Arch. Mech,, 48, 1, pp. 111128, Warszawa 1996

The application of the boundary element method to the study
of 2D subsonic lifting flow past smooth profiles

A. CARABINEANU (BUCHAREST)

IN THIS PAPER, using the Imai-Lamla-lacob method based on the asymptotic expansion of the
complex velocity potential with respect to Chaplygin's number Afy, we study the subsonic steady
2D lifting flow around arbitrary smooth obstacles. Reducing the investigation of the compressible
flow to a sequence of boundary value problems for the Laplace equation, we use the boundary
element method in order to caleulate the distribution of fluid speed and pressure coefficients on the
obstacle. A comparison between the results obtained numerically and analytically for the circular

obstacle shows a very good agreement.

Notations
v =(u,v) velocity,
V' local flow speed,
Vo flow speed at infinity,
en  speed of the sound corresponding to null flow speed,
My = Vy/eo  Chaplygin’s number,
v ratio of specific heats,
g density of fluid,
po  density corresponding to null flow speed,
@ potential of the velocity,
¥ stream function,
¥ perturbation stream function,
[ =02+ complex potential,
fo. fi  terms of the asymptotic expansion of the complex potential,
¥, perturbation strecam function for the incompressible approximation,
(r,y) Cartesian coordinates,
z =1 +1y complex variable,
a angle of attack,
n = (ny,n,) unitinward normal on the obstacle,
§ unit tangent on the obstacle,
s arc length on the obstacle,
I'  obstacle,
£ length of I,
I';  pancls on the obstacle,
¢, length of I},
(r;,y,) control points (nodes) on [,

currcnt variable on [,
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vo = (up, vg) velocity for the incompressible approximation,
ko  circulation corresponding to the incompressible approximation,
Cp  pressure coefficient,
Cyr  lift cocfficient,

r=\/(z -+ -
n= \/{In “5)2 + (yl e u)?._

1. Introduction

THE pAPER is devoted to the numerical study of 2d potential subsonic steady flow
of ideal fluids past smooth obstacles. We utilise herein the boundary element
method which is more economical from the computational point of view than the
domain-type methods like the finite-element method, finite-difference method
etc.

The boundary element (or panel) method is widely and currently utilised for
studying the potential incompressible flow past obstacles, because the equations
governing the flow are linear and one can obtain representations of the sol-
utions involving only integrals on the boundary of the domain. For the nonlinear
equations governing the compressible flow such integral representations are not
known.

In order to avoid this inconvenience, we shall use an approximate method
conceived by I. Imar [8], E. LamLa [9] and improved by C. Tacos [7]. In the
framework of this method, we consider the asymptotic expansion of the complex
potential (and implicitly of the complex velocity) with respect to Chaplygin’s
number M.

For the first approximation corresponding to the incompressible flow, one
has to solve, using the boundary element technique, the Neumann problem for
Laplace’s equation. For the second approximation, one utilises again the integral
representation for the harmonic functions, but the boundary conditions depend
on the results of the previous approximation and so on. In this way the nonlinear
boundary value problem was replaced by a sequence of linear problems.

Until now the Imai- Lamla-Tacob approximate method was utilised especially
for obtaining analytical results concerning the flow past obstacles [2, 5, 10, 11].

In order to establish if this method is satisfactory, some comparisons with other
methods were performed. G. VoicuLescu-PLest [11] compared the analytical
results obtained for the circulation-free flow past the elliptical obstacle with the
results obtained by I. FiLimon [4], who used Chaplygin’s approximate hodograph
method. A. DucarRu-DRrAGA [2] studied the subsonic flow with circulation around
the circular obstacle, both by means of the Imai-Lamla-Tacob method and the
finite-element method. In all cases it is observed that the results obtained by
means of Imai-Lamla-Tacob method and the results obtained by means of other
methods are very close to each other.
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In the present paper, using the first and second approximations, we investi-
gate the subsonic flow with circulation past arbitrary smooth obstacles. Numerical
results (tangential velocity and pressure coefficients in the control points)are ob-
tained for the circular obstacle.

In the framework of the second asymptotic approximation, we know the an-
alytical expression of the tangential velocity for the subsonic compressible flow
with circulation past the circular obstacle [1]. The comparisons between the values
of the pressure coefficients calculated analytically and by means of the boundary
element method show a very good agreement, as we can observe from Fig. 1.
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FiG. 1. Calculated (o) and analytical (- ) chordwise coefficient. « » « pressure cocfficient for
incompressible flow.

