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On double waves and wave-wave interaction in gasdynamics 

z. PERADZYNSKI (WARSZAWA) 

SPECIAL CLASSES of potential isentropic nonstationary flows in two space dimensions are considered. 
We demonstrate that locally these solutions can be understood as resulting from what we call elastic 
inte raction (since no other waves are produced) of two Riemann waves (simple waves). It appears 
that this is a generic property of interactions of sound modes in gasc..lynamics. That is, two non linear 
(localised) sound waves propagating at any angle can cross each other without producing new waves 
- similarly as it happens in one space dimension. 

1. Introduction 

IN THIS PAPER we deal with certain classes of isentropic nonstationary flows of an 
ideal compressible fl uid. Each of these classes depends on two arbitrary functions 
of one variable and may be obtained as a solution of a certain speciali zed system 
of two hyperbolic equations with two dependent and two independent variables. 
We call them hyperbolic double waves or, for short, double waves. It appears that 
they can be understood as resulting from the special type of interaction of two 
simple waves. This interaction can be called elastic since collision of two waves 
leads also to two waves, in contrast to the case of nonelastic in teraction [1 8, 
19]. This idea can be clearly explained in the case of one space dimension. One 
can take two localised perturbations in the form of two simple waves which are 
approaching each other. Then they begin to in teract. Depending on the nature 
of the waves, different scenarios are possible: 

1. In spite of nonlinear interaction, the waves can cross the region of interac-
tion, the state of rest being there restored. 

2. Due to nonlinear interaction, certain new disturbances are produced. This 
happens, for instance, when a sound wave is interacting with an entropy wave 
[1 8, 20]. 

In the Case 1 one can speak of elastic interaction. In a similar way, one can 
speak of elastic interaction in the case of waves crossing each other at a certain 
angle in many spatial dimensions. In this case one should restrict the considera-
tions to the domain of determinacy of the solution. This wi ll be explained later 
in Sec. 6. 

Although this subject has a long history starting from Riemann (1858) [22, 
5, 9, 23, 3, 4, 21, 12, 19, 20, 24, 6, 10, 11], it is still far from being exhausted. 
Like solitons, it contributes to the understanding of nonlinear phenomena. The 
most complete analysis of mathematical properties of such solutions, as well as 
the general theory of k-waves, is contained in [19] . A considerable part of this 
results can be found also in [20]. In this paper we present a simplified version of 
the theory, with application to nonstationary gasdynamics. 
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In Sec. 2 we define the Riemann (simple) waves and then the hyperboli c couble 
waves for a general quasilinear system of the first order and derive the concitions 
of their existence. Section 3 contains the application of theory of Sec. 2 o the 
equations of nonstationary two-dimensional flows in gas-dynamics. We cmfined 
ourselves to the case of nonstationary two-dimensional flows, although, as t may 
be proved, a similar analysis can be made for three-dimensional flows. Hlving, 
however, a three-dimensional hodograph space (as there is for two-dimemional 
nonstationary or three-dimensional stationary flows) makes it possible to obtain 
a single equation i.e. Eq. (3.8) describing hodographs of double waves. In ｾ ･｣ｳＮ＠ 4 
and 5 specific classes of such hodographs and the corresponding double ;vaves 
are considered. Then in Sec. 6 we discuss, in general, the interaction problen for 
sound modes in gasdynamics. We demonstrate there that for suffici ently small 
amplitudes (in order not to enter the elliptic region of Eq. (3.8) or Eq. (6.1 ), the 
waves are subjected to an elastic interaction described by double waves. 

Similar considerations can be performed for stationary supersonic flows Also 
by using imaginary characteristic elements, one can generalize this procdure 
[19, 20] to the elliptic (or mixed) case of stationary supersonic (transonic) flows. 
Then one can prove that these generalized double waves can represent flows 
past three-dimensional profi les which are developable surfaces. This rruy be 
useful in searching for 3-D-developable airfoils, similarly as it was done n the 
two-dimensional case [1 , 2, 8]. 

2. Simple and double waves 

Let us consider a nonlinear system of PDE's 

(2.1) 11 = 1, ... ,n, j = 1, ... , l , s = l, . .. , m . 

A solution u( ·) : [2 ---+ IR1
, [2 E !Rn, of system (2.1) is of the simple wav:-type 

if and only if the Jacobi matrix rlu = ( ui •x"') is of rank 1 in [2. 

Let us note that any l x n matrix of rank 1 can be represented as 1 ® >. = ("i A11 ) , 

j = 1, ... , L, v = 1, ... , n. If 1 ® A satisfies 

(2.2) 

then one speaks of the polarization vector 1 E IR1 and the wave vector (orchar-
acteristic covector) A E !Rn. The matrix 1 ® A satisfying (2.2) will be calltd the 
characteristic element at u. There are solutions of (2.1) associated with ctarac-
teristic elements. These solutions, called simple waves (or Riemann ｷ｡ｶ･ ｾＩＬ＠ can 
be constructed by taking any parameterized C 1 curve u = f(R), R E (a, b) in 

IR1 and such that for every Ro E (a, b), the tangent vector 1 := ｲｬｾ＠ f iR=I o is a 
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polarization vector at u0 = f(R0). Let >..(R) be the field of the corresponding 
wave vectors defined over this curve, i.e. 

