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On double waves and wave-wave interaction in gasdynamics

Z. PERADZYNSKI (WARSZAWA)

SPECIAL CLASSES of potential isentropic nonstationary flows in two space dimensions are considered.
We demonstrate that locally these solutions can be understood as resulting from what we call elastic
interaction (since no other waves are produced) of two Riemann waves (simple waves). It appears
that this is a generic property of interactions of sound modes in gasdynamics, That is, two nonlinear
(localised) sound waves propagating at any angle can cross each other without producing new waves
— similarly as it happens in one space dimension.

1. Introduction

In THIS PAPER we deal with certain classes of isentropic nonstationary flows of an
ideal compressible fluid. Each of these classes depends on two arbitrary functions
of one variable and may be obtained as a solution of a certain specialized system
of two hyperbolic equations with two dependent and two independent variables.
We call them hyperbolic double waves or, for short, double waves. It appears that
they can be understood as resulting from the special type of interaction of two
simple waves. This interaction can be called elastic since collision of two waves
leads also to two waves, in contrast to the case of nonelastic interaction [18,
19]. This idea can be clearly explained in the case of one space dimension. One
can take two localised perturbations in the form of two simple waves which are
approaching each other. Then they begin to interact. Depending on the nature
of the waves, different scenarios are possible:

1. In spite of nonlinear interaction, the waves can cross the region of interac-
tion, the state of rest being there restored.

2. Due to nonlinear interaction, certain new disturbances are produced. This
happens, for instance, when a sound wave is interacting with an entropy wave
[18, 20].

In the Case 1 one can speak of elastic interaction. In a similar way, one can
speak of elastic interaction in the case of waves crossing each other at a certain
angle in many spatial dimensions. In this case one should restrict the considera-
tions to the domain of determinacy of the solution. This will be explained later
in Sec. 6.

Although this subject has a long history starting from Riemann (1858) [22,
5,9, 23, 3, 4, 21, 12, 19, 20, 24, 6, 10, 11], it is still far from being exhausted.
Like solitons, it contributes to the understanding of nonlinear phenomena. The
most complete analysis of mathematical properties of such solutions, as well as
the general theory of k-waves, is contained in [19]. A considerable part of this
results can be found also in [20]. In this paper we present a simplified version of
the theory, with application to nonstationary gasdynamics.
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In Sec. 2 we define the Riemann (simple) waves and then the hyperbolic couble
waves for a general quasilinear system of the first order and derive the conditions
of their existence. Section 3 contains the application of theory of Sec.2 o the
equations of nonstationary two-dimensional flows in gas-dynamics. We coifined
ourselves to the case of nonstationary two-dimensional flows, although, as t may
be proved, a similar analysis can be made for three-dimensional flows. Hiving,
however, a three-dimensional hodograph space (as there is for two-dimeniional
nonstationary or three-dimensional stationary flows) makes it possible to e¢btain
a single equation i.e. Eq. (3.8) describing hodographs of double waves. In {ecs. 4
and 5 specific classes of such hodographs and the corresponding double vaves
are considered. Then in Sec. 6 we discuss, in general, the interaction problen for
sound modes in gasdynamics. We demonstrate there that for sufficiently small
amplitudes (in order not to enter the elliptic region of Eq. (3.8) or Eq.(6.1), the
waves are subjected to an elastic interaction described by double waves.

Similar considerations can be performed for stationary supersonic flows Also
by using imaginary characteristic elements, one can generalize this procdure
[19, 20] to the elliptic (or mixed) case of stationary supersonic (transonic) flows.
Then one can prove that these generalized double waves can represent flows
past three-dimensional profiles which are developable surfaces. This miy be
useful in searching for 3-D-developable airfoils, similarly as it was done n the
two-dimensional case [1, 2, 8].

2. Simple and double waves
Let us consider a nonlinear system of PDE’s

(2.1) aj"(u)uf::,/=0. ol F=1aul, s=l.m

A solution u(+) : 2 — R', 2 € R", of system (2.1) is of the simple wav:-type
if and only if the Jacobi matrix du = (u’,,+ ) is of rank 1 in £2.

