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On the elastic orthotropy

A. BLINOWSKI and J. OSTROWSKA-MACIEJEWSKA (WARSZAWA)

Exrressions for Kelvin moduli of orthotropic lincarly clastic bodices in terms of Young's moduli
and Poisson's ratios are presented. The check of the orthotropy criterion is posed as a variational
problem.

1. Introduction

Most ErasTic bodies which are considered in physics and in engineering either
are, or can be, with acceptable accuracy, considered as orthotropic. Most of metal
crystals (due to the symmetries of the lattice) and composites (because of the pro-
duction techniques reasons) show these properties rigorously, while most of the
polycrystalline textured materials, biological tissues, rock structures etc. can be,
without significant errors, also considered as orthotropic. Moreover, all the sec-
ond rank tensors exhibit the orthotropic symmetries, thus one can expect that,
according to the generalized Curie law [11], the fourth order tensor-valued func-
tions of e.g. one second rank tensor and arbitrary number of scalars, or of several
coaxial second rank tensors etc., would preserve at least this symmetry. Reduction
of the description of elastic properties of the anisotropic bodies to the orthotropic
ones gives rise to a significant gain in the effectiveness and comprehensibility of
the description, reducing the number of independent elastic constants from 18 to
9 (') and the characteristic axes (eigenvectors of the proper elastic states) from
18 to 9 (to three, in fact).

In recent years some papers presenting the invariant properties, structure and
transformation rules of plane fourth rank two-dimensional compliance and stiff-
ness tensors (plane Hooke’s tensors — according to [12]) were published [16, 17,
12, 4]. These papers exhausted the problem to some extent. Such a complete
study of general three-dimensional case seems to be too complex to be useful,
some helpful interesting facts, however, especially in the cases of higher symme-
tries, still can be established [15]. In the present paper the authors will touch only
some aspects of the problem for the case of general orthotropy, with no claim
for the completeness and generality of the considerations.

For the sake of brevity in this paper we shall use the term “at least orthotropic”
for any class of symmetry having three mutually orthogonal planes of symmetry,
i.e. we shall understand materials of higher symmetries, such as cubic, tetragonal
transversely isotropic and isotropic as particular cases of orthotropic materials.

(') The problem: 18 or 21 constants? will be discussed later in this paper, compare also [9).



130 A. BrinowsKl AND  J. OSTROWSKA-MACIEJEWSKA

We shall discuss here the properties of elastic compliance and elastic stiffness
tensors, but almost all the results remain valid for any fourth order tensors of the
same symmetries:

(1) Ciixt = Cjirt = Cijik = Chij -

Throughout the present paper we shall use both the tensors and their represen-
tations and the matrices, which may not represent any tensors, thus to avoid any
confusion we shall denote tensorial quantities using boldface symbols, while for
matrices we shall use sanserif characters.

2. Modified Voigt matrices, Kelvin moduli, Young’s moduli and Poisson’s ratios

It is widely used to represent Hooke’s symmetric operators mapping the set
of second order symmetric strain tensors onto the set of the same type stress
tensors (or vice versa) using 6 x 6 matrices. Thus instead of

2 gij = Cijkio
one writes
(3) Ex =Crp0,,
where (3)
—slh [ e ]| Fol_ [ o ]
£9 £22 o2 o
@) 3| _ | ¢ o3| _ | 93
£4 V2 | o4 V2053
€s V2e3 a5 V23
| €6 _\/?_.5]2_ | 76 | _\/iﬂ'lzﬂ

Note please, that this notation differs from the classical Voigt one by the factor
V2 (in the case when ¢ # j). This modification makes it possible to operate with
the corresponding matrices of representations using “tensorial” rules (cf. [6, 2]).
The following correspondence between the representations of the compliance