R E (a , b). 

Then one implicitly defines a class of local simple wave-type solutions 

(2.3) u = f(R), 

where rp: JR1 ....... (a, b) is an arbitrary C1 function. One can also easily verify that 
the equations 

(2.4) Av(R)(xv - yv(R)) = 0, u = f(R) 

define a simple wave solution in some neighbourhood of the curve x = y(R), 

which takes values f(R) at this curve, provided >..v ｾｾ＠ f. 0. If >.. 1\ J.., R f. 0, then 

the limiting case 1t = f(R) and >..,,(R)(:rv - x v) = 0 also defines a simple wave. 
0 

Similarly, any solution u( • ) : n ---. IR.1 is of a hyperbolic double wave-type if 
for every x E n, du(x ) is a sum of two characteristic elements 

1 2 

(2.5) du = I ® >.. + I ® >.. 
I 2 

I 2 

with linearly independent 1 , 1 and >.. , >...Thus rank du = 2, and the range u(rl) 
1 2 

of u( ·)is a two-dimensional surface in IR.1• The plane tangent to u(rl) at u(x ) is 
spanned by 1 , 1. As is known from differential geometry, given a two-dimensional 

1 2 
surface with two independent vector fi elds 1 , 1 defined on it, there exists a local 

1 2 
system of coordinates on the surface, whose lines are tangent to 1, I· In other 

I 2 

words, there exists a local parameterization u = f(R1, R2) of the surface, such 
that 

(2.6) 
of 

- "'I fJ R2 2 • 

Therefore the double wave solution can be sought in the form u = f(R1 (x), R2(x)). 
Inserting u = f(R1, R2) into Eq. (2.5) one comes to the conclusion that the func-
tions R1 = R1(x), R2 = R2(x ) satisfy 

(2.7) 

1 2 

for some functions ｾ Ｑ Ｈ ｸＩ＠ and e (x). Here>.., >.. are the wave vectors corresponding 
to the polarization vectors 1, 1 , respectively. 

1 2 
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The construction of double wave solutions is, however, much more involved 
than the one for simple waves. Since, in general, system (2.7) is overdetermined 
(2n equations for four unknown functions R1' R2, ｾｉ Ｇ＠ e ), it can have no solu-
tions of rank 2. For this reason, not every two-dimensional surface parameterized 
according to (2.6) is in the range of a double wave solution. Additional restric-
tions which follow from the compatibility conditions of Eqs. (2.7) must be im-
posed. They require [15, 16, 20] the existence of functions ｡ｾ Ｈｒ Ｑ Ｌ＠ R2) , a1( R1, R2), 

f3i(R1, R2), {3 f(R 1, R2) such that 

(2.8) 

The above conditions are equivalent to 

(2.9) 
( r) • • L.l: := A 1\ A 1\ A ,nr = 0, r ,s = 1, 2, 

where 1\ denotes an exterior product [7] and no summation over r is performed. 
If (2.8) is sati sfied, then Eqs. (2.7) are compatible (involutive) and their general 
solution depends on two arbitrary functio ns of one variable [15, 16, 20]. In order to 
obtain a solution of Eqs. (2.7) several approaches may be applied. From the form 
ofEqs. (2.7) we see that the solution is constant over certain lin ear manifolds M x 

0 

of dimension ( n- 2) ( n is the dimension of the configuration space of x 1, .. . , xn 
variables). M x is given by the following equations for x 

0 

t(J(R 1(x ), R\x ))) (.rv- :rv) = 0, 
0 0 u 

t (J(R1(x ), R2(:t ))) (.rv- :rv) = 0, 
0 0 0 

X -(xI xn) - . , ... , .. 
0 0 0 

Therefore, at the beginning of the solution we may confine our attention to 
a two-dimensional plane in the configuration space, which has the property of 
intersecting each M x at only one point. Suppose that the plane x 1, x2 has this 

0 

property. In such a case system (2.7) may he restricted to the plane x1,x2, to 
obtain 

(2.10) 2 2 
2 

R s = ｾ＠ As, • .r 
s = 1, 2 . 

Eliminating the variables ｾ Ｑ Ｌ＠ ｾ Ｒ＠ we reduce Eq. (2.10) to the following hyperbolic 
system 

(2.11) s = 1, 2, 

2 2 I I 

where C'1 = (>.z , - >. 1), C'z = (>.z , - >.1) are " tangent characteristic vectors" for 
system (2.11 ). This system can be treated by the method of characteristics. 
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Another possibility is to apply the hodograph transformation which converts 
Eq. (2.11) into a linear system. Indeed, multiplying Eqs. (2.10) by 8x5 /8R2 and 
by ｡ｸＺｾ＠ I 8R1 respectively, we obtain a linear homogeneous system in R1, R2 

2 I 2 OXs 
>..s(J(Il , R )) [)RI = 0, 

which is equivalent to the previous o ne for nondegenerate solutions (rank 
ｉ ｉ ｒ ｾ ｉｉ＠ = 2). 