Let us note that any / x n matrix of rank 1 can be represented as Y@ A = (-7),),
j=1,...,Lrv=1,...,n If y ® A satisfies

(2.2) a3’ (u) v A, =0,

then one speaks of the polarization vector v € R' and the wave vector (or char-
acteristic covector) A € R". The matrix v ® A satisfying (2.2) will be called the
characteristic element at u. There are solutions of (2.1) associated with ciarac-
teristic elements. These solutions, called simple waves (or Riemann waves), can
be constructed by taking any parameterized C' curve u = f(R), R € (ab) in

R' and such that for every Ry € (a.b), the tangent vector v := d‘_Rf“h"’ is a



ON DOUBLE WAVES AND WAVE-WAVE INTERACTION IN GASDYNAMICS 1071

polarization vector at ug = f(Rg). Let A(R) be the field of the corresponding
wave vectors defined over this curve, i.e.

o' (J(RN Y (R)A(R) =0,  RE€ (a,b).
Then one implicitly defines a class of local simple wave-type solutions
23) u=f(R), R=p(a"),

where ¢ : R! — (a,b) is an arbitrary C'! function. One can also easily verify that
the equations

(2.4) A(R)( =y (R)) =0,  u=f(R)

define a simple wave solution in some neighbourhood of the curve z = y(R),

which takes values f(R) at this curve, provided )\u% #0.If AA Mg # 0, then

the limiting case © = f(R) and A, (R)(z" — :f") = 0 also defines a simple wave.
)

Similarly, any solution u(+) : 2 — R’ is of a hyperbolic double wave-type if
for every = € (2, du(z) is a sum of two characteristic elements

1 2
(2.5) du=7y@A+y®A
1 2

1 2
with linearly independent v, v and A, A. Thus rank du = 2, and the range u({2)
1 2

of u(+) is a two-dimensional surface in R'. The plane tangent to u(f2) at u(z) is
spanned by v, 7. As is known from differential geometry, given a two-dimensional

1 2
surface with two independent vector fields v, 7 defined on it, there exists a local
1 2
system of coordinates on the surface, whose lines are tangent to v, 7. In other
1 2

words, there exists a local parameterization u = f(R!, R?) of the surface, such
that
af af

1 7

(2.6) T ™)

Therefore the double wave solution can be sought in the form u= f(R!(z), R*(z)).
Inserting u = f(R', B?) into Eq.(2.5) one comes to the conclusion that the func-
tions R! = R'(z), R? = R*(z) satisfy

@7 AR = E(ARY, BY),  dR? = E(@)A(R, BY)

1 2
for some functions £!(z) and €2(z). Here A, A are the wave vectors corresponding
to the polarization vectors v, v, respectively.
1 2
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The construction of double wave solutions is, however, much more involved
than the one for simple waves. Since, in general, system (2.7) is overdetermined
(2n equations for four unknown functions R, k2, ¢!, €2), it can have no solu-
tions of rank 2. For this reason, not every two-dimensional surface parameterized
according to (2.6) is in the range of a double wave solution. Additional restric-
tions which follow from the compatibility conditions of Egs.(2.7) must be im-
posed. They require [15, 16, 20] the existence of functions al(R!, R?), a3(R!, R?),
BI(RY, R?), B}(R', R*) such that

1

1 2 1 1 2 2 1 2 2
(2.8) g2 = A + B, A =01 + 1A

The above conditions are equivalent to

(r) s

(2.9) A= XAMAA,, =0,  rs=1,2,

where A denotes an exterior product [7] and no summation over r is performed.
If (2.8) is satisfied, then Egs. (2.7) are compatible (involutive) and their general
solution depends on two arbitrary functions of one variable [15, 16, 20]. In order to
obtain a solution of Egs. (2.7) several approaches may be applied. From the form
of Egs. (2.7) we see that the solution is constant over certain linear manifolds M,

0

of dimension (n — 2) (n is the dimension of the configuration space of z',..., z"
variables). M is given by the following equations for z
0

A (SR @), B@)) @~ ) =0,
LR @), BE))E -2 =0, o =('...,z").

1] 0 0
Therefore, at the beginning of the solution we may confine our attention to
a two-dimensional plane in the configuration space, which has the property of
intersecting each M, at only one point. Suppose that the plane z!, 22 has this
0

property. In such a case system (2.7) may be restricted to the plane z!, 22, to
obtain

1 2
(2.10) Bosgk, ®,=F8%, =132

Eliminating the variables ¢!, ¢2 we reduce Eq.(2.10) to the following hyperbolic
system

(2.11) (R BB, =0, CHR. RHR:, =0, s=132

2 2 1 1
where 'y = (A2, —Ay), C2 = (A2, —A) are “tangent characteristic vectors” for
system (2.11). This system can be treated by the method of characteristics.
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Another possibility is to apply the hodograph transformation which converts
Eq.(2.11) into a linear system. Indeed, multiplying Egs. (2.10) by dz*/dR? and
by da*/0R' respectively, we obtain a linear homogeneous system in R', R?