2. Imai-Lamla-Iacob approximate method

Following C. Tacos [7] we shall present the method conceived by 1. Imar [8]
and E. LamLA [8] for investigating the subsonic circulation-free flow and adjusted
by C. Tacob for the study of the flow with circulation past obstacles.

From the equation of continuity

(2.1) div(ev) =0
it follows that there exists a function ¢:(z, y) (the stream function) so that

Y oo JY

Y p Oz’

2.2) u

= |8
|
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We consider the irrotational flow, i.e. there exists a function ¢(z, y) (the vel-
ocity potential) such that

_ Iy _ 99
(2.3) u-—-az, v = Ty

Introducing the operators,

0 170 .0 0 170 .0
(&%) K‘z(?‘a‘) a_‘z()_+bj)

and the complex potential
(2.5) f=p+iy

we get from (2.2)-(2.5)

(2.6) ==

Taking into account that for the isentropic flow,

’ 1/(v-1)
o - 1 "2 2
9=90(1"*~2—ﬁ% )

it results

eo—o _ M§V?

=0 — + MJ(...)
wote &g )

2.7)

Expressing the local speed of the fluid as follows

a2_ (0f  Of of
s e (D) (24 T)

we deduce from (2.6)-(2.8)

0 of oF
@9 L= [‘“:92 (5{ + 01) (0_ df) + M. )}

Considering the asymptotic expansion of f with respect to A}

HI.“"'\|

(2.10) f(2:2) = fo(2,2) + M3 /1(z,2) + Mg fo(2,3) + . ..
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we obtain from (2.9), (2.10), equating the coeflicients of the same powers of My

2.11) %f_ﬁ =0,
Oh _ 1 (9fo S0\ (S0, 9]0\ 0o
=g FE 1/2(az+ )(as+as) 9z’

and so on.

From (2.4), (2.5) and (2.11) it follows that f is an analytical function depend-
ing only on z. We shall consider fy(z) as the complex potential of the incom-
pressible flow past the given obstacle.

From (2.11) and (2.12) it results

oo
(2.13) Qf—' - oo 0 (%)

whence, integrating with respect to z, we get

, 1 dfy [(d 1
@1 AGI=wt i = g B [ (B) 44 1ot

where g(z) is an analytic function. Similarly, we can calculate f;(z,%) and so on,
but in this paper we shall use only the second approximation (i.e. we deal only
with fp and f;). From the relation

dp 0y _9f of
(2.15) U— v = U2 + aa—y - + 3

and from (2.9)-(2.14), we deduce
oo MG 1 dy z(dﬁ,)? )
(2.16) U — 1w = :I_: i 1___,02 dzZ/ P dz
Z]
1 [dfg\*dfy = dyg 4
. - + _‘ Jﬂl = v s fu
+l-”03(dz) dz = d:z W)

In the sequel we shall neglect the terms of order M.
The conditions that we impose are:
e at infinity,

(2.17) hm(u — iv) = Vge ', Ilm(ug — ivg) = Vpe ™',
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¢ on the solid boundaries,

, M{;’
(2.18) V= qo + = 7 Yolr=qo,
(i.e. the solid boundaries are streamlines) and
(2_19) un,; + vnyh‘: 0, upng + '*’07’-:;“': 0

(the slip condition).
3. A boundary element approach to investigation of the incompressible
lifting flow past smooth obstacles

Considering the flow uniform at infinity and incompressible, the behaviour of
the stream function is

i T : ko i o2 1
(31) I,If‘o = Vo(g COSa —  sIn {1) + m Iny/2% + i/l 0 (m—") 5

since /z¢ + y¢ = o0
The perturbation stream function for the incompressible flow

(3.2) Uo(z,y) = Yoz, y) — Vo(ycosa — x sina)

behaves at infinity as follows:

= ko olaed 3l 1 of i gai®
(3.3) I.P’g—zm_[n 2+y -PO(\/;m)1 2?2 + y? = 0.

