr(ﬂf)ouau = %Dna.\u(l‘)dwﬂ'\“ + Dopay(z)o™Pa®

- 1
+2D‘.,3[33(1‘)0“ 30”63 + 51)3333(;1?)(0'33)2.

Because [D;;x(x)] is positive definite for a.e. = € £2, therefore Di333(2) > 0 and
consequently D'i(z) > 0 for a.e. z € £2.
Similarly, we have

IJQ3L-;3(:3')1‘.”(f."j > 0, forae. z¢€ 2 and for all te R?, t#0.

Treating (¢*%) and Q # 0 in (2.8) as arbitrary, though sufficiently regular, we
write

h h
f Doaa()o®3a™ dz = ] J(2)Dasgs(z) d= | Q)0 (@)
'

—h
= D2,Q°)Q(x) >0, ae z€R,

where f(z) is inferred from (2.8). Hence the matrix DY is positive definite and
the inequality (/1;); follows, since for a fixed x € {2 at which Q(x) makes sense
one may set a = Q(z) € R? and treat a as an arbitrary element of R?.

For any sufficiently regular o = (¢"/) # 0 such that ¢* = 0 (a = 1,2), one
has

. ; 1 : ;
(232) ‘}0(.’6, G’ﬂ'd, 0’33) = EDU;;{\“(J,‘)U“I}U'\“ + ijg_‘;(;r)(}'mjd}g'

1 9
+§D3333(,r)(a33)~ >0, ae z€N.

http://rcin.org.pl
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For such a o we write Egs. (2.7) and (2.9) concisely in the form
(2.33) (P, 0% = Ax)RT.

Hence, on account of (2.32) we obtain

h
(2.34)  j.(z,N(z),L(z), R(z)) := /jg(x,o"ﬁ(:r,::),033(3.',3)):!3

—h

h
- / jo(z, AG)RT (z))dz = %m(x)iv(w)aﬂ'(x) >0, ae z€f,
—h

provided that RN(z) # 0.

Consequently, the matrix © of the generalized elastic compliances is positive
definite and the partial complementary potential j. is strictly convex, cf. also
ROCKAFELLAR’s Th. 5.7 [46]. The condition (/1;); is thus satisfied.

The regularity of the boundary loading is specified by

(H,) N& LA, L € IAL), Q9 & I:L)

By applying ARNOLD and FALK [5] version of the Brezzr’s theorem [6], one
can now prove that the functional J possesses a unique saddle point.

3. Modelling transverse cracking in the internal layer

When stretched, the composite laminates undergo interlaminar delaminations,
fiber breakage and intralaminar cracking. Only the last mode of damage men-
tioned is discussed in the present paper. The intralaminar cracks observed are
not necessarily straight; they can also be curved or partially angled, cf. GROVES et
al. [11]. The model proposed in Sec. 2 makes it possible to figure out only cracks,
which are straight in the transverse direction.

In the present section we will show how to express the presence of such cracks
in terms of the two-dimensional fields of our model. The cracks are allowed to
open or close.

Consider the laminate weakened by a crack in the internal layer. The crack
surface Sp = F X (—c¢,¢) is perpendicular to the domain {2, F' being its projection
on £2, cf. Fig.2. The crack surfaces observed in experiments are parallel to the
fibers, cf. GARRETT and BAILEY [10]. In the present paper, however, we shall not
associate the shape of the crack directions with anisotropy of the laminae. We
assume simply, that the crack geometry is a priori given.

Let us extend the arc F so that it divides the domain (2 into two parts f2;,
2y, cf. Fig.2. Consequently, the domain 5 is divided into two subdomains 5, =
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F1G. 2. Laminate with a crack in the internal layer.

2, x (=h,h). Let F., be the set of points (z,z) such that 2 € I and z = 2.
Let n® be a unit vector at a point (z, z) normal to I. and such that n* = (n,,0),
where (n,) = n is a unit vector at (z,0) normal to /' and directed outward the
domain §2;. Similarly we define the tangent vector 7% = (r,,0). A field g defined
on B for |z| < ¢ can suffer a jump across the surface Sp:

[9]s, = gl2 — gli; here g, represents the value of g at the a-th side of Sp,
viz. from the side of the domain B,. Now we can express the contact conditions
on the surface S; of the crack as follows:

On = 0n=0,<0, [wa]s, 20, an[w.]s, =0,

(3.1) ' ) . .
Tnr 0nr=0, Tpe= 0p.= 0,
where
8 - of 6 SN
Opn =0 '[].5“0“,[3 ) Onr=a ﬁiénibrﬂ ’
(3:2) § a3
Opz = 0 715N , Wy = Z Wa Ny
a
and
ok — _oke.. N — P
0" = 0%%(z, 2), Wy = Wo(Z,2).
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In the Signorini-type conditions (3.1) the friction between crack lips is obvi-
ously neglected. Thus the jump IIw,]SF assumes arbitrary values.
According to the stress hypotheses (2.7)—(2.9) one readily finds

_Ln 3 IZI <egc,
oy = 21"
i—f(l [0 — L) otherwise;
(3.3) ‘
1
J -Z—Lr = |-‘:| <ec,
U?I.T = lc
ﬁ(Nr - L;), otherwise;
((z—h
zzd Q,; e< ¥ < h
z
(3'4) Tpz = ﬁ _iQa !ZI < C,
z+1/
| -—2TLQ, -h< z < —¢,
where
(3.5) L, = L“’Gnong, N, = N“ﬁnunﬁ, L= L"ﬁnﬁ,rg,

N, = N*Pn,15, Q=Q%,.