L, By~ o,

MU, ) 5

)R2
which is equivalent to the previous one for nondegenerate solutions (rank
1RSI = 2).

Another approach can be also applied in which system (2.7) is also reduced
to a linear hyperbolic system. This approach may sometimes be useful. Assummg
thata‘(li?1 R?), o3(RY, R?), BA(R', R?), 33(R', R?) are the coefficients appearing
in conditions (2.8), we have

Tueorem 1. If ¢!, % is a solution of the linear equations

(2.12) ol =edv?+ By, wP =iy + Bl

R2 'R1

then the implicit formulae

1 2
(2.13) OURY, RY) = A\ (R R®)2",  3(RY, RY) = A (R', RP)z",
define a solution of Eqs. (2.1) in some neighbourhood of (3 R, R?) provided that
L} 0
W' - ,{,,;g")‘ﬁl #0and (92— \,a), , # 0at (z. k', R?) satisfying (2.13).
! 0 0 ]

Indeed, by differentiating the implicit formulae (2.13) we see that the gradient

of R', k? is proportional to /{(R'. R?), A(R', R?), respectively.

Formulae (2.13) constitute an interesting generalization of a similar formula
(Eq.(2.3)) for simple waves. Let us note that Egs. (2.13) have always the trivial
solution ¢; = ¥»» = 0 which by Eqgs. (2.13) defines a certain double wave (gener-
alization of formula (2.4)). Theorem 1 can be generalized in an obvious way for
k-waves by replacing indices 1 and 2 with o, 4 = 1,...,k, a # 3. Then the gen-
eral solution depends on k-functions of one variable, e.g. defining the problem
of waves entering the interaction (the formulation of the theorem in [10, 11] is
erroneous).

In principle one can start from two independent characteristic elements in
Eq. (2.5) expressed as some functions of «. Then the Frobenius theorem tells us
that for any given point ug, there exists a two-dimensional surface passing through
ug and tangent at each of its points to the vector fields v, v if and only if

1 2

2] ety
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where [X,Y] = X”i)’ -Y l()i X is the commutator of the vector fields X, }
ut it

and Lin{X,Y} denotes the linear combination of X, Y. In such a case differen-
tiation with respect to R Rz m Eqgs. (2.8) must be replaced by differentiation

I 0 /\
e Ts 156 3R2 7 ol
Now we will demonstrate that the solution of Eq.(2.5) can be interpreted locally
as resulting from the interaction of two localised Riemann waves, in the sense that
one wave is propagating across the other. By “localised” we mean here that the first
derivative of ¢ in (2.3) is localised.
The level sets R!(z) = const and R? = const can be thought of as constant
phase surfaces of the first and second wave, respectively. Since they are solutions

2
of the Pfaff forms A dr O and A, dz¥ = 0 respectively, they are orthogonal

to their wave vectors, A or A For an unperturbed Riemann wave such a surface
is a hyperplane. In general, however, the mutual interaction expressed in the
nonlinearity of system (2.5) leads to local changes of the wave vectors. For brevity,
in the following we confine our attention to the two-dimensional case, when the
level sets of R! and R? define two families of curves which are characteristic
curves of Eq.(2.5). In case of three dimensions ¢, 2!, 22 one can think of the

picture at any constant .
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Now, suppose a solution of Eq. (2.5) of rank 2 is given in a region {2 containing
a point zg. Consider a neighbourhood of the point =5 bounded by a curvilinear
quadrangle A, B,C, D (Fig.1), the SJdes of which are characteristic curves (i.e.

these curves are perpendicular to /\ and )\ respectively). By what we call the
circumvention procedure, we construct a new solution which takes the same values
as the former one in the quadrangle (including its sides). Outside it we extend
the solution in the following way: first we prolong any characteristics contained in
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ABCD by a straight half-line keeping the direction of the characteristic (Fig. 2).
On this line we define the solution u to be a constant equal to the value it takes
at the point where the line crosses the side of the quadrangle.

FiaG. 2.

In the remaining domains which are the interiors of the four angles with the
vertices A, B,C, D we put u equal to u(A), u(B), u(C), u(D), respectively. This
procedure defines, in a certain neighbourhood of the quadrangle, a Lipschitz
continuous mapping which is also differentiable in this neighbourhood, perhaps
with the exception of characteristic curves passing through any of the points
A, B,C, D.In this way weak discontinuity of a solution may occur. This mapping is
the new solution of Eq. (2.5) which represents two interacting localized Riemann
waves. The interior of the quadrangle is a domain of interaction, and outside
it, by construction, the mapping is either a constant or is constant on the lines
orthogonal to the respective wave vector A, thus assuring that it is a Riemann
wave-type solution.