From (3.3) it results, via Plemelj’s formula, that the harmonic function ¥y(z, y)
has for (z,y) € I' the integral representation

1 v d 1
3.4 59'/0(;1',y) = f (—Q({,, 7) ln — ¥y(&, ”)UT In ,—) ds,

where (£, 7) is the current variable on I, ds is the element of arc length, d/dn
is the inward normal derivative and r2 = (z — €)* + (y — 7))

In the boundary element approach, the airfoil is approximated by a piecewise
linear curve consisting of N panels I, 7 = 1, N; the extremes (nodes or control
points) are found on the actual airfoil. For the i-th node Eq. (3.4) becomes

G3) W) =5 [ (‘J o 173 mn— — Uy (6, )5 I l) ds

2T . r;
-

with r; = \/(z; = €2 + (i — )2
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Denoting by (z;,y;) and (41, ¥;+1) the extremes of the panel I';, the current
point (&, 7) € I'; may be represented as follows

1-0 1+o
(3’6) (E* :'l}) = T(Ij'l yJ) + 2 (Ij+l¢;f)'j+1)- a e ["l! 1]-

For ¥ and d¥y/dn on I'; we consider the linear interpolation

; 1-0 1+0o
(3.7) ¥ m= 3 Wo(x;, ;) + Tw0(37j+layj+1)$ o€[-1,1],
P 1 -0 0W 1+ 0 0W

(3.8) D &)= 5 (.)T(J-'ny_i) + 5 E(Ijnayjﬂ)s g€[-1,1].

For smooth obstacles, the approximation of ¥, and 0¥,/dn by piecewise con-
stant funciions gives also good results; we prefer, however, the linear interpo-
lation because it is more general and it allows for the implementation of the
Kutta -Joukovsky condition in the case of airfoils with sharp trailing edge [6].

The linear element on [ is

f.
(3.9) ds = \/dz? + dy* = —zidcr,
where
(3.10) t; = \/(IJ'H — 22 + (541 — 952

is the length of I';.
On I'; we have also,

(1 + o l1—0o F
— T r; — ;|
a1 I e -Vl A
: ‘"'-l —_— =
(211 on f 7 7'}5
=5 Vint 5y~
+ — -
;]
rs;
with
Uy — Ui+l
312 o= =
i _ Ij"‘l = ‘Tj'
(313) 'HJ; - T"“ y

)

, 1+o l1-0 - 1+o l1-0 %
(3.14) r_‘?‘,- = ( 5 i+l + — i :::;) + (T%’H + ——yj = -y,) :

s -

The contour '; being closed, the subscript N + 1 is identified with 1 and the
subscript 0 is identified with N.

http://rcin.org.pl
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From (3.6)—(3.14) we deduce that equation (3.5) may be written as follows:

N
o .
B15) 3 5 w)Ghi - Z%(%J:)”p =0, i=1,N,
where
(3.16) Gji = g + yf," i,j=1N,
m_ =4
(3.17) 95 = E—;’-/(l - 0)Inrj; do,
‘. 1
(3.18) g = ==t ] (1 + o) lnrg_yy; do,
-1
1 2, 1
(3.19) ;= h,(fi} + hﬁ-‘-) + 553-'- ,

1+o l-0 i
Ti4 + —5 & | N

1
(M - -_f:f _ 2
(3.20) hi; o (1-o0) =)
=1 Ji
1+0o -0 i
5 i+l + T Vi Ty
+ 5 de,
re.
Ji
(l + chf i | R J ¢
+1 r;—x;|n
(2} 1 ok o 2 J ) xr
(3.21) —iil /(1 =g 2
(=1)
140 1—-0 4
3 oy,
TG-1)i

The integrals (3.20), (3.21) may be computed analytically using the relations

1
d J=—A
f -4 = 2 atan 4 : A= - 4ae,

@2) L= act+bo+ec J-A ¢ —a

1
odo —b V-4 1 a+b+ec
P - = ats + —In—.
B2 & _/a02+bor+c a\/jdlanc—a 20 " a-b+e
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For calculating (3.17), (3.18) we use the formulas

1
(3.249) / In(ac?+ ba + c)do = In[(a+b+c)(a—b+c)]—4+bl + 2],

(3.25) oln(ac? + bo + ¢) do

1
LR S

1 b
—ﬂ[(a+b+c)ln(u+b+f_)—(a—b+c)|n(u—b+t,)—2b]—513.

Fori = j—1, j, 741 we get for the singular integrals occurring in (3.17), (3.18)

(3.26) g\ = s%r(?’ - 2In¢),
(3.27) 9y = g—fj;(l - 2In¢;),
(3.28) o = 13- 2me),
(3.29) 90y = fg—:(l —2ln¢;_;).

