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Experimental study of pseudoelastic behaviour of a Cu Zn Al
polycrystalline shape memory alloy under tension-torsion
proportional and non-proportional loading tests

C. ROGUEDA, C.LEXCELLENT and L.BOCHER (BESANCON)

SOME TENSION-TORSION loading experiments on thin-walled tubular specimens of a Cu Zn Al poly-
crystalline shape memory alloy have been performed using a special experimental device. Propor-
tional loading tests allow to verify the normality rule for the pseudoelastic strain rate and enable
the experimental validation of the thermodynamical model of pseudoelastic behaviour developed
by Raniecki et al. Non-proportional loadings show how the pseudoelastic behaviour depends on the
chosen loading path. The chosen training path seems to have small effect on the obtained efficiency
values which are very high (around 70-80%). A microstructural experimental study must be done
to understand the mechanism of formation and reorientation of martensite plates when the stress
vector direction changes.

1. Introduction

THE MECHANICAL BEHAVIOUR of shape memory alloys (S.M.A.) is studied, as a rule,
through some uniaxial tensile or compressive tests. As a consequence, mechanical
models of, e.g., pseudoelastic behaviour, are usually written and also validated
only in the case of uniaxial stress. However, it is necessary to understand the
S.M.A. behaviour under multiaxial loading since it is the case in most of the in-
dustrial constructions. Some tests on mechanical structures have been performed
for “complex” loadings: thin rectangular plates loaded in torsion [1], thin rectan-
gular plates loaded in bending by a terminal force [2], springs loaded in tension
[2] or in compression [3], ... But these tests were done either in order to study
the efficiency of training, or in order to analyse the microstructure evolution.

In [4], B. RANIECKI et al. proposed a three-dimensional model of the pseu-
doelastic behaviour of S.M.A. In order to verify some of those hypotheses, the
three-dimensional (3D), or at least two-dimensional (2D) loading tests have to
be performed. The simplest two-dimensional loading to apply is a tension-torsion
one. Some such experiments on SMA have been reported in [5] but the speci-
mens used were rigid bar specimens (Cu Al Zn Mn) which were associated with
an important shear stress gradient in torsion.

Some results of this kind of test on thin tubes are also reported in [6], but
these experiments were performed on a Ni Ti polycrystal and the results are still
quite qualitative. Moreover, only a few tests were performed.

In this paper, the experimental device and the results of proportional loading
tests are discussed. Some non-proportional loading tests are also exposed, to show
the importance of the loading sequence. Training of samples during these tests
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1026 C. RoGuUeEDA, C. LEXCELLENT AND L. BOCHER

have been analyzed. Finally, the modelling described in [4] (and applied to pro-
portional loading tests) is used to show a reasonable agreement with experimental
data.

2. Material and technique

The tests have been performed on a Cu Zn Al polycrystalline S.M.A. with-
out any additional components (weight composition: Cu 70.17 %, Zn 25.63 %, Al
4.2 %) prepared by the “Tréfimétaux” company. Its characteristic phase transfor-
mation temperatures, determined by home electric measurements, are 287 K for
Mg, 278K for M (temperature start — and end — of the austenite to marten-
site phase transformation) and 290K for Ag, 293K for Ap (temperature start —
and end - of the reverse transformation). The heat treatment is quite standard.
Specimens are heated at 1123 K during 15 minutes, quenched in a 393 K oil bath
and maintained at this temperature for one hour. The specimens are carried out
few days later, in order to make the austenitic phase more stable.

Section A-A
6 8 85 71

115

FiG. 1. Sample shape definition.

4

In order to avoid internal stresses, samples were manufactured by electro-
erosion technique from 30 mm diameter rigid bars. Their dimensions (given in
Fig. 1) are characteristic for thin tubes condition. During the tension-torsion tests,
the stress tensor has the form:

0 0 0
0 0z Oz
with
(2.2) 0., = F/27 Re, 0.5 = C'/ZTFRZC,

F, C, R and e are, respectively, the axial loading force, the torque, the mean
radius and thickness of the sample. It must be remembered that in the S.M.A.
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F1G. 4. Repartition of the five proportional loading tests on Fpa = 110 MPa.
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case, the thin tube condition must take into account the mean grain size which is
about 1 mm (see Fig.2). Some 1800 grains have been numbered in the measured
part.