3. The hodograph problem

We will consider equations of plane nonstationary isentropic flows [5, 13]

-1
(@ +u-V)a+ -

adivu = 0,
(3.1)
( +u-Viu+

K_laVa=0,

http://rcin.org.pl
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where u = (u!',4?), V = (0,,9,), a is the sound speed, a®> = dp/dp and & is
the isentropy exponent, 1 < « < 3. The number of equations is equal to three,
as is the number of unknown functions «, u', u? or the number of independent
variables ¢, z!, z2.

According to Eq. (2.2), the characteristic directions are

D a= (55 e @) — A=l e, -6,

2) v = (0, 6’17 6’2) — A= (utl . uzel, —ez, el),

=2
|

(32)

where (uly) = [2/(k — 1)]ay? + uly! + u?4? and e = (e, ¢?) is a two-dimensional
unit vector [17]. Similarly to three-dimensional flows [17], the first type of simple
elements generates potential flows (sound modes) and this case will be considered
here. Note that the characteristic vector A for the potential elements can be
represented as a linear function of v

A =Py,
where 8
1 ll]., “2
H—
P=\"9 _1. 0
0 0, -1

a
Let us denote [, := 4’ Dl j for slmplxcny The exterior product of three vectors

in three-dimensional space ¢, 2!, 2? may be identified with the determinant, so that
A= AAAAN, = [S|J\'1,§ﬂ] - [IP’7 | Py |1P’,77],

where [a | 5| 7] = det||e, 5,7]|.
By a well-known transformation property of determinants [Pa |5 |Py] =
det P[a, 3, 7], we can write the conditions of involutions (2.9) A = 0 as follows

2
Ar=(yly)-[y1y1d+ _1a{z- K lzﬁ} =0, ¢=(1,0,0),

or

33) Ap=(y xy)(aly )+

12

where the dot denotes the scalar product.
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Suppose that the hodograph surface which will be denoted by G2 is described
by a C!-function F(a,u',u?) = 0, with a nonvanishing gradient. The gradient
Vo.F = (F,, F,, F_2) is orthogonal to the surface (;? and therefore it must be
proportional to the vector product T ¥ y of vectors 707 which are tangent to

G?. Using this fact, we substitute V, [ for 7% in Eq. (3.3) to obtain

' 2 v

(34) Ars = (7 |'}’)]‘1,a+ﬁ(ll‘_‘m] (7] )=Ov 'S#T5 a=u0ﬁ ]=O,1,2
& r Q- & Y

On the other hand, differentiation of a self-evident relation F v’ = 0 with
respect to u' and multiplication by v ¢ yields

F‘JLJ(‘ZJ’Y — _F,u'ul ‘Z IFZJ':

which allows us to transform Eq. (3.4) to the following symmetric form
’s .2 i
'_!,’, = (‘Z “Z)fu = ﬁﬂp'uluj’z ',) &
Therefore, the set of conditions (3.4) is reduced to the following one

)
3 .

o b
(1['““,.? 2 = 0.

(3.5) (r1y)¥a -

2 K —

In accordance with 1) of (3.2) we can assume

(h’ -1 . )
v = 5 , COS s, SINY; | .

Then we have (7 |7) = (k — 1)/2 + cos 26, where § = ¢ — ¢ and the vectors 7,
1 2 1

v can be obtained from the relations

2

(3.6) EAY+ Fayt+ Fay? = 0.

u*

Further on, cos2é may be expressed by the derivatives of /' to obtain

2 %—1y%
2
3.7 cof't = g +r2( 3 )

from which it follows that in order to have a real é, we must satisfy the following

inequality
2 2
) 2 4 2
F2 < (H_ 1) (F2 + F%).

http://rcin.org.pl



1078 Z. PERADZYN5KI

Introducing @ = [2/(k — 1)]a in Eq.(3.5) and expressing F,.,,7'y’ in terms of
derivatives of /', we arrive at the following, rather complicated, equation whch
must be satisfied on surface G2

k-3 . 2F2 \ 2F;
v (2 +F3+F3)n—1

_ | -2 Fuy
—-a (F&& + E(Fu“ }vv) FZ + 2] F,,m
1rw+Fv,, 2 2 g2
3 Fre g (2 - Fi-E)
2F;

F2+F2(Fau+F&qu)) =0

where u, v denote u!, u?