We notice also that the singular integrals occurring in (3.20), (3.21) vanish.
From (3.2) and the streamline condition (2.18) it follows that

(3.30) Yolp= qo — Vo(y cosa — zsina).
From (3.15), (3.30) and from the relations

N
(3.31) Y Hp=1, di=1N
we obtain the algebraic system of equations

(3.32) —qg+z (IJ y;)Gji = —xOZ(JJ cosa—z;sina);;, i=1,N.
1=1

The system (3.32) consists of N linear equations for N + 1 unknows ¢y and
¥y :
E(xj,y_i), j=1,N.

We may establish the N +1-th equation imposing a prescribed value to the
circulation
v,

(3.33) T

—ds = kg.



120 A. CARABINEANU

Equation (3.33) may be transformed by discretization into

N ow,
(3.34) Z E;'(IJ', y; )& + €541) = 2k .

J=1

It is more convenient to reduce the number of unknowns imposing a prescribed
value to the velocity in a certain point on the airfoil; it is usual to impose the
zero value to the velocity in the vicinity of the trailing edge, i.e.

o,
(3.35) a‘!(rl, y1) = —Vo(n} cosa — nlsina).

In the last case the circulation is calculated a posteriori using (3.34).
The tangential velocity in the nodes (z;,y;), j = 1, N may be computed by
means of the relation

rogts v ; =
(3.36) vpes = ﬁ(xj-,yj) = 0—';(1:3.,%)-}.%(?3; cosa—nlsina), j=1,N.

.0y, : ; ;
After computing B_O(Ij’ y;), the components of the velocity are obtained using
n
the relations

D .
(3.37) uo(zs,v5) = - (@i yi)nd
Y
(3.38) vo(zj,y;) = --6—3(3?}-,3;})1.@.

4. The study of the second approximation of the compressible lifting flow
past a smooth obstacle by the boundary element method

Taking into account that the harmonic functions ug(z, y) and vg(z, y) behave
at infinity as follows:
1
1

we obtain the integral representations (for (z,y) € I'):

(4.1) ug(z,y) = Vpcosa + O ( ) , 22 + % = oo,

(4.2) v(z,y) = Vpsina + 0 ( ) )

1
7 (uo(z,y) — Vycosa)

1 dug 1 : J .1
(4.3) = ﬂ/ (E(ﬁ,n)]n . (uo(€,7m) — 'lgcosn)(_): In ]—) ds,
¢
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%(UO(J‘, y) — Vo sin @)

(4.4) -E](ﬁkgom~wm@m—mmmy—mﬂd

dm@wm—

From (4.3) we obtain by discretization the algebraic system

hr
a-i-z ""(r,,JJ)G'J. S [uo(zj,y;) - Vocosa] l;;,  i=1,N,

i=1

du
Z on G(IJ!JJ)“ + i) =
i=1

s

The unknowns are %(zi, y;) and the control variable a, which must be zero.
Similarly, from (4.4) we obtain the system
N dug N
b+ Z E(Ijsyi)cji = Z IU‘U(J'J') y,;) 23 VO sin (-l’] H_;l s i=1,N,
j=1 =1
4.6
(4.6) N 9vg )
Z E(Tjayj)(fj +£;41)=0
=1

c‘)
whose unknowns are (.rj, y;), 7 = 1, N and the control variable b which must

be zero. 0
After obtammg on (IJ, y;) and (.zJ, y;) we may calculate

du du

(4.7) 8_0(1.;'*311) = O(J'JsJJ)”j + 0 (‘]J JJ)”.¢ s
adu (')u :

(48) i u) = (s, i~ 9y

whence we may obtain

d2f 01!0

"Uo . ;
(4.9) 2( zj) = (‘LJ‘JJ) Ehe - (25, 95), zj =xj+iy;, j=1N.