Another approach can be also applied in which system (2.7) is also reduced 
to a linear hyperboli c system. This approach may sometimes be useful. Assuming 
that ai(R1, R2), af(R1, R2), .Bi (R1, R2) , .B?(R1, R2) are the coefficients appearing 
in conditions (2.8), we have 

THEOREM 1. If 'ljJ 1, 'lj; 2 is a solution of the linear equations 

(2.12) 

then the implicit formulae 

(2.13) 

define a solution of Eqs. (2.1) in some neighbourhood of (x, R 1, R 2) provided that 
0 0 0 

I 2 

( 'lj; 1 - >.. vx" ), 1 f 0 and ( 'lj; 2 - A11:t'" ), 2 f 0 at (x, R 1, R 2) satisfying (2.13). 
oR n R no o 

Indeed, by di ffe renti ating the impl ici t fo rmulae (2.13) we see that the gradient 
I 2 

o f R 1, R2 is proportional to >.. ( R 1, R2) , >.. ( fl 1, R2) , respectively. 
Formulae (2.13) const itute an interesting generali zation of a similar formula 

(Eq. (2.3)) for simple waves. Let us note that E qs. (2.13) have always the trivi al 
so lution 'lj; 1 = 'lj;2 = 0 which by Eqs. (2.13) defin es a certain double wave (gener-
alizatio n of formula (2.4)). Theorem 1 can be generali zed in an obvious way fo r 
k-waves by replacing indices 1 and 2 with a, ,8 = 1, ... , k, a f ,8. Then the gen-
eral solution depends o n k-functio ns of one vari able, e.g. defining the problem 
of waves entering the interaction (the formulation of the theorem in [1 0, 11] is 
erroneous). 

In principl e one can start from two independent characteristic elements in 
Eq. (2.5) expressed as some functions o f u. Then the Frobenius theorem tell s us 
that for any given point u0, there exists a two-dimensional surface passing through 
u0 and tangent at each of i ts points to the vecto r fi elds 1 , 1 if and only if 

I 2 

E Lin {/,1 }, 
I 2 
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. a . a 
where [X, Y] = Xt -a . Y - yt -a . X is the commutator of the vector fields X, Y 

ut ut 
and Lin {X , Y} denotes the linear combination of X , Y. In such a case differen-
tiati on with respect to R1, R2 in Eqs. (2.8) must be replaced by d ifferentiation 

a 1 . a I 

along 1, 1 , e.g. aR2 .A ---+ 1 t -a . .A . 
1 2 2 ut 

Now we will demonstrate that the solution of Eq. (2.5) can be interpreted locally 
as resulting from the interaction of two localised Riemann waves, in the sense that 
one wave is propagating across the other. By "localised" we mean here that the fi rst 
deri vative of r.p in (2.3) is localised. 

The level sets R 1 ( x ) = const and R2 = const can be thought of as constant 
phase surfaces of the first and second wave, respectively. Since they are solutions 

I 2 

of the PfafT forms .A11dx11 = 0 and A11dx11 = 0 respectively, they are orthogonal 
I 2 

to their wave vectors, .A or .A. For an unperturbed Riemann wave such a surface 
is a hyperplane. In general, however, the mutual interaction expressed in the 
nonlinearity of system (2.5) leads to local changes of the wave vectors. For brevi ty, 
in the foll owing we co nfi ne our attention to the two-dimensional case, when the 
level sets of R1 and R2 define two families of curves which are characteristic 
curves of E q. (2.5). In case of three dimensions t, x 1, x2 one can think of the 
picture at any constant t . 

F I G. 1. 

Now, suppose a solution of Eq. (2.5) of rank 2 is given in a region f? containing 
a point x0. Consider a neighbourhood of the point x0 bounded by a curvili near 
quadrangle A, B , C, D (Fig. l ), the sides of which are characteristi c curves (i .e. 

I 2 

these curves are perpendicular to .A and .A, respectively). By what we call the 
circumvention procedure, we construct a new solution which takes the same values 
as the former one in the quadrangle (including its sides). Outside it we extend 
the solution in the foll owing way: fir st we prolong any characteristics contained in 
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ABC D by a straight half-line keeping the direction of the characteristic (Fig. 2). 
On this line we define the solution u to be a constant equal to the value it takes 
at the point where the line crosses the side of the quadrangle. 

FIG. 2. 

In the remaining domains which are the interiors of the four angles with the 
vertices A, n, C, D we put u equal to 11(A), u(!J), 1t(C), u(D), respectively. This 
procedure defines, in a certain neighbourhood of the quadrangle, a Lipschitz 
continuous mapping which is also differentiable in this neighbourhood, perhaps 
with the exception of characteristic curves passing through any of the points 
A , B , C, D. In this way weak discontinuity of a solution may occur. This mapping is 
the new solution of Eq. (2.5) which represents two interacting localized Riemann 
waves. The interior of the quadrangle is a domain of interaction, and outside 
it, by construction, the mapping is either a constant or is constant on the lines 
orthogonal to the respective wave vector .>. , thus assuring that it is a Riemann 
wave-type solution. 