By specialization F w(a) — f(u,v) we may remove the terms involving
the derivatives F;, and Fj,. This form of F can be assumed without much
loss of generality. As follows from the Sard theorem [14], such a representa-
tion of F' can cease to hold only on a set of measure zero. A particular cise

F = y(a) - %(u2 + 1:2), leads to rotational hodograph surfaces, described by or-
dinary differential equations

k=3 ¢\ 2 _( , ¢?
. L2 ~d@[y"-—+1]=0.
(3 9) ( 7 + L/, ) £ —1 a1y ",i’-' 0

Here “'” denotes differentiation with respect to a. The solution of Egs.(%.9)
depends on two arbitrary constants both of which have a physical meaning, i.e.
they cannot be retransformed by Galilean transformation. Therefore both con-
stants determine the shape of the rotational surface. It may be checked that the
functions

:—1
a) 1,[7(&)5%(7.2, and  b) 1/7(?E)E—h4 @+

are the particular solutions of Egs. (3.9). Both solutions lead to hodographs wtich
are the quadratic surfaces:

1 . : i 3 :
a. =a°—u*—1v>=0- the hodograph is a cone; its equation in variatles

. 2
(l\/i) 2

— u? — v?* = 0. From relation (3.7) we have

a, u, v takes the form (
H p—

cos?§ = 1/2; we can put 6 = /4 since other cases provide nothing new.
b.

H —
expresses Bernoulli’s law. Therefore, solutions associated with such hodograohs
are the well known two-dimensional stationary hypersonic flows (if u? + v? > :2).

a? + u* + v* = ¢ - describes a family of ellipsoids and physically

http://rcin.org.pl
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4. Flows with constant Mach number

We direct our attention to the conical hodograph surface (Case a). The curves
tangent to v and v are spirals and their projections on the (u,v)-plane are

1 2
logarithmic spirals. In the parametrical form with parameters ¢, o, the cone may
be represented by the following expressions

k-1
7o

The mentioned spirals on the cone are given by Egs. (4.1) with an additional
relation between o and ¢

(4.1) a= U= pCosy, v = psin .

(42) o= t,‘,(:0'(45(-¢~|~2R2)
with constant R? on the curves of the first family; or
(4.3) 0=e" cot§(p—2R")
with constant R! on the spirals of the second family.
By eliminating ¢ and ¢ from relations (4.2) and (4.3) we may take R', R?
as the coordinates. Thus, remembering that cot é = 1, p, ¢ become functions

of R!, R?

(4.4) g= B = Bl R

J —_ ;
Since 7 ~ W(a, u, v) then, utilizing Eqs. (4.1), (4.4) and (3.2), we arrive at the
characteristic elements (v corresponds to — and v to +)
1 2

- (5 en(onD) o).
(50 -eo(o+3). -n(>+3)

1 2
and the vector o ~ A x A. As we know from Sec. 1, the solution is constant along

-2
S 2

2

1
A

2

1 2 1 2
the directions o orthogonal to A, A. Thus ¢ = A x A = (1,kpcosp, kosing) =
(1, ku, xv). By using this property, the Pfaff equations (3.8) which in this case
take the form

1 . 21 & _ i 1w = 2
dR' = ¢ (\/igdt cos ((,9 4)rl.r sin (cp 4)(137),

(4.5)
2w g2l 5 ” T dz! —si T dz2
dR” = ¢ (\/igdt. COS(¢+4>([I sin (cp+4)dz)

http://rcin.org.pl
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can be restricted to the plane ¢ = const. Then their solution R}(z!, 22), R3(z!,2?)
may be extended to a certain neighborhood of the plane ¢ = const in such a way
that this extended solution is constant along the straight lines defined in each
point (0,z!,2%) by the vector a(R' (2!, 2?). R*(2!,z2)). Let us note that o is
never parallel to the (z!,z?)-plane. Putting ¢t = 0 and eliminating &', £? from
Eqgs. (4.5) we arrive at an equivalent hyperbolic system

(4.6)  Rj .= R} .cot (ng, —R3 - %) R ., =R} ,cot (;gg] ~ R+ %)

which is treatable by the method of characteristics. In the case of nondegenerate
solutions of Egs. (4.6) one can also apply the hodograph transformation which,
by exchanging the role of dependent and independent variables, leads to the
following linear system

I,lﬁz COS (1{1 = [{2 o _TE) + .1.?”: sin (R] . 132 . _7_r_> - O,

4 4
4.7)
1*.2”. cos (11?1 ~ R4 %) + ‘1,‘2“] sin (!?‘ — R4 %) = (.