To calculate the velocity distribution over the obstacle by means of Eq. (3.16),
we have to find out the analytic function g(z). First of all we notice that, according

http://rcin.org.pl
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to the behaviour of fy(z) at infinity,

- ko ay
: z2)=Voe ™2+ -—Inz+ —+ ...
(4.10) fo(z) = Voe™ ™z + 2 lnz + T4
: rrdfo\? . . .
it follows that / :F) dz 1s a multi-valued function and
zy N

1fo\ 2 :

(4.11) ] (‘dﬁ) dz = 2kgVpe™™®
/) z

(we consider the integration along I" in the positive sense).
Since u — v and dfy/d= are single-valued functions, it follows from (2.16) that
dg/dz is a multi-valued function. We shall choose for ¢(z) the expression

_ z dfg
(4.12) 9(z) = - o l prf + h(z).
The function

= ] 2 I _I‘E!'.Jt, z
(4.13) P(z,3) = f (fd—f‘l) iy — TIE By F

m 21
1

is single-valued.
Using the function P(z,Z) and the relation (3.12), we deduce from (2.14) and
(2.16) that

(4.14)  fi(z,3) = (Vz jfﬂp(;n h(z ))

dfo . M§[1 d*fo,,  _
=t et

+1 (@)Zﬁu €k 1 df0+

(4.15) u—iv =

V§
From the relations (2.17), (4.1), (4.2) concerning the behaviour at infinity of
u — iv and dfy/dz, we deduce that

dz Wi z dx  dz

>

(4.16) lim — = —Vye ',

whence we obtain (for the analytic function h(z)) the expansion

=5
Introducing the function
(4.18) h(z) = J(z,y) + il(z,y) = h(z) + Vo™ 2

(4.17) (z) = -V, e-mv+—"—1n +o(

2ri
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we may represent the harmonic function I(z,y) on I as follows

1 oI 1 2, 1
(4.19) iI(I’ y) = / (a(f, 7)In —a I(£, ?I)EI In ;-) ds.

From (4.14), (4.18) and the streamline condition (2.18) we deduce

(4.20) I(z,y) = q + Pz, ),

with

(4.21) B(z,y) = —Im [% %P(a,?)l + Vy(y cosa — z sin o).

2 dz
Discretizing (4.19) we obtain the algebraic system

N a1 _ N

(422) —q +ZO—I;(IJ,%)GJ‘; = Zﬁ(rjs%)ﬂjis i =1, N.
j=1 j=1

B(z;,y;) is computed numerically using the relation
(4.23) B(x;,y;) = Vo(y; cosa — z; sin )

1 . _
- ;Tilm [(“U(IJ 2 y5) — oz, y;)) P (25, 33')] ;
0

-1
PG %) = 3 Lt =+ i~ )

' [(Hu(i‘m,ym) — ivg(zi41, +1))* + oz, w0) — ivo(zr, w))?

(4.24) +(uo(@r+1, Yi+1) — 0@+ 1, yi+1))(wo (@, yo) — oz, yi))]
Voe' ko, 2;

_L_Uln_-" j=2,N,
m 21

P(z,7) =0.

Relation (4.24); was deduced from (4.13) and from the linear interpolation of
ug(z, y) and vo(z,y) on I'.

The system (4.22) consists of N equations for N + 1 unknowns ¢; and
—(x;,y;), 7 = 1, N. The most usual way to reduce the number of unknowns is

dn " : P e s :
to consider a prescribed value of the velocity in a certain point. It is natural to

impose the zero value for the velocity at the same point (xy, ;) where ug — vy
/
vanishes. We have therefore j—j(:l) = (0, whence by virtue of (4.18)

al
(425) a(,ﬁl,yl) = Im

cL 1 0h . :
(u.}: + '.’.H;)E] - 'l"U(n:,CDS a— n.l. sin o).
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From (4.15), (4.18) and the slip condition (2.19) we deduce on I

(426) 0= Re [(U, = itr)(nr + éﬂy)]
M2 1 2 47
= __ORE: [(nr + my) (——i =3 P(z,3) + I_Ti (E{fﬂ) (dfg
0 - 0 ~

tcr ! .
(fo + —— 1'.’08“10)

lg:n: dz dz

-

———

whence, since
dh
(4.27) Re [(n“1 + my) ] " s

it follows that

0.
2] —_—r - .
428)  5(x,0))

1 /du v
= —Re {(n“’ + mJ) [—2 ( D(lj,JJ af(:rj,y_,-)) Pz, %)
: .
1 . .
+ 172(“-0(%« v;) — ivo(z;, y;)) (woz ;. y;) + ivo(z;,v5))

0
_%@M%Jﬂ-mﬁﬁwww+ww4ﬂ}.