(?) Le. we take, in fact, the projections of the tensors onto the six-dimensional subspace defined by the
following orthonormal basis t,: 1) = e @ e, [ = ex ey, 3 = &3 D ey, gy = %(e-_y ® e3 + e3 @ ez),

s = %[ﬂ@ﬁ""ﬁ@el);(ﬁ = V%(ﬂ@h +e2@ep).
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tensor takes place:

Cn = Cun, Cxn = Cun, Cs3 = C3333,
Cas = 202323, Css = 2C1313, Ces = 2C1212,
Ciz = Cnnz,s Cy3 = Cnas, Cx = Cyn,
(5) Cas = Co13, C46 = Coa1z, Cse = C312,

Cis = V2Cun, Cis = V2Ci3, Cis = V2Cua,
Ca = V203, Cas = V203, Ca = V2Cn12,
Cy = V203,  Cis=V20n3,  Cy = V2.

For general considerations, as well as for the sake of illustrativeness, another
representation, which can be traced back to Lord Kelvin and was intensively
developed during last decade by J. RycHLEwsk! [9] and some other authors (for
references see [13, 8]), can be very fruitful. The elastic compliance tensor, as any
fourth order tensor preserving symmetries (1) can be represented in the following
form:

1 1
(6) C=—K @K+ -+ —KgDKg,
Al A6

where K, (I = 1 to 6) are the second order tensors, mutually orthogonal in
the sense of the scalar product in the corresponding linear space: K,k , = §, ,;
J. Rychlewski proposed to call them proper elastic states, while the non-negative
scalars A, he proposed to call the Kelvin moduli [9]. Using (6) one can write the

(reversed) Hooke’s law in the following form:
1 1

@) E= —(K*O)K; + -+ —(Kg*O)Kg.
Al A6

In the case of orthotropy (or higher symmetry), a triplet of proper elastic states
represent three pure shears in the mutually orthogonal planes; in appropriate
basis their representations take the following form:

00 0 1 1

0 0 — 0 — 0

b,

0 0 L V2 V2

(8) Ky X V2 | kKsx| 0 0 0 |, RGQL 0 0
0 o Lo oo V2

V2 V2 0 00

It is not difficult to notice that the other three proper elastic states have in this
basis diagonal representations. Moreover, in view of mutual orthogonality, the
triads of diagonal terms form rows of some orthogonal 3 x 3 matrix. Among
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many possible representations, the following one seems to be convenient:

[cosdcose 0 0
K] x 0 cosfsing 0 |,
I 0 0 sin 6
[ —cosvysi
i i 4 0 0
+ sin -y sinf cos ¢
%) Ky X 0 COS7 COS @ 0 :
+ sinysin #sin ¢
L 0 0 —sin vy cos @
i si\n 'y .sin @ 0 0
+ cosy sin# cos ¢
K3 X 0 —sinycosy 0
+ cosysin §sin ¢
! 0 0 — COs ¥y cos f

Parameters ¢, 6, vy can assume any values, they do not represent any angles in
“physical” space (3).
Assuming particular values for these parameters and taking some Kelvin mod-
uli equal to each other, one obtains all the particular cases of higher symmetries:
e isotropy

sin9=\/L§, cosp=%, A= A3 = A= A5 = Ag,
e cubic symmetry
sin9=i, cos«p=~1—, Ax = Az, Ag = A5 = Ag,
V3 V2
e transversal isotropy in {z,,z;}-plane
siny = 0, COS¢=\/L§, A2 = Ag, As = As,

o tetragonal symmetry (*) (about the z3-axis)

4 1
siny = 0, 00559=ﬁa As = As.

(*) The presented forn of the representation of the orthogonal matrix corresponds nevertheless to the
“rotational” interpretation of the matrix Q as a representation of the tensor Q = n@ n + (I - n @ n)cos~y +
n+*€ sin~y (cf. [3]).

(*) We mean here the same case as that considered e.g in [14], we are not considering here the other case
pointed out in | 7], which in fact can be reduced to the previous one; for details sce [4].



