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Integral equations for disturbance propagation
in linearized Vlasov plasmas
Numerical results

A.J. TURSKI and J. WOJCIK (WARSZAWA)

SPACE-TIME responses Of linearized Vlasov plasmas on the basis of multiple integral equations are
considered. An initial-value problem for Vlasov-Poisson/Ampere equations is reduced to one in-
tegral equation and the solution is expressed in terms of a forcing function and its space-time
convolution with the resolvent kernel. The forcing function is responsible for the initial distur-
bance and the resolvent is responsible for the equilibrium velocity distribution. For Maxwellian
equilibrium distribution, a closed-form solution of the resolvent kernel equation is still unknown
but the equation is eligible for computer calculations. Three types of exact analytical solutions of
the space-time resolvent equations are shown to relate them to Maxwellian plasmas. Numerical
calculations reveal the nature of the plasma response as a compound of a diffusive transition, being
essentially a plasma oscillation mode with plasma frequency, a Gaussian type of amplitude profiles,
and also a damped dispersive wave mode. The plasma response appears immediately in the whole
space of x and zeros (nodes) travel according to the diffusion law, at least for long times. By use of
the resolvent equations, time-reversibility and space-reflexivity can be revealed. The step-density
disturbance of electron Maxwellian plasmas appears to be the electric current forcing function,
which is proportional to the Maxwellian plasma kernel; hence the resolvent is the plasma response
to the step-density disturbance. From inspections of the series representations of Maxwellian re-
solvent and its Fourier transform, a symmetry property with respect to the transformation is found.
It is used for constructing approximate formulae for the resolvent kernels.

1. Introduction

THIS ARTICLE contains a unified treatment of disturbance propagation in linearized
Vlasov plasmas, based on the space-time convolution integral equations. Although
there already exists a vast literature on the subject, a complete and coherent dis-
cussion of space-time plasma response in relation to equilibrium distributions
of particles, especially the Maxwellian equilibrium, is still lacking. Most of the
papers are dealing with dispersion relations, approximate Fourier transforms of
disturbances and asymptotic evolution of time-dependent stationary waves. How-
ever, papers dealing with integral equation presentation of wave propagation in
linearized plasmas appear rather seldom, see the recently published paper [1].
The problem is of a linear nature but can be considered in relation to non-
linear Langmuir waves and solitary wave excitations, where we need space-time
solutions, but under simplified assumptions concerning equilibrium of plasmas
and the so-called “far field” approximations, which allow us to reduce the prob-
lem to model equations, e.g. NLS, KdV, Boussinesq, see [2]. To be more specific
and at the same time, to present the general issue in the simplest way, let us
consider the ion-sound solitary waves in Vlasov plasmas. It can be shown [3]
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that assuming a delta-Dirac velocity distribution for cold ions, “square distribu-
tion” for hot electrons, “far field” dependence of space-time in the form = — vt
and nonlinearity of the second order, we arrive at a Boussinesq equation for
space-time propagation. The equation can be exactly solved leading to nonlin-
ear oscillations or solitary waves. The seemingly simpler case of linear plasma
of hot electrons and cold ions has no exact solution to an initial-value problem
for linearized Vlasov-Poisson eqations. In Sec.3 of the paper, we present the
exact solution for the response function, but only for one-component electron
plasma with square equilibrium distribution. The solution is a Riemann func-
tion for a wave equation with dispersion. The other exact solution in the case of
the Lorentz equilibrium distribution of electrons is presented and the solution
demonstrates “diffusive transition of oscillations”. The space-time response for
Maxwellian equilibrium is very important but a closed-form solution is still un-
known (e.g., see [4]). The problem is easily analysed by computer calculations.
There is another point of a general nature that deserves mentioning, namely, the
way in which the disturbance propagation behaves. The question arises whether
we are faced with diffusive transition of oscillations or with wave propagation.
We shall especially focus on two distinctive features of the disturbance of the
Maxwellian equilibrium. The first is that a step-density disturbance response is
proportional to the resolvent kernel of our space-time convolution equations,
that is a unique property of Maxwellian electron plasmas. The second feature is
that the resolvent kernel is invariant with respect to the Fourier transform since
the original and its transform are expandable in symmetric Hermite orthogonal
series.