3. The hodograph problem 

We will consider equations of plane nonstationary isentropic flows [5, 13] 

K, - 1 
(fJt + u. v)a + -2- a div u = 0, 

(3.1) 
2 

(fJt + u • V) u + ,., _ 
1 

a\la = 0, 
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where u = (u1, u2) , \7 = (8x,/3y), a is the sound speed, a2 = dp/ de and K. is 
the isentropy exponent, 1 < K. < 3. The number of equations is equal to three, 
as is the number of unknown functions a, u1, tt2 or the number of independent 

. bl I 2 van a es t , x , x . 
According to Eq. (2.2), the characteristic directions are 

1) 
(3.2) 

2) 

where (uif) = [2/ (K. -1)]a/0 + u11 1 + u21 2 and e = (e1 , e2) is a two-dimensional 
unit vector [17]. Similarly to three-dimensional fl ows [17] , the fir st type of simple 
elements generates potentia l flows (sound modes) and this case will be considered 
here. Note that the characteristic vector ,\ for the potential elements can be 
represented as a lin ear function of 1 

where 
2 

11
1 

' 
u 2 

h: - 1 ' 
lP'= 0, - 1, 0 

0, 0, - 1 

Let us denote f "' := 11 f)f) . f , for simplicity . The exterior product of three vectors 
, ' u J 

in three-dimensional space I , x 1, .r 2 may he identifi ed with the determinant, so tha t 

where [ai .BI! ] = detlla,,B,/11· 
By a well-known transformation property of determinants [ lP' a I IP.B I IP''Y] = 

det!P'[a , ,B, , ], we can write the conditions of involutions (2.9) L1: = 0 as follows 

q = (1 ,0,0), 

or 

(3.3) 
2 L1: = (! x ｾ ｦ Ｉﾷ＠ (q(! 11) + --a1 ) = 0, 

.!1 , . s r K - 1 s ,"( 

where the dot denotes the scalar product. 
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Suppose that the hodograph surface which will be deno ted by G2 is described 
by a C 1-function F(a, 1t 1, u2) = 0, with a nonvanishing gradient. The gradient 
'Vu F = (Fa, Fu, , F112) is orthogonal to the surface G2 and therefore it must be 
proportional to the vector product I' x 1 of vectors 1, 1 which are tangent to 

1 2 I 2 

G2. Using this fact, we substitute 'V 11F for 1 x I' in E q. (3.3) to obtain 
I 2 

(3.4) 

On the other hand, d ifferentiation of a self- evident relation F,111 ! j = 0 with 
r 

respect to u i and multip lication by 1 i yields 
r 

which allows us to transform Eq. (3.4) to the fo ll owing symmetric fo rm 

Therefore, the set o f conditions (3.4) is reduced to the fo ll owing one 

(3.5) 
2 . . 

(/' I!)F c,- --
1
aFuJ11 •/'

1
/

1 = 0. 
I 2 ' f\- ' I 2 

In accordance with 1) of (3.2) we can assume 

(

f;, - 1 ) 1 = -
2
-, C0Scp5 , sin cp5 • 

Then we have ( 1 11) = ( n. - 1) /2 + cos 28, where 8 = cp1 - cp2 and the vectors 1, 
I 2 I 

1 can be obtained from the relations 
2 

(3.6) F '\10 + f:' ｾ＠ 1 + /:' ｾ＠ 2 - 0 a 1 u l Y r 112 Y - • 

Further on, cos 28 may be expressed by the derivatives o f F to obtain 

(3 .7) 
p2 (f{,- 1) 2 

cos28 = a --
p 2 + p2 2 

u1 u2 

from which it fo ll ows that in o rder to have a real 8, we must satisfy the fo ll owing 
inequality 

p2 < (-2- )2 
(F2 + p2 ). 

a f\. - 1 tt ' u2 
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Introducing a = (2/ (K- 1)]a in Eq. (3.5) and expressing Fu'uJ/ilj in terms of 
derivatives of F, we arrive at the following, rather complicated, equation wh.ch 
must be satisfied on surface C2 

(3 8) -- + a __ a_ 
( 

K - 3 2F?- ) 2 F: 
. 2 F2 +F2 K-1 

U V 

_ (F. 1 (F F ) F,; - FJ 2F F Fuv 
-a "ii ii + -

2 
uu - vv F2 F2 + 'u "v F2 ..,2 

u + v u + 1 v 

where u, v denote u 1, u2• 

By specialization F = cp(a) - f(u, v) we may remove the terms involv.ng 
the derivatives Fau and Fav· This form of F can be assumed without mLch 
loss of generality. As follows from the Sard ｴｨ･ｾｲ･ｭ＠ [14], such a representa-
tion of F can cease to hold only on a set of measure zero. A particular c1se 

F = 'f/; (a) -1(u2 + v2
) , leads to rotational hodograph surfaces, described by or-

dinary difTerential equations 

(3.9) -- + - -- - a 'lj; - - + 1 = 0. 
( 

K - 3 'f/;'
2

) 2'f/;1 
_ ( 11 'f/; '2 ) 

2 'lj; K-1 1/J 

Here "'" denotes differentiation with respect to a. The solution of Eqs. (::.9) 
depends on two arbitrary constants both of which have a physical meaning, i.e. 
they cannot be retransformed by Galilean transformation. Therefore both C)n-
stants determine the shape of the rotational surface. It may be checked that :he 
functions 