Equations (4.5) may be also reduced to the telegraphic equation by introducing
new variables !, 1»? according to Theorem 1. Then from (2.12) one obtains an
equivalent form of Eqgs. (4.5)

(4.8) V-9 =0, ¢hi-v' =0
Elimination of one of the unknown functions, say 2, reduces Egs.(4.7) to the

telegraphic equation
A N
Vg =¥ =0

The solution is then determined by
l — 2 — — " l —_— 2 — _|
COs (R R ) , SIn ([l’ R )

i

-,’[ﬂ 2

69 ()= . ! ( q
v cos (R‘ - Z) . sin (Rl - R+ Z) 22

and by Eq.(4.4) in a parametric form, R', R? are the parameters. Let us note
that the considered solutions describe nonstationary flows with the constant Mach
number M = (u? + v¥)2/a = V2/(k - 1).

http://rcin.org.pl
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The matrix in (4.9), call it S(¢— 7/4), is an orthogonal matrix of the clockwise
rotation by the angle R! — k? — n/4 = » — n/4. The coordinates (z', 2?) can be
easily expressed as

- ) ™ T K
(T =5 (o= F) @ T + Sars()1,0)7,

where 7' denotes the matrix transposition. In the trivial case ¢! = ¢? = 0 which
obviously satisfies (4.8), we arrive at

AN
~1

(4.10) u

Then according to (4.1) @ = (k—1)/x[x/t|. In Fig. 1 the projection on u', u? plane
of the curves R! = const and R* = const, respectively, defined by Eq. (4.4) are
shown. By Eq.(4.10), up to the scaling factor v/2/x, they are also characteristic
curves on x/!-plane.

As it was pointed out in Sec. 1, every double wave can be locally interpreted as
resulting from the interaction of two localised simple waves. In this way, a some-
what trivial solution defined by Eq. (4.4) may give rise to interesting interactions
of simple waves. Inside the quadrangle ABC D (Fig.2) on the (z!/t,2%/t) plane,
the solution is defined by (4.10). Outside it we have simple waves (or constant
states in the corners A, B, ', D). The sides of the quadrangle are lines defined by

X _ K Rlyp? (pl_ p2y o 1 _ p?
= \/i( {cos(h R7), sin(R" - R )}

where R! (respectively k?) take appropriate constant values. The straight lines
emanating from the quadrangle are the lines of constant phase of the correspond-
ing simple waves. In accordance with Sec. 1 these waves are defined analytically
by Eq.(2.4).

5. Cylindrical hodograph

Now we may ask whether the hodographs which are cylindrical surfaces exist.
The case F' = ['(u,v) is an immediate generalization of one-dimensional non-
stationary flows for which the hodograph is » = 0. Of course, by adjusting the
system of coordinates we may at least locally restrict our attention to functions
I of the following form F(u,v) = u — ¥(v) (a consequence of implicit function
theorem) which, substituted into equation (3.8) yields

)2
1 _w] = i —l-'l,/'” = 0.

Y T+ 92 2

http://rcin.org.pl
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This may be split into two alternative conditions

1— 2
P =1
1+ ¢

P’ =0, or

In both cases we obtain nothing more than linear functions (hence defined glob-
ally) which by an appropriate Galilean transformation can be transformed into a
one-dimensional case v = (.

Thus, in addition to the planes described by the above linear functions, there are
no hodographs of the form F(u,v) = 0.

We shall see, however, that there are other hodographs generated by a curve
moving along the constant direction in the space of a,u,v — each cylindrical
surface is generated by an appropriate curve moving in a constant direction.
As an example, consider the hodograph given by the relation u — v(a) = 0.
Substituting it to Eq. (3.8) we obtain the following ordinary differential equation

(5.1) 2o (52 +2w?) ¢ - =0
with separable variables. Hence we have
di)’ 2 da
¢2) ("_3 2\ o Kk—-1a’
2 T ) d

which may be integrated to yield for 1 < x <3

(5.3) Y = 32 E / (1 - ca2-0r==0) "G 4 ¢y,
where (', C'y are arbitrary constants. This solution depends on two arbitrary con-
stants but one of them, ('}, may be retransformed by the Galilean transformation.