The article is organized as follows. In Sec.2 analytical initial-value and one-
point boundary-value problems of linearized Vlasov -Poisson/Ampere equations
are reduced to equivalent two-dimensional integral equations to demonstrate the
analytical approach to real functions in real space-time as compared with the
Fourier-transform techniques. Section 3 is devoted to the main features of the
integral equations in relation to plasma responses, dispersion relations and a pre-
sentation of exact solutions. Section 4 constitutes the main body of the article and
contains a complete description of the Maxwellian plasma response based on or-
thogonal Hermite series presentations of the response. The computer-calculated
characteristics are discussed on the basis of approximate formulae and compared
with the exact solution of the “square” equilibrium case. Diffusive transition of
resolvent zeros (nodes) is revealed for long time range. The final section contains
the general discussion and conclusions.

2. Convolution equations for electric field, potential, current and charge density

We investigate the Vlasov - Ampere/Poisson system of equations for multicom-



INTEGRAL EQUATIONS FOR DISTURBANCE PROPAGATION ... 1049

ponent plasmas, i.e.

(2.1) [01 + ud, + 9o E(x, I)(')“] Fo(u,z,1) =0, d/0u = d, (Vlasov),

my

22)  dE+Y g f wFodu=0, 8/0c=0,, 8/dt=8 (Ampere),

23)  c00E-Y q. / Fodum0, Ew=—8,4, (Poisson),

where z, u and ¢ are independent variables of one-dimensional space, velocity
and time, respectively. E = E(z,1), ¢ = ¢(x,t), Fo = Fo(u,z,1), ¢ and m, are
electric field, potential, velocity distribution, charge and mass of a-particles, re-
spectively. In view of (2.1), equations (2.2) and (2.3) are equivalent if appropriate
constrains are applied to initial conditions for F,. We emphasize that in order to
derive the Vlasov equation, one must assume that F, is analytic in its variables.
This assumption of analyticity is reasonable since F, is a physically measurable
quantity, see [5].

Let us assume
(2.4) Fa(u,z,t) = Ny Foa(w) + Fia(u,z,1),

where N, Fo,(u) are the equilibrium particle concentration and velocity distribu-
tion for E = 0, and F,,, is of the order E.
Substituting (2.4) into (2.1), we derive the well-known linear equation

2.5) (O +ud)F1, = —(N§ qo/ma)ED,Foy .
For the initial-value problem

(2.6) Fio(u,z,0) = g.(u, ), Ggo(u, v =+x) =10
and E(z,t) =0 for t<0

we write the solution of Eq. (2.5)
t
2.7 Fio = ~(/\76'q£,./m£,)Ff)“(u)/E(.r —uty, t—ty)dty + go(u, z — ut).
0

Substituting into (2.2), we have

o] t
(2.8) OE = Ew% / uFbm(u)/ E(x — uly,t — t))dty du
(e} —co O

o0
- Z(Q’a/fo) / ugo(u,z — ut)du
o —00
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where w2 = N§¢2/com,, and changing variables of integration in Eq.(2.8) as
follows: tu = £, t du = d¢, then integrating by parts, we obtain
t oo
(2.9) Ez, 1) = /dtl / K(z, O)E(e — £, — 1) dE diy + G(z, 1),
0 —o0
where

t oo
G(z,t) = — Z(qa/so)/ / ugo(u,z — uty) dudty, for t>0,
o 0 -

and

K(z,t) = =Y wlFoa(/1).

More detailed derivation of Eq. (2.9) can be found in [6-8].

It is worth noting that the charge density, electric current and electric potential
satisfy the same equations with the same kernel K(z,t) but with the respective
forcing functions.