The sample shape is adapted to a specific mechanical device which takes over
the whole loading and ensures the specimen to be properly fixed. Tests were
performed on a Schenk 3D test machine (tension, torsion and internal pressure),
connected with the H.P. microcomputer. This hydraulic machine has load limits
+63 kN and +1000 Nm. Every test has been performed under a force control.

The temperature was maintained constant at 7' = 303K (T > Ap).

Stresses are calculated from F' and C values with the accuracy of +£3.1 N and
+0.12 Nm. Axial and torsional strains are obtained from a mechanical differen-
tial system illustrated in the Fig.3. Linear and rotative sensors (L.V.D.T and
R.V.D.T) are linked to each stem of this system, in order to separate strain com-
ponents from each other. They measure axial and angular displacements (AL
and A#f).

Assuming the strains to be small, axial and torsional strains ¢,. and .4 can
be easily calculated from the formulae

rAf
2L

Here L is the effective length, estimated by means of a classical extensometer to
be equal 69 mm. Displacements are known with the accuracy of +5-10~%m for
the axial sensor and +1.22-1073 rad. for the angular one.

Strain gauges were also tried but it was so difficult to obtain a good adherence
between the sample and gauges that this technique has been abandoned. This
behaviour is probably due to copper corrosion.

(2.3) e.. = ALJL, e =

3. Experimental results
3.1. Proportional loading tests

In tension-torsion loading tests, the equivalent stress, in agreement with the
von Mises criterion, is defined by

@.1) 7= (o2 +30%) "

For each proportional test, the maximum equivalent stress Tmax is 110 MPa.
Hence, each point corresponding to the end of loading belongs to a quarter of
circle, the radius of which is Tmax in the (0., \/50'39)-]3]3[16 representation. The
courses of the five tests performed in this quarter of circle is presented in the
Fig.4. As the loading is proportional, axial and torsional stresses are connected
with each other by the relation

(3.2) 0. =ao.. (a=C")



1028 C. RoGuepa, C. LEXCELLENT AND L. BOoCHER

The value of a, fixed in each test, characterizes the direction of loading and can
vary between O (pure tensile test) and oo (pure torsional test).

The test frequency is 103 Hz. Loading and unloading periods are similar. The
first cycle is repeated 35 times in order to evaluate the possible training of the
samples.

8010 (MPa)

\{_3016
| /,7 Ozz
60 1 tension

o /\ torsion

4 e

20+
0/// 8(°/U1)=
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€26 (%) 045
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035 //

03[ 7
0.25 e

€72 (%)
| ' | ! |
0 0.1 0.2 e 0.4 05 0.6

F1G. 5. Tension-torsion proportional loading test (o = 0.577).

The stress-strain curve corresponding to the No. 4 test (a = 0.577) is presented
in Fig. 5, as a representative test. In the following parts of this paper, the elastic
behaviour, the yield stress of phase transition, the pseudoelastic behaviour and
finally the training efficiencies are studied.
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3.1.1. Classical elastic behaviour. Elastic strains and stresses are related by the Pois-
son coefficient » and the Young modulus E as follows:

v 1
Erp = 526 = _EU.‘:Zv Egz = EOZZ’
(3.3)
€ —1+Vcr ey =€, =0
2 T E 26 » rf TZ

E and v are calculated from the slope of each stress-strain curve. A consider-
able scatter of E values can be observed. This can be explained by a possible
dispersion during heat treatment because the samples are thick, or by a relative
non-homogeneity of the alloy. This observation in the elastic domain, where the
behaviour is well known, is important to estimate the dispersion of further results.

3.1.2. Yield stress of phase transformation. To characterize the beginning of the direct
phase transformation (i.e. austenite to martensite), the usual von Mises yield
stress is defined as:

(3.4) FAM _ ( AM Y2 +3(o AM)Z)

where (c2M) and (04V) are the axial and torsional threshold stresses. They cor-
respond to the linearity loss of the (¢..,0..) and (.4, 0.4) curves. For each test,

the @M value is calculated and (((r AMYy 3(p M ) are given on the (0,.,v/30.5)

plane. As it is shown in Fig.6, @'Y seems to be rather constant in these tests,

and a criterion surface can be defined as 7'M = 30.3 MPa.