In view of (2.10) and (3.3), the conditions (3.1), 2 can be rewritten in the form:

(3.6) Ln=Ln=1,<0, [u]>0, LJuJ=0, L,=L,=0 on F

Now [[-] denotes a jump on F' and

é ] P
(3.7) Ln= L°P|snang, L= L*|snsTs

are values associated with é-th side of I; ¢ = 1,2. The fields v, w are assumed
not to suffer jumps on F, the jump [u,] being unconstrained.

The stress assumptions (2.7)-(2.9) do not allow for constructing a two-dimen-
sional approximation of condition (3.1).

In the domains of the exterior layers (¢ < z < h, —h < z < —¢) all the fields
are assumed as continuous. Hence the fields N,, N,, @ do not suffer jumps on F'.

The strong formulation of the equilibrium problem of the plate with a crack
amounts to finding the fields (v,u, w) satisfying:

o the equilibrium equations (2.18) for z € 2\F,

o the constitutive relations (2.24) and (2.25) for z € 2\ F,

¢ the boundary conditions (2.26) and (2.22),

e Signorini-type conditions (3.6) on F.
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Let us pass now to the variational formulation of the problem governed by
(2.18), (2.24) and (2.25), (2.26) and (2.22) along with (3.6). The set of kinemati-
cally admissible fields has the form

(3.8) K = Hp, (2)* x K(R\F) x Hp, (1),

where

39)  Hp(@={ven'(®)|v=0 on I},

(3.10) K(2\F) = {u e H'(2\F)* |u=0 on I, and [u,]>0 on F}.
The variational problem reads:

Find (v,u,w) € K such that

3.11 P\ g
( ) (Pavr) ap\p(v,u,wi v ou' —u,w') > (V0 —u,w’) YV, 0 w')e K.

The bilinear form a g\ g(.,.) is defined by Eq.(2.27) with integration now over 2\ F'.

By applying Th. 2.1 of KINDERLEHRER and StampaccHIA [21, Chap. IT] we will
prove that the variational inequality (3.11) admits a unique solution. In fact, in
our case the set K is convex and closed and the linear form f, given by (2.28), is
continuous in the space

V(O\F) = Hp,(2)* x Hp, (2\F)* x I, (2),

and also on L%(2)% x LY($2\F)* x L*(£2). It remains to verify that the bilinear
form ag\ p is coercive. Toward this end we set

A, Avu Apw
(3.12) A=D'= (A Ay Aw |, H=[I""]=(@D".
Auur Auw Aw

The explicit form of the stiffness matrix A can be found by using the Fenchel
conjugate of j.(z,.,.,.), i.e.

(3.13)  ji(z,e,N,7):= ji(z,€,9,7)
= sup{ NPeqp + 705 + Rr - je(x,N,L, R) | (N,L, R) € E x EZ x R}

- %E?[(r)ET,

where E = (e,~,7) € E? x E2 x R. The properties of the compliance matrices D
and D9 imply that a positive constant ('} > 0 exists such that for a.e. z € 2

(3.14) EX(x)ET > (|s;|2 +NP 412, HP(@)aaas > Cilal,
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forallE = (e,y,r) € EE x E> x R and a € R%. By taking now into account (3.14),
we obtain, for any (vV,u',w’) € V(£2\F)

ag\p (Vo w5V o' w') > Cr (€M) 2 + MW ave + 1010

2 2 2 2
+||Vw' - “;||0,n) 2 C (||V’||1.n + W[} o\ + Hw’lll,.ﬁ)s

because Korn’s inequality still holds for the domain 2\ F', cf. SANCHEZ-PALENCIA
[47]. Consequently, the problem Py ;- admits a unique solution (v,u,w) € K. It is
worth noting that unique solvability is preserved in the practically important case,
when F intersects the boundary I of 2, cf. also CHACHA and SANCHEZ-PALENCIA
[8]. The subdomains {2, (a = 1, 2), however, have to be sufficiently regular.

4. Final remarks

The two-dimensional model of an elastic three-layer laminate, proposed in
Sec.2, has been shown to readily include transverse intralaminar cracks in the
internal layer. In the last case, the equilibrium problem, written in the variational
(weak) form, is described by variational inequality (3.11), provided that friction
is precluded. In Part II of the paper [35], just this variational inequality will be of
fundamental importance for modelling the macroscopic behaviour of laminates
with periodically distributed transverse cracks in the internal layer.

The starting point of the modelling performed in Part T are stress-displacement
assumptions (2.7)-(2.9). The modelling can be repeated without imposing the dis-
placement fields if one appropriately interprets the Lagrangian multipliers, simi-
larly as it was done by REISSNER [42, 43] in the case of bending problems. Then,
however, the distribution of displacements wy.(z, z) across the thickness cannot be
uniquely recovered, which would result in ambiguities in expressing conditions on
the crack lips in the internal layer. The model construction of Sec. 2 can be based
upon displacement asssumptions only, provided that they are sufficiently “rich” to
figure out the influence of the stresses o*3. Such displacement fields can be found
in MCCARTNEY [37]. On the other hand, they cannot be too complicated, since
the variational method based on displacement approach would only increase the
grade of complexity of the model — a known dilemma in plate bending modelling
- and the energy-inconsistent approaches, like that of LEviNsoN [26] would here
be impractical. One of the simplest possible forms of such assumptions has been
adopted by HaN er al. [16], HAN and Hann [15] and YounG and BOEHLER [58,
Eq. (31)]. Subsequent steps of the modelling would be similar. Nevertheless, the
conclusions drawn from the bending theory of plates are such that the theories
based upon stress assumptions lead directly to well-assessed stiffnesses, while the
same accuracy is difficult to achieve via the displacement-based models unless
artificial “correction factors” are adopted.
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