) (- ) - 1...,.2 a 'lj; a = 4a , and b) ·'·(- ) K - 1 -2 '+' a = --
4
-a + c 

are the particular solutions of Eqs. (3.9). Both solutions lead to hodographs ｷｾｩ ｣ｨ＠

are the quadratic surfaces: 

a. 1a2 - u2 - v2 = 0 - the hodograph is a cone; its equation in variatles 

a, u, v takes the form ( a j2) 2 

- 1t
2 - v2 = 0. From relation (3.7) we h:Ive 

K- ] 

cos2 8 = 1/2; we can put 8 = r. / 4 since other cases provide nothing new. 

b. -
2
-a2 + u2 + v2 = c - describes a family of ellipsoids and physic11ly 

K- ] 
expresses Bernoulli's law. Therefore, solutions associated with such hodogra?hs 
are the well known two-dimensional stationary hypersonic flows (if u2 + v2 > L

2) . 
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4. Flows with constant Mach number 

We direct our attention to the conical hodograph surface (Case a). The curves 
tangent to 1 and 1 are spirals and their projections on the (u, v)-plane are 

I 2 

logarithmic spirals. In the parametrical form with parameters cp, (}, the cone may 
be represented by the following expressions 

(4.1) 
K- 1 

a= J2 (}, u = (} coscp, v = (}sin cp . 

The mentioned spirals on the cone are given by Eqs. ( 4.1) with an additional 
relation between (} and cp 

(4.2) 

with constant R2 on the curves of the first family; or 

(4.3) 

with constant R1 on the spirals of the second family. 
By eliminating (} and cp from relations ( 4.2) and ( 4.3) we may take R 1, R2 

as the coordinates. Thus, remembering that cot 8 = 1, (}, cp become functions 
of R1, R2 

(4.4) 

Since 1:::: ｯｾ ｳ Ｈ｡ Ｌ ｵ Ｌｶ Ｉ＠ then, utilizing Eqs.(4.1), (4.4) and (3.2), we arrive at the 

characteristic elements (! corresponds to - and 1 to +) 
I 2 

7 , 1 = ( K ; 
1 

, cos ( cp =F ｾＩ＠ , sin ( cp =F ｾＩＩ＠ , 

ｾＩ＠ = Ｈｾ ＨｽＬ＠ Ｍ ｣ｯｳＨ ｣ＮｰＺｲＺ ｾＩ Ｌ＠ Ｍ ｳｩｮＨ ｣ｰＺｲＺ ｾＩＩ＠

I 2 

and the vector a "' >. x >.. As we know from Sec. 1, the solution is constant along 
I 2 I 2 

the directions a orthogonal to>., >.. Thus a=>. x >. = (l , K(}COscp,K{}Sin cp) = 
(1 , ;;,u , Kv ). By using this property, the Pfaff equations (3.8) which in this case 
take the form 

( 4.5) 

dR1 = e ( _!:___(} dl - cos ( cp- ｾ Ｉ＠ dx1 - sin (cp- ｾＩ＠ dx2
) J2 4 . 4 . , 
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can be restricted to the plane l = const. Then their solution R6(x 1, x2), R6(x 1, x2) 

may be extended to a certain neighhorhood of the plane t = const in such a way 
that this extended solution is constant along the straight lin es defin ed in each 
point (O, x1,x2) by the vector a(R1(x 1,x2) , R2(.t 1,:r2)). Let us note that a is 
never parallel to the (xI' x2)-plane. Putting dt = 0 and elimin ating e. e from 
Eqs. (4.5) we arrive at an equivalent hyperbolic system 

(4.6) 

which is treatable by the method of characteristics. In the case of nondegenerate 
solutions of Eqs. ( 4.6) one can also apply the hodograph transformation which, 
by exchanging the role of dependent and independent variables, leads to the 
foll owing linear system 

(4.7) 

I ( 1 2 1f) 2 · ( 1 2 1f) x ,n2 cos R - R - 4 + ＺｾＮﾷ Ｎ ｮ Ｒ＠ sm R - R - 4 = 0, 

2 ( 1 2 1f) 2 . ( 1 2 1f ) 
X ,RI cos R - R + 4 + :l.' ,RI Sin R - R + 4 = 0. 

Equations (4.5) may be also reduced to the telegraphic equation by introducing 
new variables '1/•1, 'ljJ2 according to Theorem 1. Then from (2.12) o ne obtains an 
equivalent form of Eqs. (4.5) 

(4.8) . 1,1 _ , /,2 = 0 
V· ,R2 V , 11,2 _ .1,1 _ 0 

-r ,1?1 •r - . 

Elimin ation of one of the unknown functions, say '1/•2, reduces Eqs. (4.7) to the 
telegraphic equation 

t/•.1n iJ<2 - t/• 1 = 0. 