40 N30z
—AM

. _6'=30.3 MPa
30-
204
10-

G-

0 T - i —

0 10 20 30 40

Fi1G. 6. Yield surface phase transformation: austenite — martensite.
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In a tensile test, the critical stress o4’ and the temperature 7 are linked by
the following relation:

(3.5) oM = §(T - Ms).

Generalizing this relation for multidimensional loading tests, the constant
is found to be equal to 1.9MPaK~! which is a known value for a Cu Zn Al
polycrystal. In [7], uniaxial tests with the same alloy were presented and b was
estimated to be 2.0 MPaK~!.

3.1.3. Study of pseudoelastic behaviour. First, the total deformation is split into two
parts, the elastic and the pseudoelastic deformation:

(3.6) € =g +eP.

For tensile tests, VACHER in [7] has established the proportionality between the
pseudoelastic deformation and the volume fraction of martensite, by performing
the electrical resistance measurements during mechanical tests.

For a 2D or a 3D proportional loading, as in “plasticity”, the existence of a
current flow surface (¢ = cte) is postulated. It is homothetic to the initial one
(@M = cte); the normality rule, i.e. the pseudoelastic strain rate is perpendicular
to this surface.

In a classical way, it follows that

s pe _ : ﬂ
(3.7) e = A 7’
with
(3.8) fET-7AM@), A=4:

So, the pseudoelastic strain rate is obtained as

é pe _ 3 devo
2 7
where 7 is the maximal pseudoelastic strain obtained for a complete phase trans-

formation occurring in a tensile test.
In a tension-torsion proportional loading test, the expressions (3.2) and (3.9)

lead to:

tie

5

N

(3.9)

n
Il

(3.10) 3% =
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In this case, the integration yields

devo

——8,
a

W

(31]) Epe =

It is possible to evaluate e}, /<%¢ from strain measurements obtained by the
gauges. As it is shown in Fig. 7, the experimental value of €7 /c?¢ is not far from
the theoretical value which is —0.5. The small dispersion can result from the
position of the gauges.

A e e
-0.4]€85/e5s

-0.451 .
o & :g
'05 ,puuu .
-0.55- C e

P c,,(MPa)
s T ‘ T - T o

F1a. 7. Ratio };,/<P% evolution during a tensile-torsion proportional loading.

Validity of the expression (3.11) is verified by studying the evolution of 7] /e2¢.
Parameter () is defined as:

cpe
(3.12) Q=7
“z20 V22

From (3.11) it follows that @ is theoretically constant and equal to 2/3. The
evolution of ) with respect to the tensile stress o, during the test No.4 (o =
0.577) is presented in the Fig.8. It can be noticed that even though @ seems to
be a constant, its value is slighty higher than the theoretical one. @ values for the
three biaxial loading tests are presented in the Tab. 1.

Table 1. Value of () obtained for each proportional test.

Test 3 4 5

Q 0.72 0.75 0.75

http://rcin.org.pl
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FiG. 8. Experimental evolution of the @ parameter (during the test described in Fig.5).

The equivalent pseudoelastic strain is defined by:

4 12
(3.13) e = |(e%9) + 3 G
Its maximum value is reached when @ is maximum (Fmax = 110 MPa). The
Tab.2 shows Zhax for each test. In a pure tension test, ¢7; is theoretically null,
and in a pure torsional test, ¥¢ is also zero. From the Tab. 2, the material seems
to be slightly anisotropic. This can explain why ) is not equal to its theoretical
value.

Table 2. Experimental tensile and torsional pseudoelastic strain values.

Test 1 2 3 4 5
efP (%) 0.339 0.011 0.384 0.369 0.193
eff (%) 0.025 0.215 0.173 0.277 0.356
ePE (%) 0.34 0.248 0.433 0.488 0.454

The pseudoelastic strain measurements allow also to determine the pseudo-
elastic strain rate vector € P°. As the loading is proportional, the following relation
holds (expressions (3.9) and (3.11)):

~Pe 2 pe
=20 — =z28
(3.14) 50T i

Then, it is easy to draw €7 on the (0..,/30.4) plane, for each test, when the
equivalent stress is maximal, as it is shown in the Fig. 9. This figure shows also that
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the strain rate vector is perpendicular to the loading surface (Gmax = 110 MPa)
what proves the validity of the normality rule. Moreover, it allows to see the
expansion of the criterion surface from @' = 30.3 MPa t0 Fyax = 110 MPa.