As follows from a closer analysis, constant ' can also be retransformed to
obtain one of the three values C' = —1, 0, 1. This can be achieved by using the
following transformation (a, u) — (pa, ju), (t,x) — (5t, ufz) which transforms
solutions of Egs. (3.1) into other solutions, x and /3 are arbitrary nonzero con-
stants. The case C' = 0 leads to the plane hodograph of noninteracting waves
which were found in [17]. These represent a certain interesting feature of the
gasdynamic system: nonlinear waves can be subjected to a linear interference.
Therefore we may restrict ourselves to the cases C' = +1. Equation (3.4), Case 1,
leads to the following expressions

7= (1, P'(@), /1- 1/,"2(71)) , A= (1, Yi(@), —y/1- w’z(?z))

for the polarization vectors in the hodograph space of (a, u, v) variables.
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1 2
Calculating the characteristic vectors A, A corresponding to v,y respectively,
1 2

we have (+ for /{ and — for i)

/\,)2\ = ( a+ Y@@ £ vy/1 - ¢2(@), —¢'(@), (=11 - ¢'(a) )

1 2
and the direction o = A x A on which the solution must be constant

o= (1 el = )
o " 2 at+u, v).
In the case « = 2 integration in formula (5.3) may be done explicitly and we
obtain

1

N 1 di —arsha if C =1,
@ =3[ e =ty A
e —iarsin?i if C=-1.

The hodograph surfaces may be given by relations

(5.4) 1) @—sinh2u =0, 2) a—sin2u=0.
Taking advantage of the fact that the operator
d d d d K—1_
0 1 2
+o + —
TR T ( 2 TVt 35 e )

vanishes on the solutions considered, one can replace d, + u+V in Egs. (3.1) by
—(k—1)(2¢'(@))"'ad/0x". Expressing then @ in terms of u according to Eq. (5.3)
(e.g. a = sinh 2u or a = sin 2u, for & = 2), one immediately obtains two equations
defining double waves in terms of the original variables u, v

~2 Ba
((z," - ]) U, — v, =0,
v — a2 = 0.

Their solutions define double waves taken at some constant ¢, therefore they
must be extended over the space t, ', 22 in such a way that they are constant
along the directions of o(u,v). This illustrates another procedure of obtaining
the equations defining double waves, probably the fastest since no additional
variables R', % are required. In the Case 1 of (5.4) this system is hyperbolic for
any value of u, whereas in the Case 2 it changes its type on lines u = +7/6, (i.e.
cos4u = —1/2). For cos4u < —1/2 it becomes elliptic. One can demonstrate,
however, that its solutions are still solutions of the basic system (3.1) [19, 20]. To
conclude, let us also note that the most general cylindrical surface can be locally
represented by u — (@ — av) = 0, o is a constant. This leads, however, to a more
complicated equation than Eq. (5.1).
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6. A general remark on the problem of wave-wave interaction

By substitution F' = @ — ¢(u, v), Eq. (3.8) may be transformed to the following
form

60 5[5t ) v - e {(62-1)
(=Tt}

This specialization excludes the case when F' = ['(u,v) but, as we know
from previous consideration, only one-dimensional nonstationary flows are of
this form. Equation (6.1) is of the second order and its characteristics (u(s), v(s))
are given by

(6.2) (W2 = Du?+ W= Do? + 20,0’ v' = 0.

However, as follows from Eq. (3.2), any C'! curve (a(s). u(s), v(s)) is a range of
an irrotational simple wave if its tangent vector (a, «', v') is a polarization vector,
i.e. if it satisfies

'

(6.3) @Y —u?=o*=1

Suppose that this curve lies on the surface @ — ¢'(u.») = 0. Differentiating this
relation with respect to s we have o' = v, u’ + ¢,v’. When applied to Eq. (6.3) it
converts it into Eq. (6.2). Thus, characteristic lines of Eq. (6.1) are also projections
of characteristics of Eq.(3.8) on the (u,v) plane. However, according to our
considerations in Sec. 2, the characteristics of Eq. (3.8) are the images of simple
waves. As can be seen from (6.2), Eq. (6.1) becomes elliptic if v? + ¢? < 1.

Let us now consider the initial condition for the flow equations (3.1) which
is defined in a circle on the (z,y) plane for ¢ = 0, and which represents two
localized simple waves approaching each other, separated by a constant state
Uo = (ag,up,v9) (Fig.3). If the amplitudes and their derivatives are not too
large, then, in the “conical” region of ¢,z!, %, where the solution is uniquely
determined, the solution exists and it represents two simple waves crossing each
other for some larger ¢ (similarly as in Fig. 2).