Vomiz;

From (4.25) and (4.28) we obtain

dh aJ oI
429 () = -5 y;) + ?-m(-"js Yi)
0.] . I — i i ;
= g_"(xj,!f;)”i + ?—(-’rj«m)“i +i o=z yny = - (5, y)nz | -
on dn on dn

From (4.15), (4.18) we may determine the complex velocity at the control
points

(4.30) u(zj,y;) — iv(xg, y;) = uwolzj,y;) — ivolzj,y;)

ME[1 : 2 A
$—t [V—z(UD(JfMt.;') — dvg(x;,y;)) (uo(ej, y;) + iva(zj, ¥;))
0
dh ia ke ‘
+ g5 () * Voe™ = ol ) = ol 47))

+og (505, m) - 152G m)mwzﬁ

| '02 dx

http://rcin.org.pl
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and afterwards the speed of the fluid over the obstacle

(4.31) Vi(zjy;) = \/ (e, yj)* + v, y;)*

5. Physical validity of the results

Since the Imai-Lamla-Tacob method is based on the asymptotic expansion
with respect to Ay, the accuracy of the results increases when My = 0. For
investigating the compressibility effects, we are interested in working with great
values of Mg, but the actual method imposes some restrictions on M.

As we could see, the study of the compressible flow past an obstacle was
reduced to a series of boundary value problems for Laplace’s equation. This
method is not suitable for the supersonic compressible flow which is governed by
hyperbolic partial differential equations; we have therefore to request the local
speed of the fluid not to exceed the value of the speed of sound. For the isentropic
flow, the speed of the sound depends on the speed of the fluid as follows:

(5.1) o? = (:5 S o 7

or equivalently,

M - V2
(5.2) ATe=1-10 1.-1:3'?5
0 = 0

(5.3) @MU — <1
and particularly,
rll::m( 27+ 1

The relation (5.4) is a posteriori condition which has to be checked after cal-
culating the distribution of the velocity around the obstacle by the Imai-Lamla-
[acob method.

We shall assign to the ratio of specific heats the value v = 1.4.

http://rcin.org.pl
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6. Numerical results

We shall investigate the flow past the circular obstacle

(6.1) z=¢e%,  8¢€]0,2n]

36
We approximate the circle by the poligonal contour I' = |J I. The extremes
i=l
of the panel I'; are the points

(62) (xjsyj) = (COS‘QﬁSin 9))1 (IJ'+Ivyj+l) = (COS%‘{.],SEH 9J'+l)
with

@3 w
(6.3) b= 2=,  j=1N.

We impose the zero value to the velocity at the point
(6.4) 7 = 'l

and we consider the angle of attack a = 0.
Using the boundary element method we compute the flow speed in the control
points, and then the pressure coefficients

-1 ¢ S 2‘2 v
2(1-"’2 M&) (1— 3 '”0,‘2)
(6.5) C, = =
71—

A2 ¥/ (v=1)
o (1 IMQZ)
2
Expanding the pressure coefficient with respect to Chaplygin’s number, we get

) N 2
/2 M V2
% + —4‘l (1 = 17) + MJ(..)).

(6.6) Cp=1-

On the circular obstacle, the analytical expression of the flow speed [1] is
known,

B

J|r2
(6.7) V= 2V|sinf—sin 6| [1 + %‘(1 ~ 6¢cos20 — 20sin 6 sin 6, + 4 sin® 6,)

whence it follows that

2|, Mg - ;
(6.8) C, = 1-4(sin # —sin 6‘1)“{1 +%’-(1—6cos?0—2ﬂsm95m 0, +4sin>6,)

T [(I —4(sin @ — sin b)) ]
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Comparisons between the pressure coefficients in the control points, obtained
by means of the boundary element method and by means of the analytical formula
(6.8) are performed in Fig.1 for various values of Chaplygin’s number.

We introduce the lift coefficient

(6.9) CL= % / Cony ds,
I

where ( is the length of /". We can compute the lift coefficient numerically using
the formulas

N
(6.10) L= Zf’j,
1=1
1 X |
(6.11) CL = 2 Z(Cp(xj! ;) + Cp(zjen, Y+ )03 L5
i=1

For the circular obstacle, from (6.9) and (6.8) we get

: ¢ 8 4.
(6.12) Cp = —4sinf) — Mg sin (5 + is;m2 91) .
To conclude, we give some values for the lift coefficient obtained by means of
formulas (6.12) and (6.11) for various values of Mj:

M, 0 020 025 030
Cp, (numerical) 03584 0.3611 0.3660 0.3703
Cp, (analytical)  0.3486 0.3580 0.3632 0.3696
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