In the same way, we can derive the following integral equation, see [7].

z o0

(2.10) E(e,f) = /df f R(E, 1)E@ — &, — 1)) dty + Gz, 1)
0 —0o0
for the one-point boundary value-problem
Fia(u,z,t) = g,(u,t) for z =0, E(z,t)=0 for z<0,
where
- r
RGa.) = =32 [Foo (7) = Fou(0)
and B .
Cat)= -5 % glut—t
G(z,t) = Xa: EO/dE / g(u,l u)du.
0 —00

Taking space-Fourier transform of (2.9) one can derive one-dimensional Yol-
terra integral equations for plasma density and plasma in an external electric ield
obtained in [1], where complex space-Fourier components are assumed. Similirly,
time-Fourier transform of (2.10) leads to the planar case of the forced oscillatons
investigated in [1]. We have derived here equations (2.9) and (2.10) analytially,
without use of the Fourier - Laplace transform technique. It guarantees analtic-
ity, existence and uniqueness of the solutions.

The existence and uniqueness of an analytic solution of Eq. (2.5) is determned
by ga(u,z) alone. The fact that we are given an independent function g,(t,?)
does not contradict this statement since the solution is not necessarily anaytic
along the characteristic = = ut.
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3. Properties of convolution equations in plasma context

Space-time convolution equations (2.9) can be solved by use of resolvent (re-
ciprocal) kernels R(z,?). We write the solution in the form

t

(3.1) E(:r,t)=G(r,t)+]d!, f R(z — £, — 1)G(E, 1) de,
0 -co

where G/(z,t) is a forcing function and R(z,t) satisfies the following resolvent
equation

t [e<]

(3.2) R(z, 1) = K(x,z)+/fu, / K(z = £, — 11)R(E, 1y) dE.
0 -0

The last equation describes plasma dynamic response R(z,t) and its functional
dependence of the plasma equilibrium state only. We note that for the infinite
support z € (—o0,00) of a kernel K(z,t), the resolvent R(x,?) also possesses
the infinite support @ € (—o0,o0). The physical consequence of the property
is that the plasma response to any disturbance, even if with a limited support,
appears immediately in the full space # € (—o0,oc). On the ground of Eq.(3.2)
we note, that for K(z,t) = K(r, 1) it follows that R(z,t) = R(x,—t) and for
K(z,t) = K(—z,t) we have R(x,t) = R(—z,t). The property is reversible with
respect to R(z,?) and K(z,1). It is called time reversibility and space reflexivity.

3.1. Dynamic response of Maxwellian plasmas to step-density disturbances

It is obvious, that the resolvent kernel can be considered as a response to the
Dirac-delta disturbances 6(¢)é(«) and sometimes the resolvent kernel is misnamed
a Green function.

We show that a step-density disturbance of Maxwellian plasma will now be-
come proportional to the kernel K(x,?) and according to Egs. (3.1) and (3.2), it
leads to plasma response being the resolvent. Considering the electric current
forcing disturbance

(3.3) Gz, t) = Jo(z, 1) = Z o / wgo(u, x — ut) du

for multi-component plasmas, we have the following step-density disturbance
(3.4) > ga(u,x) =" AN,Fo, (u)H (),

where fI(x) is the Heaviside unit-step function, and
(3.5) Foo(u) = aom 1V ?exp(-u?d?), a=e,i,

where (u2) = 1/2d2.
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Roughly speaking, the disturbance can be realized in double- or triple- plama
devices.
According to (3.3), we have

Jo(z,t) = an / wFoo (u)H (z — ut) du

and by virtue of

(3.6) uFoa(u) = —F), (u)/2a%,  since  F,(u) ~ exp(—a2u?)

we have .
/ WPl iz = uihde= ~{1/22)F i (f)
and

Jo(z,t) = = > AaFoala/t) = — A Fo(z/t),

where A, = ANuqa/Zag. Neglecting the ion contribution to the electron plaima
oscillations in view of the equation

t

J(.z'.!)=JQ(:r.I)+/rII] / R(z — €1 — ,)Jol(, 1) dE

0

and Eq. (3.2), we have
Iz, t) ~ (A JwHR(x, 1).