30,9 (MPa)

4

Smax=110 MPa

—

gpﬁ) C’_zz(rv”:)a)

0 "20 "40 "60 "80 "100"

1. 9. Experimental validation of the normality rule.

3.14. The training process.  After Npax = 35 loading-unloading cycles (between
@ = 0and @ = Gpax = 110MPa), the training effect is measured. Figure 10
represents the first ten cycles corresponding to the test No. 4. The Fig. 11 shows
the training effect in this sample, placed (at a stress-free state) in an oil bath of
temperature varying from 232K to 313 K.

In order to study the training effect, it is necessary to define three training
efficiencies: the tension efficiency (0.. = (A¢..)s=0/(c5% max)N=Nps)> the tor-
sion efficiency (0:6 = (Ac20)s=0/(c"5 max)N=Nax) and the equivalent efficiency
(Q = (-—\E)a=0/(gﬁ1fax).-‘\’=:\’mu)-

These efficiencies are measured for the five training tests. These values seem
to be much higher (around 75-80%) than the ones obtained under a more
complex loading (c.f. for example [1]). In [5], where rigid bars are also loaded in
tension and torsion, the first cycle is repeated in order to study the stabilization of
stress-induced martensite. Unfortunately, the efficiency values are not presented.
Nevertheless, the pseudoelastic loop stabilizes after a few cycles, as in our experi-
ments. Training values lead us to assume that the density of dislocations is quite
important since, according to [8], the density of dislocations is a good parameter
helping to evaluate the training effect. Until now, no microstructural analysis has
been performed to verify the assumption.
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Fi1G. 10. The first ten half-cycles of a training process (test No.4, o = 0.577).
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FiG. 11. Two-way shape memory effect measured after training process of Fig. 10.

3.2. Non-proportional tests

Even if the modelling of non-proportional loadings is, in most of cases, not
simple, the importance of such tests appears to be in answering the queston:
“what is the effect of a rough change of the mechanical loading upon the material
behaviour ?” Indeed, in every single crystal, the best oriented habit planes are
activated (with respect to the maximum shear rule) for a given loading direcion
[9]. If the direction of the stress vector is changed by applying torsion uponthe
tension, other variants (“secondary variants”) can be activated and interact vith
the primary variants. Here, it is interesting to see what happens macroscopially
to a polycrystalline sample.
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Fi1G. 12. Definition of non-proportional paths.

As in the proportional loading tests, the maximum equivalent stress Tpmay is
110 MPa, but it is reached through four different possible paths: I, TI, TII and
IV (see Fig.12). 3 is the angle characterizing the test [tg 3 = (V3 aM¥)/am].
Its possible values are 30°, 45°, 60° as in the respective tests 3, 4 and 5 with
proportional loading.

3.2.1. Pseudoelastic loop of the first cycle. For each path, the tensile (o..,¢..) and
torsional curves (.4, ¢.¢) are given (Figs. 13 to 16). So, the resulting deformation
path (c.¢,¢..) is known. As it was already observed in the previous part, material
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isotropy is not perfect since during the first loading (uniaxial), the small strain is

measured along the other axis.
‘{?3018 \[-30zg
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7 Ozz s

§ A B A D
80 o (Mpa) o iensxon A o ) .
60 -
40
<4—torsion
20
0 e (%)
o° °0.2 0.4 0.6 0.8
€26 (Y)0.5

C/
0.4F /
031

V2
02r / /
D

/ A
i
o
-
>

/
A// B €77 (70)

O 1 1 1 1 1 1 ]
0 01 02 03 04 05 06 07 08 09

Fi1G. 13. Tension-torsion non-proportional loading test (path I, 5 = 45°).