ON THE ELASTIC ORTHOTROPY 133

Let us assume that the preferred orthotropy axes are known. One can notice
at once that for ¢ > 4 Kelvin moduli \; are equal to the corresponding doubled
Kirchhoff moduli:

(10) Ay = 207, As = 203, As = 2G12.

For the determination of the other three Kelvin moduli we shall consider uniaxial
tension (compression) along each of the preferred axes z;. Denoting:

(11) Qi; = (Ri)jj (no summation!)

one obtains, for the case of tension along z,, the following components of €

1 i
gi = ko + Qz."»z o+ -—Qmﬁ-s o =0y Z QJ\Q”
(12) 1 i=1 £33
(no summation! Compare (7)).
Denoting
o Ej; :
(13) E; = 5_” ; v = -2 (no summation!)
i S

one can write
1 _Qf + Q3 Q%]
e YR T
V12 leQll Q202 | Q3nQxn

4 ——= = + .
(1) £y Al A2 A3

_vn _ QuQu | Q2@ | @3

Ey % A P

Similar relations are valid for the uniaxial tension along the other two axes. Thus,
introducing new symbols

(15) vi = -1, Aij = —? (no summation!)

we obtain the following relation

=

Y = 22X (no summation!)

(16) f_l E;

and we are able to write ~
(17) A=Q'L1Q,

where L is the diagonal matrix of the first three Kelvin moduli A;. Thus we have
reduced the problem of expressing the Kelvin moduli in terms of Young’s moduli
and Poisson’s ratios to the eigenvalue problem for a symmetric 3 x 3 matrix A.

http://rcin.org.pl
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Among many known ways of solving this problem, a particular one, giving rise
to relatively simple analytic formulae can be pointed out.
. Note that, due to orthogonality of Q, the invariants of the matrices A and
L-! are equal to each other; similar relation (such as (17)) holds true for the
normalised deviatoric parts of these tensors, therefore also their corresponding
invariants are equal to each other.

Thus, denoting

1 1

(18) A'=A-ztrAlL z;=—-(———1[rA), b=54

det A’

3 Ll
(\Hr(A’z))
where | is the unit matrix, one can express the invariants of A’ by its eigenvalues
2z; writing:

n+znt+n=0,
(19) A+2+23=1,

%273 = e

Solutions of the system (19) are equal to the real parts of the three branches of
the following complex expression:(°)

(20) 2103 = -% [(b +iV1 =) + (b - z-m)w] .

Consequently, one cbtains

1 / 1 1
(21) Y i\ [trA 3(m?«) + 31rA,

while the compliance distributors Q;; (°) can be easily obtained as the normalised
solutions of the following linear system:

1 ; oot
(22)  AiyQk; = A_QM (no summation over capital index A’!).
K

3. Orthotropy criterion

Throughout the previous section it was assumed, that the distinguished axes
of orthotropy are known, as they often really are in physics and in the engineer-
ing applications. This cannot be considered as a rule, however. Such practical

(*) Note that always |b| < 1, thus substituting b = cos 3o and using the Moivre formulae, one can casily

verify that expressions (20) satisfy Egs. (19), cf. [1].
(®) They are simultancously the stiffness distributors.
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situations can be pointed out, when not only the axes are not known, but there
is even no information if the material is at least orthotropic, or not.

If the material is orthotropic and the basis of unit vectors along the orthotropy
axes is adopted, then the matrix of the six-dimensional representation of the
elastic compliance tensor (cf. [7]) has the following form:

[Chh Ci2 Ci3 0 0 0
Cn Cp Cxn 0 0

0
Cyi Cy C33 0 0 0O
0
0

(23) C= v (Cij = Cj).