The dynamic response of electron plasmas to the step-density disturbanc: is
proportional to the resolvent R(x, 7). It takes place uniquely only for Maxwelian
plasmas because of relation (3.6). In order to obey linearization assumptions, the
step-density AN must be small enough in relation to Ng.

3.2. Exact solutions

The advantage of the integral equation treatment of Vlasov plasmas conssts
in obtaining the solutions separately composed of the forcing function G/(:,1)
resulting from the initial value disturbance ¢(u.t), and the resolvent kernel de-
pending only on the plasma equilibrium 5 Fg,(«). It opens up new possibiliies

for computer calculations. One may expect readily available computer progrim,
say for PC, calculating and graphically illustrating resolvents, forcing functpns
and convolutions of these functions for real time and space. First of all, were-
view exact and approximate solutions for resolvent kernels and compare tlem
with numerical results.
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Assuming the hot electron plasma with the so-called “square” electron equi-
librium velocity distribution

Foc(u) = [H(u + a) - H(u — )] /20,

we have
K(z,t) = —wS[H(J‘ + at) — H(z — nt)] [2a,
and the transforms of the kernel are
K(k;t) = —(w§/ak)sin(kat),
38) W R S P
K(k;s) = —wy/(s” + k%a”).

The resolvent kernel can be readily calculated as follows:

wg : 2 4 1.2 2\f2

R(!";i) = _m sin [("‘"0 + bk o [] .
(3.9) 0

R(k;s) = wg

e SZUJ(Z) + k202’
and
(3 ]0) R(l‘ {) — 7(#5’/2(1”() [w‘()(fz = ‘,.2/”2)1/2] for 12 > :1.2/02‘
0 elsewhere.

The dispersion relation takes the form
D(k; ) = 1 — K(k;s) = (5% + wi + k2a?)/(s* + k2a?) = 0.

Substituting s = —iw and since (1?) = /3, we have the well-known Bohm - Gross
dispersion relation, see also [2],

w? ~ Wl + 3(uP)kE.
We note, that K(z,t) and R(z, 1) are time reversible and z-space reflexive and

the resolvent is an undamped dispersive wave, i.e. the Riemann function of the
following dispersive wave equation

(3.11) (02020 — O + W )R(z.1) = 0.
The asymptotic expansion of the function is

(3.12) R(z, 1) ~ —wo(4m D)~ 2sin(wot + 7/4),  t — oo,
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where D = 3(u?)/2uwp. It appears that the asymptotic formula is common f>r all
resolvents in cases of equilibrium velocity distributions possessing all monemts
and the mean-square velocity being (u?). We do not present here the prcof of
these properties.

The next exact solution known to us is the resolvent for the Lorentz ele:tron
plasma. The equilibrium distribution is

1 A
Fol) = & 332

where ) is a positive parameter. The distribution has some unrealistic feaures,
for instance, infinite mean-square velocity, but many authors consider it :0 be
of interest. A generalized Lorentzian distribution (possessing a finite number of
moments) is useful for modelling plasma with a high-energy tail that typically
occurs in space [9].

We quote results of papers [6, 7] presenting kernels

Kz, 1) = —(wg/m) A/(A* + uz)‘u=1‘/l b

(3.13)
K(k;t) = —wit exp(—|k| A1),

and resolvents
R(z,t) = —(wo/t)Fp(a/t)sin(wpt),
R(k; ) = —wp| exp(~|k|A1)] sin(wt).

The resolvent is drastically different from the previous one. It does not exhibit
wave propagation and there is no dispersion relation. We observe a rather “dif-
fusive transition” of oscillations. The amplitude (~'-Fg(z/t) of oscillations does
obey the Chapman - Kolmogoroff equation (see Eq. (4.12) and [6]). Wave damp-
ing has no meaning, but time reversibility and space reflexivity are preserved.