The solution is then determined by 

(4.9) 
( 

( I 2 1f) · (I 2 1f) ) 
( 1P:) = cos n - ll - : , srn .17 - R - : ( x ' ) 

1P cos ( R1 
- R2 + 4) , sin ( R1 

- H2 + 4) :r2 

/'{, ( 1 \) 
- vz[! l 11 

and by Eq. ( 4.4) in a parametric form, R 1, R2 are the parameters. Let us note 
that the considered solutions describe nonstationary flows with the constant ｍ｡｣ｾ＠
number M = (u2 + v2) 112 j a = VZ/(" - 1). 
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The matrix in ( 4.9), call it S ( <p- 1r I 4 ), is an o rthogonal matrix of the clockwise 
rotation by the angle R 1 - R2 - 1r I 4 = <p - 1r I 4. The coordinates ( x 1, x2) can be 
easil y expressed as 

where T denotes the matrix transposition. In the trivial case 'f/;1 = 'f/;2 = 0 which 
obviously satisfies ( 4.8), we arrive at 

( 4.10) 
J2x 

u= --. 
,., l 

Then according to (4.1) a = (!i-1)l,.,lxltl. In Fig. 1 the projection o n u1, u2 plane 
of the curves R1 = const and R2 = const, respectively, defined by Eq. (4.4) are 
shown. By Eq. ( 4.1 0), up to the scaling factor J21 "'• they are also characteristic 
curves on xl /-plane. 

As it was pointed out in Sec. 1, every double wave can be locally interpreted as 
resulti ng from the interaction of two localised simple waves. In this way, a some-
what trivi al solution defined by Eq. (4.4) may give rise to interesting interactions 
of simple waves. Inside the quadrangle ,\ne D (Fig. 2) on the (.r I I l , x2 It) plane, 
the solution is defined by ( 4.1 0). Outside it we have simple waves (or constant 
states in the corners A, 13, C, D). The sides of the quadrangle are lines defined by 

where R 1 (respectively R2) take appropriate constant values. The straight lines 
emanating from the quadrangle are the lin es of constant phase of the correspond-
ing simple waves. In accordance with Sec. 1 these waves are defined analytically 
by Eq. (2.4). 

5. Cylin drical hodograph 

Now we may ask whether the hodographs which are cylindrical surfaces exist. 
The case F = F( n, v) is an immediate generalizati on o f one-dimensional non-
stationary flows for which the hodograph is v = 0. Of course, by adjusting the 
system of coordinates we may at least locally restri ct our attention to functions 
F of the following form F( n, v) = u - '1/.•( u) (a consequence o f implicit function 
theorem) which, substituted into equation (3.8) yields 

'2 
Ｍ ｾ ｬＬ ｢ ＱＱＱ Ｍ '!}> / + ｾ ＧＰ ＱＱ＠ = 0. 

2 1 + ｾＩ＠ 2 2 
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This may be split into two alternative conditions 

'lj;" = 0, or 
1- 'lj; '2 
1 + '1/-,'2 = 1. 

In both cases we obtain nothing more than linear functions (hence defined glob-
ally) which by an appropriate Galilean transformation can be transformed into a 
one-dimensional case v = 0. 

Thus, in addition to the planes described by the above linear functions, there are 
no hodographs of the form F(1t, v) = 0. 

We shall see, however, that there are other hodographs generated by a curve 
moving along the constant direction in the space of a, u, v - each cylindrical 
surface is generated by an appropriate curve moving in a constant direction. 
As an example, consider the hodograph given by the relation u - 'lj;(a) = 0. 
Substituting it to Eq. (3.8) we obtain the following ordinary differential equation 

(5.1) 2 ( K, - 3 '2) 1 - 11 -- -- + 2if; 1/-, - a'f/-' = 0 
K.-1 2 

with separable variables. Hence we have 

2 da 
(5.2) 

dtf;' 
ＭＬＨＬＭＭＭＢＧＭ［ＭＭＭ］ＳＭＫＭＧＭＭ Ｒ Ｍ ｾＬＭＬ Ｒ ＮＮＬＮＮＮＩＭＧｬｪ［Ｍ Ｌ＠ - -,.. ---1 a ' 

which may be integrated to yield for 1 < "' < 3 

(5.3) 'lj;(a) = ± 7 j (1- ca:2(3-t<)/(t<-IJ) - l/
2 da + c 1, 

where C, C1 are arbitrary constants. This solution depends on two arbitrary con-
stants but one of them, C1, may be retransformed by the Galilean transformation. 

As follows from a closer analysis, constant C can also be retransformed to 
obtain one of the three values C = - 1, 0, 1. This can be achieved by using the 
following transformation (a, u) --+ (Jw , fLU), (I , x) ____, ((Jt, f.l fJx ) which transforms 
solutions of Eqs. (3.1) into other solutions, J.L and (J are arbitrary nonzero con-
stants. The case C = 0 leads to the plane hodograph of noninteracting waves 
which were found in [17]. These represent a certain interesting feature of the 
gasdynamic system: nonl inear waves can be subjected to a linear interference. 
Therefore we may restrict ourselves to the cases C = ±1. Equation (3.4), Case 1, 
leads to the foll owing expressions 

for the polarization vectors in the hodograph space of (a, u, v) variables. 



http://rcin.org.pl

ON DOUBLE WAVES AND WAVE- WAVE INTERACTION IN GASDYNAM ICS 1083 

I 2 

Calculating the characteristic vectors A, A corresponding to 1, 1 respectively, 
I 2 

I 2 

we have ( + for A and - for A) 

ｾ Ｎ＠ ｾ＠ = Ｈｾ［＠
1 
a+ 7/J'Ca) lj; (a) ± vJ1-7J;'2(a), -7/J'(a), ±{- 1)J 1 -7/J'(a)), 

I 2 
and the direction a = A x A on which the solution must be constant 

a = ( 1, ｾ Ｒ ｾＬ
Ｑ＠
a + u, v) . 