0 0 0 Csu 0
0 0 0 0 CCss
0 0 0 0 0 Cgl

If the compliance tensor is given in an arbitrary basis, then the answer for the
question if the material is at least orthotropic or not, is not immediate. Even if
one solves (numerically) the six-dimensional eigenvalue problem, finds the Kelvin
moduli and then calculates the proper elastic states and finds out, that the three
of them are pure shears, there is still no certainty, that we have to do with the case
of orthotropy. There exist such five orthogonal (in the sense of scalar product of
second rank tensors) pure shears among which there are no three of them acting
in mutually orthogonal planes in the “physical” space [5]. To find out the answer,
one has to analyze the proper axes of almost all the proper elastic states.

Another possible approach to finding the answer to the orthotropy question
can be as follows:

1. Take a general three-parameter expression for the rotation tensor R in
3-dimensional “physical” space.

2. For a known representation (in a chosen basis) of elastic compliance tensor,
find a general form of the representation in a rotated basis

Clist = RipRjqRir RisChyrs.

3. Find out if there exist such values of the parameters (e.g {v1, %2, ¢3}),
defining rotation R, which lead to vanishing of all these components of C which
vanish for the case of the representation (23) in the “proper” orthotropy basis.

This way can be fairly laborious as regards the computer programming, and
it forces us to leave quite convenient and familiar six-dimensional space and to
return to the space of fourth rank tensors.

The present authors in their recent paper written jointly with J. RycHLEWSKI [4]
have shown - in the case of plane elasticity — an effective criterion of orthotropy,
expressed by the relation between the components of the compliance tensor in
an arbitrary basis. It is not clear if such a criterion of reasonable complexity can
be formulated for the 3-dimensional case. In the present paper the authors are
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going to propose a way, which, being in fact equivalent to the one presented
above, makes it possible to remain all the time in the six-dimensional space,
to verify the intermediate results (which can solely be useful for certain other
considerations) and to use standard computer procedures.

The one who wants to rotate the bases in a six-dimensional space should first
establish the set of allowed orthogonal matrices, having their counterparts in the
sets of rotations in three-dimensional space. The complete set of rotation matri-
ces in six-dimensional space depends on 15 parameters (7). The set of rotations
in 3-dimensional space is 3-parametric; this fact has some important implications:
first — the 21 independent parameters describing general compliance tensor can
be chosen in such a way, that 18 of them can be considered as material con-
stants, the remaining three fixing the orientation of the axes of proper elastic
states in a 3-dimensional space (the same considerations reduce the number of
material constants for an orthotropic material from 12 to 9), and second - the
set of the physically meaningful rotations in a six-dimensional space must be also
three-parametric.

We shall find a general representation of the rotation tensor in a six-dimen-
sional space, generated by the rotation in the “physical” 3-dimensional space. It is
not difficult to verify (compare [4]), that the rotation Ry by the angle ; around
the axis z; generates the following orthogonal 6 x 6 matrix R(;) describing the
same rotation in a six-dimensional space:

{1 0 0 0 0 0 7
1

0 cos?yy sin’ —ﬁsin 20 0 0
1

= 2 . B I, A
(24) Ray = 0 sin® ¢ CO8“ (0] sz_:,uh.H 0 0
1 . 1 .

0 ﬁsm 20 —% sin 204 cos 2i9; 0 0

0 0 0 0 CoOSp;  sing

1 0 0 0 0 —sinp;  Cos Yy |

The corresponding expressions for the rotations around the other axes are straight-
forward. Any rotation R can be achieved as the superposition of the rotation
around three non-coplanar, for example orthogonal, axes, thus a general expres-
sion for rotation matrix in a six-dimensional space can be obtained as a product
of matrices describing rotations around the coordinate axes z; by the angles ¢;,

(25) R = R(I}R(sz(g} .

(™) Every matrix of the type AAT is symmetric, thus the orthogonality condition RRT =1 imposes only 21
constrains on the 36 components of the matrix R,
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The complete expression for such R is quoted in the Appendix (%).
Let us denote for convenience the “vector” composed of the elements of the
k-th column of the matrix R by r(x):

(26) rxy = [Rak, Rak, Rage, Rak, Rsye, Rer ).