Let us note that for the kernels

K(z,t) = —wi(t/4n D)% exp(—z?/4D1),

(3.14)

(3.15)
R(z,t) = —wo(4r DI)™'/2| exp(—2?/4D1)| sin(wot),

Equation (3.2) is satisfied. The example exhibits a pure diffusive transition of
oscillations. However there is no equilibrium velocity distribution Fo(u), which
could be regained from the kernel (3.15), and there is no time reversibility.

4. Maxwellian plasmas

Maxwellian equilibrium distribution (3.5) is considered to be most appropriate
but analytically almost intractable. In this section, Maxwellian plasmas are anal-
ysed by means of approximate formulae and computer diagram presentations.
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For numerical calculations we introduce dimensionless variables, based on
the following characteristic quantities; wy = 27 fy [1/s]-plasma frequency, (u?) =
1/2a* [m?/s*]-square of thermal velocity, A\p = 2r/kp = 27 (u?)/wy [m]-Debye
length.

We scale the independent and dependent variables as follows:

X = kpzx = 2xz/Ap [r], T = wyt [7], KN =k/kp, ™ =1/f,
K(X,T) = (1/a)K(z,1), R = (1/a)R(z,1). '

Before commenting on the computer plots we would like to remind the reader
that the amplitudes of all physical quantities are arbitrary, as in all linear theories.
Following [7], we may write

(4.1) R(k;1) ~ —wgsin(wo(1 + 3k%/4a%wd)t) exp(—sp (k)t),  k — O,

where s, (k) is the Landau damping [10] and by virtue of the method of stationary
phase, the asymptotic expansion takes the form

(4.2) R(z,1) ~ —wo(dr Dt) " V2sin(wot + 7/4)  for t— oo

and D = 3/4awy = 3(u?)/2u. We observe that the Landau damping has no
influence on the asymptotic formula (4.2) since s;, (k) and all its derivatives dis-
appear as & — 0 and, according to stationary phase method, it does not appear
in Eq. (4.2), which is identical with that of undamped waves (3.12). ‘

According to our numerical results, the effect of Landau damping is insignifi-
cant up to ' = 0.2 but for &' = 0.25 the damping rate reduces the amplitude
of R(A',T") to approximately one half for each 507y-interval, so that for 1507,
the amplitude is smaller a little less than 8 times. In the case of i’ = 0.3 the
damping rate is drastically increased and the amplitude decreases 50, 70 and 90
times for the succesive intervals of 507, that is about 3:10° times for the whole
1507y interval.

The properties of the damping phenomena of the resolvent F-transforms are
summarized in Fig. 1. It refers to the behaviour of the resolvent as a function of
K for fixed values of dimensionless 7". We observe that in the vicinity of A’ = 0.2,
a rapid increase of the damping rate starts. The distributions of zeros (nodes) of
R(K, T)is in general agreement with the approximate formula (see Eq. (4.1)). The
last feature should be emphasized as it also takes place for R(z,1), see formula
(4.9). For comparison, the resolvent R(A’, T') of the undamped dispersive wave,
Eq. (3.9). is shown in Fig. 2.

Figures 3 and 4 refer to the behaviour of the Maxwellian resolvent R(X,T)
versus time T for fixed values of dimensionless .X'. To comment on the diagrams
we recall Eq. (3.15). According to the graphs of Figs.3 and 4, we do not observe
the wave fronts, which could be distinguished like in Fig.5, where the R(X, T") of
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Fia. 3. Resolvent kernels of Maxwellian plasma R(X,7) vs T for X' = 5=, 107, and 157.

“square” equilibrium is exhibited. However, there are two characteristic features
of the Maxwellian resolvent profiles. The time period is slightly less than the
electron plasma period 7 at the begining of time scale, but later on is equal to
the period with computed accuracy. The second feature is that the profiles of
amplitude envelopes behave according to the Gaussian distribution, that is like
A, T~Y2exp(-B,/T), where A, and B, are constant values for fixed values of

X. These features are in agreement with the formula (3.15).

To discuss the remaining diagrams we need to use the formulae, which could
explain the R(.X', ") characteristics versus X for fixed values of 7},. One can note

the striking resemblance between the R(N',7) and R(X,T') characteristics
fixed values of 7.
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F1G. 4. Resolvent kernels of Maxwellian plasma R(.X,7) vs 7' for X = 20x, 307, and 407.