In the case ｾ＠ = 2 integration in fo rmula (5.3) may be done explicitly and we 
obtain 

{ 

1 h -
- 1 da - ars a 

7/J(a) = 2 J v1 + Ca2 = ± 
2
1 . _ 

--arsm a 
2 

if c = 1, 

if c = - 1. 

The hodograph surfaces may be given by relatio ns 

(5.4) 1) a- sinh2u = 0, 2) n - sin 271 = 0. 

Thking advantage of the fact that the operator 

oD 18 2° 
a at +a {)x l + a iJ.r2 ( {) ｾＭ Ｑ ｟ ｻＩＩ＠= - + u • V + --a-

Dt Ｒ ｾＧ ＧＨ｡Ｉ＠ ox 1 

vanishes on the solutions considered, one can replace 81 + u · V in Eqs. (3.1) by 
Ｍ Ｈｾ Ｍ ＱＩＨＲ Ｑｪ［ ＧＨ｡ＩＩ Ｍ Ｑ ｡ｄＯｄｸ Ｑ Ｎ＠ Expressing then n in terms of 11 according to Eq. (5.3) 
(e.g. a = Sinh 211 Or a= Sin 2u, forK = 2), One immediate ly Obtains twO equatiOnS 
defi ning double waves in terms of the original variables 11, v 

Ｈ｡ｾ ｵＭ 1) ＱＱ ＮｾＬＮ Ｑ Ｍ v2.2 = 0, 

V.r1 - 1l.r2 = Q. 

Their solutions define double waves taken at some constant l, therefore they 
must be extended over the space l , :r 1, x2 in such a way that they are constant 
a long the directions of a ( 11 , v). This illustrates another procedure o f obtaining 
the equations defining double waves, probably the fastest since no additional 
variables R1, R2 are required. In the Case 1 of (5.4) this system is hyperboli c fo r 
any value of 11 , whereas in the Case 2 it changes its type on lin es u = ±1r / 6, (i.e. 
cos 4u = - 1 / 2). For cos 4u < - 1/2 it becomes elli ptic. O ne can demonstrate, 
however, that its solutions are still solutions of the basic system (3.1) [1 9, 20] . To 
conclude, let us also note that the most general cylindrical surface can be locally 
represented by 1t - 1.i'(a- ov) = 0, o is a constant. This leads, however, to a mo re 
complicated equation than Eq. (5.1 ). 
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6. A general remark on the problem of wave-wave interaction 

By substitution F = a- lj;( u. v ), Eq. (3.8) may be transformed to the following 
form 

(6.1) K=l [K;l ＨＧＱＯｊｾ Ｋ ＧｉＯｊ ｾＩ＠ +2] ＭＧＱＯｊ ｻＨ ｬＯＱ ｾＭ ＱＩ ＧＱＯｊｵｵ＠

+ ( ＱＯｊ ｾＭ 1) 1/Jvv- 21/Jul/Jv'I/Juv } = 0. 
This specialization excludes the case when F = F(u, v) but, as we know 

from previous consideration, only one-dimensional nonstationary flows are of 
this form. Equation (6.1) is of the second order and its characteristics (u(s), v(s)) 
are given by 

(6.2) Ｈ ＱＯＱ ｾＭ 1)u'2 + Ｈ ＱＯｊ ｾ Ｍ l) v'2 + 21/Jul/Jv u' v' = 0. 

However, as follows from Eq. (3.2), any C 1 curve (n(s), 11(8), ｶ ｃｾＩＩ＠ is a range of 
an irrotational simple wave if its tangent vector (n, u', v') is a polarization vector, 
i.e. if it satisfies 

(6.3) (n')2 - u'2 - v'2 = 0. 

Suppose that this curve lies on the surface 7i- 1}!(11, v) = 0 . Differentiating this 
relation with respect to s we have a' = 'lf'tt u' + 1/'t.v' . When applied to Eq. (6.3) it 
converts it into Eq. (6.2). Thus, characteristic lines of Eq. (6.1) are also projections 
of characteristics of Eq. (3.8) on the ( 11, P) plane. However, according to our 
considerations in Sec. 2, the characteristics of Eq. (3.8) are the images of simple 
waves. As can be seen from (6.2), Eq. (6.1) becomes elliptic if Ｇｬｪ［ｾ＠ + ＱＯＱｾ＠ < 1. 

Let us now consider the initial condition for the flow equations (3.1) which 
is defined in a circle on the (x, y) plane for l = 0, and which represents two 
localized simple waves approaching each other, separated by a constant state 
Uo = (ao, 1to, v0) (Fig. 3). If the amplitudes and their derivatives are not too 
large, then, in the "conical" region of t , .1: 1, .r2, where the solution is uniquely 
determined, the solution exists and it represents two simple waves crossing each 
other for some larger t (similarly as in Fig. 2). 