It is not difficult to notice, that the “vectors” ry, r9, r3 represent in a six-dimensional
space three pure shears in mutually orthogonal planes; indeed, denoting by k(;
the six-dimensional representation of the tensors K, listed in (8), one obtains:

Thus:

The elastic compliance 6 x 6 matrix C describes at least an orthotropic material if
and only if there exists such a rotation R in 3-dimensional space, that the components
of the last three columns of its six-dimensional representation R represent the three
proper elastic states.

If some symmetric tensor o, (certain vector in a six-dimensional space) rep-
resents a proper state, then obviously it is energetically orthogonal [10] to any
symmetric tensor (six-dimensional vector) from its orthogonal complement; the
reverse is equally true, i.e.:

o is a proper state if and only if for any a, a-o = 0 implies a-C.o = 0.

Hence:

The elastic compliance matrix C describes at least an orthotropic material if and
only if there exists such an orthogonal 6 x 6 matrix R, describing the rotation in
three-dimensional space and consisting of such columns r(;;), that r(-':,\,)C ry = 0()
for K =1,2,3,4,5,6, J =456 K # J.

Let us define, for a given compliance matrix C, the following function I of

the three parameters {¢y, 2, »3} determining the “physical” rotation in six-di-
mensional space:

6 6

(28) F(p1,¢2,93) = Z Z |r1.\-)C f(.})!-
KN=1 J=4
JEN

(") It is cvident that the set of such matrices is a subgroup of the group of orthogonal 6 x 6 matrices.
Some interesting properties of the matrices of this subgroup, conneeted with the preservation of the tensorial
invariants of the six-dimensional “vectors”, can be pointed out. For example, sum of the first three terms in
the casc of 1-st, 2-nd and 3-rd column is equal to 1, while for the other columns it is equal to zero, and the
same applics to the rows (the columns of the transposed matrix),

(%) By r?_;\.] we denote the row matrix having the same components as the column matrix T sy, thus T

)

is a number.

http://rcin.org.pl
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The orthotropy condition can then be expressed as follows

min _ F(py, 2, ¢3) = 0,

F1W29a
-1/2< ¢ < 7/2,
_ﬂ-/z <S¢ < Tr/z':
—m/2< 3 <m/2

(29)

The ratio of the minimal value of the function F'(¢;, (2, ¢3) to the norm of
the elastic compliance tensor

) . omin F(p1,92,3)
|ICl|

can be considered as a good measure of obliqueness (departure from orthotropy)
of the elastic properties.

Observe that x is an invariant of the compliance tensor C. Indeed: all the
matrices of its six-dimensional representations are mutually connected by the re-
lation: C' = RTCR, while for any orthogonal 6 x 6 matrix R, generated by rotation
in a 3-dimensional space and any “vector” r(;), the product Rryy = r{, is again a
“vector” of the same type, its “tensorial” invariants being preserved, thus:

(31) Z Z Ir{i)C vyl = Z Z |f(;\)Cr(J)| = F(p1, 92 #3)-

K=1 J=4 =] J=4
J#K J#K

This means that changing the representation of the compliance tensor C (and
consequently the components of the matrix C), one merely renames variables in
(29), what, evidently, can not affect the result of the minimization procedure.
This completes the proof.

An entirely different approach to the problem under consideration can be also
proposed: any compliance 6 x 6 matrix C can be represented as

(32) C=PTL"P,

where P denotes a 6 x 6 orthogonal matrix and L is the diagonal matrix of Kelvin
moduli. For example, in the case of orthotropy one can take

Q1|0
(33) P = BR, where B = ,
01

Q and R denote the same matrices as those in (11) and (25). Thus one can reduce
the considerations on the obliqueness of the elastic properties to the problem of
invariants of the matrix P; we shall not pursue this line in the present paper
however.