The Maxwellian kernel can be expanded in the following Taylor series
(43) K@@ -& =K(@)+ K@) + (E2/2)K @) + ... = S (€' /IHKO(z).
1=0
We note, that
K(z) = —wiar Y2 Hy(Z) exp(-Z?),
KO(2) = —wiar V2 H(Z) exp(-Z?),
where Z = az/t and Hermite polynomials //;(7) are determined by the formula

2

N [ z? d'l —r
Hi(z) = (-1)e A
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F1G. 5. Resolvent kernels for “square” velocity equilibrium; R(X, 7)) = —0.5.!0((’.'(“2 = XHlizy
vs T for X = 107 and 157.

Substituting (4.3) into Eq. (3.1), we have

o0

44)  R(z,1) = —wlar 12[6-1 + 3

n=0

(2n)' j?‘zn(t -t (%)271

x Han(Z1)e~ % dnJ ,

where

Zy = ax/ty,

o0

raa(t) = ].rZ“R(;r,t)dz,

-0
o0 o0

/a‘mR(.r,t)a’;r /rmK(.r.!)(l;v =0  forodd m.

—00 —00

Equations determining 7,,(¢) can be derived by multiplying Eq.(3.2) by z?* and
integrating it with respect to z. The first two solutions are

ro(t) = —wy sin(wyt), r2(1) = —2w D [sin(wot) — wol cos(wot)] .

http://rcin.org.pl
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The Fourier transform of Eq.(3.2) takes the form
t
(4.5) R(k; t) = K(k,1) + / K(k,t — t))R(k;ty)dty
0

where
K(k;t) = —wéfexp(—pztz), p2 = k2/4a2,

and proceeding like in the previous case, i.e substituting the Taylor series for
K(k;t — t;) into Eq. (4.5), we obtain

o0

t
(4.6) R(k;t) = —wi |:{(_>—p152+ (2}—1)'/@”(1 s 1) (%) by Han(pty)e P tid 1].
7L=0 '

0

Equations (4.4) and (4.6) are symmetric and invariant with respect to ‘he
Fourier transform, due to the Hermite function properties. The following charzes
of variables lead from R(k;t) to R(z,t) and conversely,

e’ My (pt) — (a/7"®)e~% I5,(2),

(4.7)
a 7 L, g2

7r1/2€ — le ;

From relation (4.5) it is evident that 12(k, t)/p is a function of pt only for a fired
value of wg/pz, and this property was also exhibited by the numerically calculaed
plots in [1]. The property of (4.7) will be exploited to derive an approximate
formula for R(z,t) by use of an approximate expression for R(k; (). By virtue of
the dispersion relation

w? ~ (1 + 6pfwd + 60p* [y + ..0), p—0
and following the derivation of Eq. (4.1), we have
(4.8)  R(k;1) ~ woe *:®sin(di? + 6p* + 60p* 1t f3tHV? for p—0,

where sy (k) is a damping coefficient.
In view of the symmetry (4.7) we may expect the following approximate or-
mula

(4.9)  R(z,t) ~ —(woa/7 " 2)e P sin(wpt(1 + 6 X2+ .)Y2)  for 1 — x,

where X = za/wot? and j3(z,t) is a damping rate. Analytical expression ‘or
fA(x,t) is not known.

Analyzing Figs.6 and 7, we note that for X = 0 and fixed 7,, = 30x, 5,
1007, 2007 and 3007, the amplitudes behave according to the asymptotic relaton
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F1G. 6. Maxwellian plasma resolvent kernels R(Y, T) vs X for 7' = 1007, 200x, and 300x.

(4.2), thatis R, ~ CT,,

1/2

sin(7}, + = /4) where (' is a constant. We conclude that

for T,, > 307 and X small enough, the Maxwellian resolvent behaves qualitatively
in accordance with the formula (4.9).