In order to demonstrate this, let us notice that the image (the set of values) of
the initial conditions consists of two pieces of characteristic curves /7, I in the
hodograph space passing through point {/y (Fig.4). Let us now take /7, I'; as the
Darboux problem for Eq. (6.1). The value of ¢" is then given on two intersecting
characteristics of Eq.(6.1). Let Iy, I'; be given in a parametrical form

I = (Ei = ap(s), © = ay(s), v = (rz(s)), by < s < by,

= (i=fo(r) u=p(). v=F). as<r<a

http://rcin.org.pl
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Then the projection I = (a;(s). ax(s)). I3 = (81(r), B2(7)) are the character-
istics of Eq. (6.1) and we may set

U =ools) g = folr).
1

Let us also assume that ag(s), Jo(7) > 0, otherwise we would have a singularity
in Eq.(6.1). Indeed, a? = dp/do, a = 0 corresponds to the vacuum.,
In conclusion, we state the following theorem

THEOREM 2. Let Iy, Iy be two characteristic curves of class C? in the hodograph
space passing through the point Uy = (ag, ug. vo). If ag > 0, then

1) there exists a unique solution of the above Darboux problem provided that
I'y, I’ are of sufficiently small length and have a curvature small enough;
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2) the surface a = (u,v) representing the solution is covered by two families of
characteristic curves in the hodograph space, and its boundary consists of pieces of
characteristic curves passing through the end points of I'y and Iy, thus forming a
curvilinear quadrangle (Fig.3).

The proof can be obtained by representing the solution of the linearized prob-
lem in the form of a double integral along the characteristics. Then, using suc-
cessive approximations and the Banach contraction principle one can prove the
convergence. Let us note, that we work in the region of hyperbolicity of Eq. (6.1).
since there are two characteristics 1, I3 at [/y and this must be true in some
neighborhood of the Darboux data.

We do not present the details of the proof since the proof for a general case
of interacting waves can be found in [20].

Suppose now, that the considered solution a« = ¥ (u,v) of Eq.(6.1), repre-
senting the surface as shown in Fig.3, is given. At this moment one can assume
a new system of coordinates on the surface, whose lines are the two families
of characteristic curves from which the surface is “weaved”. Vectors tangent to
these lines are the polarization vector-fields and thus !, A? can be determined
according to (3.1) and expressed in terms of !, k2. Having A!, A\, the equations
for R'(t,z,y), R%(t,z,y) can be solved by assuming for R'(0,z,y), R*(0,z,y)
the profiles of the waves specified by the initial conditions.

If the amplitudes of the waves are large, the solutien of Eq. (6.1) can enter the
ellipticity region (e.g. Case 2 in Sec.5). Similarly, if the profiles of initial waves
are too steep, the solution can develop the singularities (gradient catastrophe)
before the interaction is fully developed.

The form of Eq.(6.1) suggests the possibility of a geometric interpretation.
The term

(?}'3 o ])f/”uu T (U‘z - ])‘»"1':' = ZC'U L""vd!uv

in Eq.(6.1) is proportional to the mean curvature of the surface a = (u,v)
when the surface is considered as embedded in the hodograph space endowed
with the Minkowskian metric (1, -1, —1). But this is the form (6.3) defining the
polarization vectors. One can also verify that the first term in Eq. (6.1) vanishes
when computed for the surface representing the range of two noninteracting
waves [7]. This also suggests that the first term in Eq. (6.1) measures in some way
the strength of interaction. This line of reasoning which appears to be also useful
in the proof of existence, was developed in [19, 20].

Equation (6.1) was obtained also in [21], where the authors were searching
for solutions with degenerate hodograph. They did not relate these solutions to
interacting waves. It seems that Yanenko was also aware (private conversation)
of the connection between Eq. (6.1) and the curvature of the hodograph surface.
This justifies to call Eq.(6.1) the Yanenko equation.

In conclusion, we should emphasize, however, that the property of elastic inter-
action that irrotational modes exhibit when subjected to a nonlinear interaction,
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is rather exceptional. If one of these two interacting waves were the shear wave
or the entropic wave [18], then the picture would be more complicated due to the
production of new waves (e.g. reflected waves) in the process of interaction. For
this reason, in such cases as represented by the two potential modes considered
here, we propose to speak of an elastic interaction.

The first (unpublished) version of this paper, which constituted a part of the
authors’ Ph. D. Thesis, was submitted for publication in 1972 under the title: “Some
problems of double waves in gas dynamics”. The present version contains several
improvements.

The paper was supported by grant KBN No. PB 20480-90-1.
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