This completes for the time being our considerations on the orthotropy con-
dition.
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Appendix

For reference, a general form of a 6 x 6 orthogonal three-parameter matrix
describing the rotation in the three-dimensional space should be quoted. We
shall omit here the elementary calculations and expose only the final result of
multiplying matrices R(y), R(z) and R(3), where the first of them has already been
shown (Eq.(24)), and the other two can be easily obtained by renaming the
variables and reshuflling the columns and rows. For better comprehension we
shall split the matrix R into four submatrices which will be specified separately:

where
- cos? 2 2 . 3 . 2
p2c08° 3 cos® pasin’ 3 sin” 2
sin? 2 sin? @7 cos? @3 sin® 2y sin® 2 sin’ o3
; + cos? o, sin® 3 ; + cos® ) cos? 3 sin? ¢y cos? 7
RV = | - 3 sin 2y sin@z8in 23 + 3 sin 24 $in 3 8in 203
cos? 2y sin’ 23 cos? 3 cos? ¢y sin? 2 5in” 3
+sin’ o sin® 1 +sin® ¢y cos® 3 cos? oy cos? 2
1. ; : 1. . : .
+E sin 2421 Sin 3 sin 2¢3 —3 sin 2 sin 7 sin 203 J
sin 27 . sin 22 2 sin 23 1
——X=sin 3 - COS 73 —Cos” 32
V2 V2 V2
.2 .2 Sin2ps
sin 24 sin 2¢, : =B PSR P2
= ﬁ COS (22 COS 23 — COS 2 51N 23 5 sin 293
; 2... sin 2 L2 Sin2gy +oos V2
2 —§1n" ¢ ‘/i 51N 23 + 510" ¢y \/i COS 3 sin 2,
R = = NG sin @2 Cos 293
2 . 2 sin 2'\53
sin 2¢, _ sin 2y, : —005" {7150 42
COS 22 COS 23 ———— COS P2 51N 23 4 sin 2&‘4‘3
2 sin2p; . 2 sin2g; R /2
— CO8" @) ———= 5INn 3 + cos QITCQSH’J sinl,al
2 + ———— sin 3 cos 203
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[ sin2e) . o2 2 sin2¢; . 2 . 2 1
- sin® 08" 3 — sin” 2 sin” @3
V2 V2
sin2g; . 2 sin2p; o sin2gy, 3
+ sin” 3 + COs™ 3 ——— CO5" {22
o V2 5 V2
. sin . sin 2¢
+{:cr:;25a1smpz—E — cos 2¢; sin @z 3
V2 V2
sin2p2 2 sin2p; . 2
R® = | coseg cos” 3 008 1 —— "3 §in2g |
i sin 2 ’ sin 2 = Cos 21
+ 51N 2 COS 22 3 —smplwsm-—-ﬂ ‘/i
V2 V2
. Sinzpz 2 - SI‘I‘I'Zp‘z - |
— 8in pp ——— cos” 3 —singy 7 sin” s i Dug
sin 23 ~§in2yp3 Sy V2
+ COS 21 COS 22 — COS 2 COS 22

L V2 V2 _

[ 1_.2| ) ‘.2'
cos 21 COS 2 COS 23 €0$ 2421 COS 7 SN 3 2"'"1*'5”" L
1. : . . N in2

+ 5 Sin 21 sin 292 sin 23 —5 sin 2401 sin 24972 COS 23 +§ sin 2y sin 23
+ cos 2y 8in 7 €os 23
RW — g . i S il 2
sin 42 sin 3 COS 3 Sin o sin 3 sin 3 —5 sin 22 5in 23
— COS (21 COS 222 8N 03 + COS 1 COS 2422 COS 3 + sin ) COS 23 COS 2
— COS iy SiN 423 COS 23 — €OS (2 Sin 2 5iN @3 %sinplsin2p;sin2p3
+sin ) cos 22 5in 3 — 5iN 1 COs 22 COS 3 + €08 {1 COS 23 COS 23

As it has already been pointed out, summation of the elements of the rows
and columns of R(M gives 1, while the sums over the columns of R and rows of
R®) vanish.
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