The characteristic feature of the curves in Figs.6—8 is a distribution of resol-
vent zeros (nodes) for fixed time 7" and = > 0 according to (4.9). First of all we
can not find such values of 7' that R(z,T') is zero for all z, 2 € (—00,0), as in
the case of diffusive transitions of oscillations (see Eq.(3.14) and (3.15)), where
R(z,wot = mr) = 0 for z € (-0, 0).
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FiG. 7. Maxwellian plasma resolvent kernels R(X,7") vs X for 7" = 20w, 30x, and 50x.

Also, a wave front is not marked contrary to the case of square equilibriim,
see Fig.9. The rate of spatial damping of the signal versus X is high for shater
times, i.e. 7, = 7, 67, 9 1/67 and 20, Figs. 7, 8. For T,, = 507, 1007, 2007 and
300~ the rate of damping is nearly linear.

In the case of a dispersive wave, Eq. (3.10), the wave front propagates witl ve-
locity o but zeros are subject to dispersion and travel with the following velociies:
vm = dz/dt = a(l — k2, Jwit?)~V/2, where Jo(k,,) = 0 and for (k. /wot)? > 1,
R(z,t)=0. In the case of Maxwellian plasmas, v,, =~ (mr /a)(6(1-w3t?/m?x?))1/?

http://rcin.org.pl
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Fi1G. 8. Maxwellian plasma resolvent kernels R(X, 7)) vs X for T' = x, 67, and 9 1/6m.

according to Eq. (4.9), which is an asymptotic relation for wgt/m7 > 1, hence
v, are purely imaginary.
By use of Eq. (4.9), we may write
wot(1 + 62%a2 /w2 ~ wot + 32%a? fwyt3.
If 62%a?/w}t* < 1 and denoting X2 = 62%a%/1%, T = wyt, the equation

sin(7 + (1/2)X%/T) =0

http://rcin.org.pl
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FiG. 9. Resolvent kernel for “square” velocity equilibrium; R(X, 7)) = —0.5J,((T? — X)"?)
vs X for T'= 107 and 15.

must be satisfied. According to computer calculations, at least in the rang: 7), =
1007 <+ 3007, we have

X2 ~2Td,, dp~r+3mr, m=0,1,2..

“Ym,r

hence, we may write

& 2
A mn+l A ™m,n
- FL = 2(/,” s
Fn+1 - ln

(4.10)
'\—31,71/'\'vznm+1 =~ Trl/,rrl+] *

We conclude, that the m-th zero (node) of the resolvent is moving alng the
X -axis in accordance with the law of diffusive transition. We note that th: m-th
zero is related to the m-th diffusive constant, d,, = © + 3mr.

Finally, we emphasize the fundamental difference between a diffusive transi-
tion of oscillations and wave propagation, both being based on our conwlution
equations, which uniquely transform the kernel K(x.t) into the respective resol-
vent R(z, ).

If we assume the solution in the form

R(z,t) = —wgo(x, t)sin(wot),
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where
o0

/g(.r,!)r[.r =1,

-0

then Eq. (3.2) takes the form

t

@11)  Folz, 1) - to(z,1) = wg](lil(f — 1) sin(woly)
0

T Folx — 1,1 — t
X [/g(:rl,fl) o A l)dxl—g(az,i) ,

t— 1y

— 00

where K(z,t) = —wiFo(z, 1),
t
sin{wot) = wot — wﬁ/(t — t1) sin{wpty ) dt, .
0

If o(z,t) = (1/t)Fo(z, 1), then the resolvent equation implies the following Chap-
man - Kolmogoroff equation

o

(4.12) / o(x — xy,t — t)o(xy, ) dxy = o(a,t)
and
(4.13) /.z-zg(.r.f)d.z' = 2Dt.