=pe

Maximum equivalent pseudoelastic strain Zp,y is higher than that in the pro-
portional loading tests. This observation confirms the assumption that new habit
planes (“secondary” planes) are activated when the mechanical loading direction
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F1G. 14. Tension-torsion non-proportional loading test (path II, § = 45°).

changes. Moreover, it seems that the hardening induced by interactions between
primary and secondary habit planes does not play any important role. Moreover,
during the second loading (BC'), a reorientation of primary variants may occur
with the change of the stress vector orientation. Such variant reorientations are
reported in [5].
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F1G. 15. Tension-torsion non-proportional loading test (path III, § = 45°).

In fact, during these non-proportional loading tests, observation of the mi-
crostructure evolution is necessary to understand the micromechanisms invoved
by the stress path. From the phenomenological point of view, the comparson
between the shape of the imposed stress path (rectangular in Figs. 14 and 15)
and the resulting shape in the deformation path is interesting.
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F16. 16. Tension-torsion non-proportional loading test (path 1V, 3 = 30°).

3.2.2. The training process.
After N
definitions are the same as in the previous case.

The ten first cycles of a training are presented in Fig. 17.
Nmax = 35 cycles, the training effect is measured (Fig. 18). Efficiency

The global efficiency o lies between 60 and 80 % and its dependence on the

chosen path is not clear.
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F1G. 17. The first ten half-cycles of a non-proportional loading training process
(path 11, g = 30°).
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FiG. 18. Two-way shape memory effect measured after training process of Fig. 17.

[1040]
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4. Modelling of a proportional loading test
4.1. General equations

In [4], RANIECKI et al. propose to model the pseudoelastic behaviour in two
steps. First, the free energy of the two phases system (A + M) is written as

(4.1) b =(1-2)P + 28, + A,

#, and &, are the specific free energies of the austenite and of the martensite
phases, respectively. A@ is called the configurational energy and represents the
interaction which appears between the two phases, for example produced by
incompatibilities between deformations. The main property of this energy is that
it disappears if only one phase is present in the material. In agreement with
MuLLER and Xu [10], the simplest expression for A is:

(4.2) AP = 2(1 — 2)P;

where @, is the interaction energy (@;;(T") = gy — T5).
In [4], the free energy expression is obtained in the form (z is the volume
fraction of martensite and g the mass density of the material):

(43) B, T,2) = up— Tsh — 2xf(T) + —((-: —e”)L(e — €7)

-
+6, (T —Tg)— Tl (—)] + A
To

with

(')4"

= =L 7y = Le°,
o =05 (e — €)= Le

P
4.4 § = ——,
4 ST Tar

Wé(T) = (u) = ud) = T(s} — s3) = Au—TAs.

7r({ is the thermodynamic force of the martensitic transformation at stress-free
state. uj and sjj are the specific energy and entropy of the o phase (o =1 for
the austenite and a = 2 for the martensite).

The thermodynamical force associated to the phase transition under non-zero
stress is:

ad
(4.5) = o TFO(T) +93/0 — ®:(1 — 22).
The Clausius - Duhem inequality (7/ d> > 0) is chosen to be the criterion of
phase transition [4]:
direct transformation dz >0 i >0,

(4.6) , .
inverse transformation dz <0 rf <0,

http://rcin.org.pl



1042 C. RoGguepA, C. LEXCELLENT AND L. BOCHER

m/ = 0 represents the absolute equilibrium states of the system. It is unstable if
&, > 0, what characterizes the martensitic transformations.

(o)
¥y =4 B
A y, =Cte<0
Y, =Cte>0 o PN
S 9 z=Cte
C Aq
M v, =0 _
&

F1G. 19. Description of the external and internal loops in the model of Raniecki et al. [4].

It is then possible to determine the equivalent stress threshold of the marten-
sitic transformation M (point A in the Fig. 19) and for the reverse transforma-
tion M4 (point A,) as:

f(——A M

(T — ol
2=0,T) =0 = #M(T)=5%(:=0) = g‘pzr(T)‘y o(T) ’

4.7)
(@M, 2:=1,T)=0 = " (1) =5"G:=1)=a""(T)- 2

¢l'g(r1ﬂ)
~ F

The instability of the equilibrium yields the conclusion that there exists no
thermodynamical relation which could give the equations of the hysteresis loop.
Taking a similar framework as in the plasticity approach, the functions ¥; (for the
direct transformation) and ¥, (for the reverse one) are assumed to be constant
during the phase transition. ¥; = 0 and ¥, = 0 are the functions which represent
the complete martensitic and reverse transformations (they describe the “external
loop”). ¥; = n and ¥; = m (m and n are negative constants) represents the
internal loops where the transformation is not total.
is ¥ (o,T,2) = n/(0,T,2) - ki(2),

A Uy(o,T,z2) = —1/(a,T,2) + k().