In order to demonstrate this, let us notice that the image (the set ofvalues) of 
the initial conditions consists of two pieces of characteristic curves F1, 12 in the 
hodograph space passing through point Uo (Fig. 4). Let us ·now take F1, F2 as the 
Darboux problem for Eq. (6.1 ). The value of 7/• is then given on two intersecting 
characteristics of Eq. (6.1). Let r 1, r2 be given in a parametrical form 

F1 = (a = ao(s), U = O'J (s), V = ＨｾＲＨ ｳ Ｉ ＩＬ＠

F2 = (a = f3o(r ), U = f3 I (r ) , V = fh (r) ), 
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F IG. 3. 

F IG . 4. 

Then the projection i't = (n:1(s) , o-2(s)) , i'z = (,61(T), .Bz(T)) are the character-
istics of Eq. (6.1) and we may set 

Let us also assume that a0(s), .Bo(T) > 0, otherwise we would have a singularity 
in Eq. (6.1). Indeed, a2 = dpf do, a= 0 corresponds to the vacuum. 

In conclusion, we state the fo llowing theo rem 

THEOREM 2. Let F1 , F2 be two characteristic cwves of class C2 in the hodograph 
space passing through the point Uo = (ao, uo, vo). If ao > 0, then · 

1) there exists a unique solution of the above Darhoux problem provided that 
F1, r 2 are of sufficiently small Length and have a cwvature small enough ; 
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2) the swface a = ,P( u , v ) representing the solution is covered by two families of 
characteristic curves in the hodograph space, and its boundary consists of pieces of 
characteristic curves passing through the end points of r1 and r 2, thus fom1ing a 
curvilinear quadrangle (Fig. 3). 

The proof can be obtained by representing the solution o f the linearized prob-
lem in the form of a double integral along the characteristics. Then, using suc-
cessive approximations and the Banach contraction principle one can prove the 
convergence. Let us note, that we work in the region of hyperbolicity of Eq. (6.1 ), 
since there are two characteristics F1, r2 at Uo and this must be true in some 
neighborhood of the Darboux data. 

We do not present the details of the proof since the proof for a general case 
of interacting waves can be found in [20]. 

Suppose now, that the considered solution a = ,P(u, v ) of Eq. (6.1), repre-
senting the surface as shown in Fig. 3, is given. At this moment one can assume 
a new system of coordinates on the surface, whose lines are the two families 
of characteristic curves from which the surface is "weaved". Vectors tangent to 
these lines are the polarization vector-fi elds and thus .X 1, .X2 can be determined 
according to (3.1) and expressed in terms of R1, R2 . Having .X 1, .X 2, the equations 
for R1(t ,x,y), R2(t ,x,y) can be solved by assuming fo r R1(0, x ,y), R2(0, x ,y) 
the profiles of the waves specifi ed by the initi al conditi ons. 

If the amplitudes of the waves are large, the soluti0n of Eq. (6.1) can enter the 
ellipticity region (e.g. Case 2 in Sec. 5). Similarly, if the profiles of initial waves 
are too steep, the solution can develop the singularities (gradient catastrophe) 
before the interaction is fully developed. 

The form of Eq. (6.1) suggests the possibility of a geometric interpretation. 
The term 

Ｈ ＧＱＯｊ ｾ Ｍ 1}411uu + Ｈ ＧＱＯｊ ｾＭ l) if!vu- Ｒ ｾ Ｑ ｵＱＯｊｶＧｉＯｊｵｶ＠

in Eq. (6.1) is proportional to the mean curvature of the surface a = '1/-•( u, v ) 
when the surface is considered as embedded in the hodograph space endowed 
with the Minkowskian metric (1 , - 1, - 1 ). But this is the form (6.3) defining the 
polarization vectors. One can also verify that the first term in Eq. (6.1) vanishes 
when computed for the surface representing the range of two noninteracting 
waves [7]. This also suggests that the first term in Eq. (6.1) measures in some way 
the strength of interaction. This line of reasoning which appears to be also useful 
in the proof of existence, was developed in [19, 20]. 

Equation (6.1) was obtained also in [21 ], where the authors were searching 
for solutions with degenerate hodograph. They did not relate these solutions to 
interacting waves. It seems that Yanenko was also aware (private conversation) 
of the connection between Eq. (6.1) and the curvature of the hodograph surface. 
This justifi es to call Eq. (6.1) the Yanenko equation. 

In conclusion, we should emphasize, however, that the property of elastic inter-
action that irrotational modes exhibit when subjected to a nonlinear interactio n, 
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is rather exceptional. If one of these two interacting waves were the shear wave 
or the entropic wave [18], then the picture would be more complicated due to the 
production of new waves (e.g. reflected waves) in the process of interaction. For 
this reason, in such cases as represented by the two potential modes considered 
here, we propose to speak of an elastic interaction. 

The first (unpublished) version of this paper, which constituted a part of the 
authors' Ph. D. Thesis, was submitted for publication in 1972 under the title: "Some 
problems of double waves in gas dynamics". The present version contains several 
improvements. 

The paper was supported by grant KBN No. PB 20480-90-1. 
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