The equation (4.12) possesses a unique solution (see Eq.(3.15)). When the in-
tegral (4.13) does not exist (e.g. unlimited energy), then Eq.(4.12) can possess
different solutions, (see Eq.(3.13) and (3.14)). The wave propagation can be de-
rived by reduction of Eq.(3.2) to a wave equation, (see Eq.(3.11)). The case
of Maxwellian equilibrium cannot be reduced neither to Chapman - Kolmogoroff
equation or the wave equation.

However, as numerical calculations indicate, there is a set of values (z,, ;1)
for which the resolvent R(z, 1) comes to nodes and they travel along the z-axis ac-
cording to the diffusive law, see Eq. (4.10). Moreover, on the basis of the Eq. (3.2),
an approximate dispersion relation can be derived and an approximate wave equa-
tion can be regained, (see Eq.(3.11)).
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5. Discussion and conclusions

In this article we have studied space-time responses of linearized Vlasw plas-
mas on the basis of multiple integral convolution equations. An initial-valu: prob-
lem for Vlasov - Poisson/Ampere equations can be reduced to the integra equa-
tion and the solution to the problem is expressed in terms of a forcing finction
G(z,t) and its convolution with a resolvent kernel R(z,t) (see Eq.(3.1). The
forcing function is responsible for the initial disturbance and the resolven is re-
sponsible for an equilibrium velocity distribution, see Eq. (3.2). Resolventkernel
equations (3.2) are eligible for computer calculations.

We have presented three types of exact analytical solutions of the spac-time
resolvent equations. The solutions can be classified following the space-tine be-
haviour. The first one is a dispersive wave solution (Riemann function) in tie case
of the simplified electron plasma equilibrium, called “square equilibrium”™ Then
the resolvent equation (3.2) can be reduced to dispersion wave equation axd the
Bohm - Gross dispersion relation is satisfied. The second one is calculated or the
Lorentz equilibrium of electron plasmas. We call this type of space-time betaviour
“diffusive transition of oscillations” since the space-time amplitude of oscilations
satisfies the Chapman - Kolmogoroff equation and there is no wave sperd and
no dispersion relation. On the ground of the two types of resolvent kernds, the
solution to an initial-value problem of Vlasov - Poisson/Ampere equations :an be
determined if the respective forcing function is known. The last type of th: exact
solution of Eq. (3.2) is also a diffusive transition of oscillations with the amvlitude
being a Gaussian function (3.15). This example is not exactly applicable to lin-
earized plasma equations since it has not been derived from any equilibriun, but
it turns out that the resolvent approximates the Maxwellian plasma behavieur for
fixed z and long time ¢ according to (3.15) and due to the computer calalated
results, Figs.3 and 4. By use of the resolvent equation (3.2) one can easily prove
the time-reversibility as well as the space-reflexivity for a given plasma kenel.

The main results of this paper concern the Maxwellian plasmas havig the
properties which can be summarized as follows. The nature of the plasna re-
sponse is a compound of a diffusive transition, being essentially a plasmz oscil-
lation mode with the wy - plasma frequency and the Gaussian type of amjlitude
profiles, and a damped dispersive wave mode. Differentiation of these twc prop-
erties is not an easy task and we have not a ready conclusion but it seens that
the Maxwellian plasma response exhibits mainly diffusive transition in spice for
fixed values of time in a long time range, and damped wave behaviour fo' fixed
values of z with respect to time /. We note that the plasma response apears
immediately in the whole space of z, and the zeros (nodes) travel accordng to
(4.10) at least for long times. The step-density disturbance of electron Maxvellian
plasmas appears to be the electric current forcing function, which is propotional
to Maxwellian plasma kernel, hence the resolvent kernel is a plasma reponse
to the step-density disturbance. It is noteworthy that the solitary plasma waves
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can be excited experimentally by strong step-density disturbances in ion-electron
plasmas.

By inspecting the series representing the resolvent and its Fourier transform,

Egs.(4.4) and (4.6), we found the symmetry property with respect to Fourier
transforms. It can be used for constructing approximate formulae of R(z, t) if the
approximate expressions of their Fourier transforms are known, and vice versa.
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