The functions k;(z) and k(=) are chosen [4] such that the kinetics of the phase
transformation are in agreement with the ones proposed by metallurgists [11]:
k1(z) = =(Ay + B12)In(1 — 2) + Cyz,
(4.9)
ka(z) = (A2 — By(1 = 2))Inz — Ca(1 - 2)

http://rcin.org.pl
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with
Cy = 20,(M,), C2 = 2¢,(A;),
(4.10) a1A; = As + 3, ayAy = As — 3,

a1 By = ay By = 23g.
4.2. Application to a tension-torsion proportional loading test

The behaviour is elastic as long as the equivalent stress does not reach the
critical equivalent stress 74 (= = 0):

(4.11) 7 = (0. YA V1 + 302,

Then the pseudoelastic behaviour must be simulated. The volume fraction of
martensite is increasing from 0 to z4, which is the z value obtained just before
the unloading. The pseudoelastic flow is represented by ¥; = 0. It gives:

(4.12) 1l +y3/0 — Bu(1 — 22) = ky(2).

Since during the whole test tensile and torsion stresses are proportional
(@ = (0..)V 1+ 3a? with 0.4 = ao..), it is possible to determine the stress
values from the relations

- __© (=) + Bog(1 — 22) —
T = AT [k1(2) + @1 - 22) - =f]

(4.13)

Trg = (XT 5z .

€22 = —: ok Y

(4.14) -
i (1 + v 372)
€z = 020 E T

The reverse transformation is represented by the ¥; = ky(z4) curve (ky(zq)
is a negative constant) where z, is the volumic part of martensite at the end of
the loading process. So, during the unloading to the stress o, the stresses are
given by

= gy [150) — haCea) + 201 - 2 = ).
(4.15)

T.6 = QO,, .

The corresponding strains are still given by Eq. (4.14).

http://rcin.org.pl
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The seven parameters A;, By, C, Ay, By, C, and v which determine the
functions k; and the k,, @;; and W({ are determined from tensile loading tests
described in [2] by the following constants.

Au As uy 30 ¥ ay az
(Okg™) | Okg™'K™") | (Jkg™") | Jkg™'K™) K | (K™
6 944 23.36 1 495 4.22 0.0416 | 0.032 0.06

N30,

te (MPa) Ouz

801
f traction
601
40
fe—- torsion — model
E — experiment
20+

1 e (%)
0O 01 02 03 04 05 06

FiG. 20. Experimental and modelled curves concerning the test No. 4.

0

Modelling of the test No.4 is presented in the Fig.20. The form of the theo-
retical loops are acceptable but some corrections are necessary. The results prove
the validity of the 3D model proposed by RANIECKI ef al. in [4] and the proposed
state equations of pseudoelasticity (3.11).

5. Conclusion

Proportional and non-proportional tests have been performed by means of
a special experimental device, in order to increase the number of experimental
data in the case of complex loading.

Proportional loading tests allows us to verify the normality rule for pseu-
doelastic strain rate, and hence it enables the experimental verification of the
thermodynamical model of pseudoelastic behavior developed by RANIECKI et al.
in [4]. In the future, other stress-strain curve simulations will be presented.
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Non-proportional loading tests brought a lot of informations not easy to inter-
prete. It shows the evidence that the pseudoelastic nonlinear behavior depends
on the chosen stress path. The main physical features are the creation of new
variants (called “secondary” ones) when the stress direction change, or (and) the
reorientation of the first variants under the stress.

Only a microstructural observation will allow us to describe the mechanism of
martensite plates displacement and creation by the stress path.

For an isothermal pseudoelastic cycling (Nmax = 35), both proportional and
non-proportional training processes are associated with very high efficiency val-
ues: this is a very good information for technical applications.

We believe that the analysis of such complex loading processes will help us to
understand the S.M.A. pseudoelastic behaviour.
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